
Fixed point index bounds for self-maps on

closed surfaces
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Abstract

Given a surface with non-positive Euler characteristic and non-empty
boundary, and a map which has the least number of fixed points possible
within its homotopy class there are known bounds (both upper and lower)
regarding the fixed point indices of the map. This paper gives a new proof of
this result. In addition, a relative version of the method is developed, which
is then used to establish the same index bounds for the case of a closed sur-
face of negative Euler characteristic.

0 Introduction

In the classical Poincaré-Birkhoff theory, obtaining local fixed point index data
has proved to be a useful tool in understanding global dynamical behavior (see
for example [2] or [13] ). As a result a problem that has attracted interest in both
fixed point theory and in dynamical systems is the study of index behavior of
maps in dimension 2. Many results on fixed point indices for surfaces mappings
have appeared in the literature, including the papers [1], [4], [7], [8], [9], [10], [11],
[14], [15], [16], [17] and [18]. In particular, the papers [7], [8], [9], [10] and [11]
present a number of results which establish global bounds for the indices of fixed
points, and also for Nielsen classes. The purpose of this paper is to extend some
of these results. We present a variation of the method of proof used in [10], and
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then introduce a relative version which allows us to extend the results in that
paper to include the closed surfaces with negative Euler characteristic.

Let X be a compact topological space. In particular, a polyhedron, CW-com-
plex, or ANR so that the space admits a fixed point index. Let K denote a family
of self-maps on X, together with a partition of the fixed points of each member.
We say that K has the index bounds property, denoted by IBK, if there exist integers
ℓ and u such that ℓ ≤ index( f , P) ≤ u holds for all maps f ∈ K and each P a
member of the partition on Fix( f ).

In this paper we will be interested in two very natural families when consid-
ering index bounds for a particular space X:

o The class of maps consists of all fixed point minimal maps. Those maps hav-
ing the least number of fixed points possible among all maps in a given
homotopy class. The partition classes are single fixed points. We denote by
MF[ f ] this minimal number for the homotopy class of f , and write IBMF
for the bounds for this class.

o The class consists of all continuous maps and the Nielsen fixed point classes
provide a partition. Given a map f a pair of fixed points are Nielsen related
if there exists a path α joining the two points with f (α) homotopic to α
rel endpoints. We write IBN for the bounds for these Nielsen classes. See
the references [3], [6] for more information regarding Nielsen fixed point
classes.

It is a result due to B. Jiang [5] that, for many polyhedra, property IBN is
the same as property IBMF, simply because each homotopy class of maps has a
representative where each essential Nielsen class is a single point. The exceptions
to this occur either when X has local separating points or when X is a hyperbolic
surface (i.e. a surface with negative Euler characteristic). In the case of a hyper-
bolic surface index bounds were studied in [7], [10],[11] and, in particular, the
following global bounds were shown to be relevant:

∑
index(x)>1

(index(x)− 1) ≤ 0 , and ∑
index(x)<−1

(index(x) + 1) ≥ 2χ(F) .

In the papers cited, these bounds were shown to hold in two settings; (i) when
x represents a Nielsen class in the case of all such surfaces, and (ii) for surfaces
with non-empty boundary when x is an isolated fixed point of a fixed point mini-
mal map. Note that the first inequality just says that u = 1 gives an upper bound
for the index, while the second bound gives a global lower bound on all fixed
points (or Nielsen classes) having index less than −1. In general, there is no rea-
son to expect a global bound on the number of fixed points of index ±1.

Motivated by these results we say that X has the hyperbolic index bounds prop-
erty, denoted HIBK, for the class K if it satisfies the above inequalities for the
given class K. (The H is in reference to the fact that the bounds hold for hyper-
bolic surfaces.) With this notation, HIBN holds for all hyperbolic surfaces, and
HIBMF holds for hyperbolic surfaces with non-empty boundary. We remark that
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these bounds hold trivially for the two closed surfaces with zero Euler character-
istic; the torus and the Klein bottle. Also, when the space X is a finite graph it is
a routine exercise to verify the HIBK property where K consists of all self-maps
which have a finite fixed point set. In particular, the HIBMF holds for graphs. It
is proved in [7] that the HIBN property is also satisfied for graphs.

The structure of the remainder of the paper is as follows. In Section 1 we
present a variation on the proof given in [10], where a large class K of maps is
identified and shown to satisfy HIBK. This is stated in Proposition 1. It also fol-
lows from this variation that the HIBMF property holds for surfaces with non-
empty boundary. Taking advantage of this variation, in Section 2 we introduce a
relative version of the method. In particular, relative to a single disk we establish
the HIBMF property for the closed surfaces in Theorem 1.

1 A family of maps that satisfy hyperbolic index bounds

In this section we consider surfaces with non-empty boundary and show that a
large class of surface maps satisfy hyperbolic index bounds when fixed points
are grouped in a careful way. The result, given in Proposition 1 below, has as
a corollary the HIBMF for surfaces with non-empty boundary. The proof given
here is much more direct than the original proof given in [10].

Let F be a compact, connected surface with non-empty boundary ∂F and non-
positive Euler characteristic. Exactly as in [10] we fix a handle structure consisting
of one 0-handle, which is a disk denoted by D, and 1− χ(F) 1-handles. These are
disks that are glued to D along a pair of disjoint arcs, called attaching arcs. Let A
denote the union of all the attaching arcs for the 1-handles, a total of 2(1 − χ(F))
pairwise disjoint arcs on the boundary of D.

In order to define our family of maps we first give some terminology. We
recall that a proper 1-manifold in F is a submanifold embedded in (F, ∂F) by a
proper map. A self-map f : F → F is said to be A-transverse if it has a finite fixed
point set which is disjoint from A, and with the property that the preimage of A is
a proper 1-manifold C meeting A in a finite set of points not in ∂A and the image
of any open set in F meeting C meets at least two components of F \ A. Given
an A-transverse map f , a component R of F \ (A ∪ f−1(A)) is called a region. If
R and f (R) are contained in the same component of F \ A the region is critical.
Let R̄ denote the closure of the region R. By a segment we mean a component of
f−1(A) ∩ R̄. The border of R is R̄ \ R and consists of segments, as defined just
above, and subarcs from A ∪ ∂F.

Lemma 1. Given a fixed point minimal map f there is an A-transverse map homotopic
to f with the same number of fixed points and the same fixed point indices.

Proof: Let f be a fixed point minimal map, and without loss A is chosen so that
it does not contain any fixed points. By general position we arrange that f−1(A)
is a 1-dimensional complex without changing the fixed point set, and further,
that the transversality condition given in the definition holds. Consider a non-
manifold point q of f−1(A) and a regular neighborhood N. Then N ∩ f−1(A)
consists of 2k arcs, k ≥ 2, meeting q, and as one traverses the boundary of N
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the 2k complimentary domains map to opposite sides of the component of A
containing f (q). Apply a small deformation of f near q to produce a new map
(by abuse of notation we call f ) where now N ∩ f−1(A) consists of k arcs with
no non-manifold points. Apply to each such q to obtain the desired A-transverse
map.

We define a graph G f associated to f whose vertices are the critical regions,
and two vertices are joined by an edge if and only if there is a point p ∈ A com-
mon to both boundaries such that p and f (p) lie in the same component A0 of A.
Note that the two vertices lie on opposite sides of A0 and the edge simply crosses
A0. So the graph may be embedded in F. Since f has no fixed points on A, critical
regions have a well-defined fixed point index. The index of a component of G f

is the sum of the indices of its vertices. The utility of considering the index of
components is stated in the following lemma, which is taken from [10, Prop 2.1].
The method of proof is illustrated in Example 2 below.

Lemma 2. Let f : F → F be an A-transverse map and let M be the number of compo-
nents of G f that have a non-zero index. Then there is an A-transverse map g homotopic
to f with Gg isomorphic to G f and g has exactly M fixed points. In addition, the graph
isomorphism preserves indices of components.

Given a homotopy class of maps γ let I denote the collection of A-transverse
maps f in γ such that G f has exactly MF[γ] components with non-zero index. We
now have a class different from N and MF. The maps are those in I and the fixed
points are placed into collections determined by the components of the graph
constructed above. We denote this class by CRG.

Proposition 1. For any compact, connected surface with non-empty boundary and non-
positive Euler characteristic, and for any f ∈ I the HIBCRG hold. That is

∑
index(C)≥1

(index(C)− 1) ≤ 0 (1)

and

∑
index(C)≤−1

(index(C) + 1) ≥ 2χ(F) , (2)

where C denotes a component of G f .

Immediate from the above lemmas and Proposition 1 we have the following
corollary. This result was implicitly proved in [10], but Equation (2) was only
stated for a single fixed point, as opposed to a global result stated in the HIB.

Corollary 1. The HIBMF property holds for all compact surfaces with non-empty bound-
ary.

Remark: The proof of Proposition 1, given in this section is much more direct
than the proof found in [10]. The argument in [10] was motivated by the second
authors earlier work in attempting to understand the structure and dynamics of
fixed point minimal maps. This proof shows that most of that structure is not
needed to obtain results about fixed point indices for fixed point minimal maps.
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Also, the argument here clearly highlights (see Lemma 5) the need for MF in
defining CRG above.

The following terminology will be used in the proof of Proposition 1. Let ∂A
denote the set consisting of the endpoints of the arcs in A. Consider a handle H
(either a 0− or 1−handle), which is bordered by the simple closed curve ∂H. Let
η be a segment that lies in H and let U1, U2 be the two components of ∂H with the
endpoints of η removed. Define the length of η to be the cardinality of the smaller
of the sets U1 ∩ ∂A and U2 ∩ ∂A.

A region is large if either it has a segment on its border with length at least
2 or the closure of the region meets all components of (∂H \ A), where H is the
handle containing the region. Otherwise, the region is small. Two large critical
regions are said to be adjacent if they meet a common component A0 of A, and are
in the same component of G f , joined by a sequence of edges and vertices where
each vertex corresponds to a small critical region, each meeting A0. We will also
use the notion of large and small segments, which is more subtle. Note that a
segment with length one meets exactly one component of A. The segment η is
large if either its length is greater than 1 or its length is exactly 1 and the following
holds: f (η) lies in the same component of A as the one that meets η, and η is on
the border of a large critical region that is adjacent to another large critical region.
A segment is small if it is not large.

The following lemma is a variation on [12, Lemma 5]. This will be used for
computing fixed point indices for critical regions.

Lemma 3. Let f be A-transverse and let R be a critical region for f . Let α1, . . . , αℓ

denote the segments on the boundary of R. Let X denote the closure of the component of
F \ A for which R ⊂ X. Suppose that for each i, f (αi) is a single point. Set xi = 0 if
f (αi) and R \ αi lie in the same component of X \ αi, otherwise set xi = 1. Then

index(R) = 1 −
ℓ

∑
i=1

xi .

Proof. We first observe that if R is not a disk, then the border of R will contain
the αi together with a finite number of simple closed curves that are mapped into
A. But each of these simple closed curves contributes 0 to the value of the fixed
point index. So we may assume that R is a disk.

Consider a tree T in X which has one vertex v0 in the interior of R, an edge
joining v0 to a vertex on each αi, and edge in each component of X \ R ending at
vertex at f (αi) in the case xi = 1.

By a homotopy relative to ∪αi we deform f restricted to R to a map τ which
has image in T. Furthermore, the only fixed point of τ is the vertex v0. Thus,
index(R) is the same as the fixed point index of the graph map τ : (T ∩ R̄) → T
at v0. Consider a valence one vertex v of T ∩ R̄, which is a point on αj. Then by
construction τ is expanding on the edge vov if and only if xj = 1. The result now
follows from the formula for the fixed point index of graph maps.

Remark: The assumption that f (αi) is a single point is restrictive. Certainly it
rules out any index larger than one. In general, up to index invariance, one can
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arrange that the image is either a point or an arc that contains the endpoints of αi.
The later contribute to positive index. See Example 2.

The following examples illustrates some of the terms given above, and index
calculations using Lemma 3 and the remark above.

Example 1: Figure 1 illustrates a component Ap of A and four segments α1, . . . , α4

with α2 ∩ α3 = p, meeting critical regions R1, R2. Suppose that f (p) is on Ap

located “above” the point p. Then in the index calculation of R1 using Lemma
3, the segment α2 contributes an xi = 0, while segment α3 contributes an xi =
1 to the index of R2. Assuming no other segments, and that both α1, α4 map
downward relative to the critical region, then segment α1 contributes an xi = 0
and segment α4 contributes an xi = 1 to index calculations, and so index(R1) = 1
and index(R2) = −1.

If the map f is deformed as in the adjustment in the proof of Proposition 1 so
that f ′(p) is now located below p on Ap, then the index of R1 decreases by 1 and
R2 increases by 1. There is no change to the index of the components of G f .

R2

R1

Ap

a1

a
3

a2

a
4

p

Figure 1: Fixed point index in the CRG

Example 2: We continue with Example 1, giving an example that illustrates the
result given in Lemma 2.

Suppose now that other segments meet R1 and R2 so that index(R1) = −1
and index(R2) = −2. Deforming f to f ′ as in Example 1 simply interchanges the
values of the indices. With the goal of combining these two values we deform
f so that α2 ∪ α3 appears as in Figure 2. Assuming the three intersection points
alternate direction the small segment bordering R2 contributes −1 to its index
using Lemma 3. As the index of R1 ∪ R2 is independent of the choice of directions
for the intersection points, it follows that under our assumption we now have
index(R1) = −1 + 1 and index(R2) = −2 − 1. As a result, all of the index is
concentrated in R2.

The argument used in this example gives the main idea behind proof of Lemma
2. Given large segments α2, α3 meeting component Ap, and mapping by f to Ap

we can add a suitable number of small segments and alternate images as above
so that by Lemma 3 the index of one of the regions is changed by a value −k,
for some positive k. As only two critical regions are impacted, it follows that the
index of the second region changes by +k. Hence, after making suitable choices
one of the two indices can be changed to zero.
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P

Figure 2: concentration of fixed point index

Proof of Proposition 1. Let f ∈ I and let G f be as defined above.

In order to verify the index bounds we will first need to make some adjust-
ments to a given A-transverse map.

The first adjustment that we make extends that used in Example 2 as follows.
Suppose that p ∈ A is such that p and f (p) lie on the same component of A.
If we deform f with support on a prescribed neighborhood of A so that f−1(A)
remains unchanged as a set, and also all critical regions remain unchanged, then
we get a new map f ′ which is in I as long as f ′(p) 6= p. Moreover, G( f ′) = G( f )
and the index of each component is unchanged during the homotopy. As an
illustration, we arrange that a small segment β which meets a point p as above, is
mapped to a single point on A \ Iβ by choosing a neighborhood which contains
β. More generally, consider a connected finite union of small segments as above.
Assuming that there is a point q on the component of A that is not contained in
the union of the Iβ we adjust so that the entire union of the small segments is
mapped to q.

The second adjustment used is the notion of coalescing of segments. For this
consider a pair of points p, q in A∩ f−1(A) that are adjacent along Ai and both are
mapped by f to Aj. Let βp, βq be segments ending respectively at p, q, contained
in the same component of F \ A, and where we assume these segments are not
equal. This determines three regions; R0 between the segments, and R1, R2 out-
side. Let δ be an arc in R0 parallel to the subarc of Ai joining p, q with endpoints
in βp, βq.

For our application we will also require that if R0 is critical and i = j, then
in G f the vertex R0 only joins across Ai a vertex of valence 1 corresponding to a
small region.

Now apply a homotopy with support on a small neighborhood of δ which has
the effect of joining the two segments. That is, viewing δ as vertical and βp, βq as
horizontal, remove small arcs from each of βp, βq and replace with vertical arcs
parallel to δ, and contained in R0.

A variation on the coalescing move is to have δ as above, but now joining a
segment to the boundary of F.

Let g denote the end of the coalescing homotopy. We now consider the dif-
ference between the graphs G f and Gg. When R0 is critical, then the assumption
made above will imply that G f and Gg differ by at most a single component which
corresponds to small critical regions. By the adjustment above this component
will have index zero. If R0 is not critical, then this move will join R1 and R2 into a
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single region R′. If these regions are critical, then the index of R′ is the sum of the
two indices, and moreover, the index of the component of Gg containing R′ is the
sum of the indices of the components containing R1 and R2. Hence, by Lemma
2 if f is fixed point minimal, then one of these two components must have zero
index.

Thus, the coalescing move may change the graph, but assuming fixed point
minimal the number of fixed points and their indices are unchanged.

Two applications of these adjustments are the following lemmas. The first
gives control on the location of fixed point index, while the second will be used
to obtain the bounds on the index in the components of G f .

Lemma 4. Given a fixed point minimal A-transverse map there is another A-transverse
map f in its homotopy class, which has the same fixed point data and such that each small
critical region has a unique segment on its border that contributes xi = 1 to its index
calculation. Consequently, small critical regions have index equal to zero.

Proof. Given a small segment bordering a small critical region whose endpoints
map to the component A0 of A containing these points, consider the arc η that
is a maximal connected union of small segments containing the given segment.
Let Iη denote the union of the Iβ corresponding to η. If Iη is not all of A0, then
apply the adjustment given above to obtain the conclusion for the small regions
corresponding to η.

Now suppose that Iη is all of A0. This occurs when η is a component of

f−1(A), and moreover η meets no other components of A. Hence, η is isotopic to
A0 as proper arcs in F. In this case apply the coalescing move to replace η with a
proper arc that is disjoint from A together with a number of simple closed curves
consisting of small segments.

Lemma 5. Let g be a fixed point minimal A-transverse map. Then g is homotopic to an
A-transverse map f that has the same fixed point data as g such that associated to each
pair of adjacent large critical regions there are two large segments, one contributes xi = 0
to the index calculation of the region it borders and the other contributes xi = 1 to its
corresponding region.

Proof. Consider a pair R1, R2 of adjacent large critical regions meeting A0. Since
they are adjacent the two regions are joined by a connected union δ of small seg-
ments which maps to A0. We consider two cases: (1) R1, R2 lie on opposite sides
of A0 or (2) they lie on the same side of A0.

In case (2) since R1, R2 are large it follows that there are large segments meet-
ing A0 between the regions. Moreover, the existence of δ implies an even number
of such segments and they are naturally paired. It is possible that none of these
large segments maps to A0 and a failure to get the conclusion of the lemma. In-
stead, using an innermost pair of large segments we have the set-up for a coalesc-
ing move. Repeatedly apply the coalescing move until R1 and R2 are joined into
a single critical region.

The proof now reduces to all adjacent pairs being in case (1), and on opposite
sides of A0. If δ consists of an even number (possibly zero) of small segments the
two regions are configured as in Figure 1, with δ connected to two large segments,
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one on the border of each Ri. If δ consists of an odd number of segments, then
δ is connected to two large segments which are on the border of the same Ri. It
follows directly from the definition that one large segment has xi = 1 and one
has xi = 0.

We are now ready to verify the two inequalities in Proposition 1. Without loss
we may assume that f ∈ I satisfies the conclusion of Lemmas 4 and 5. Let C be a
component of G f with v vertices, vl of which correspond to large critical regions.

Equation (1) is equivalent to showing that the index of a component of G f is at
most one. By Lemma 4 each small region contributes a segment with xi = 1. By
Lemma 5 there are at least vl − 1 segments with xi = 1 corresponding to the large
regions in C. Hence there are at least v − 1 segments with xi = 1 corresponding
to C. Thus, following Lemma 3

index(C) = ∑(1 − ∑ xi) ,

where the outer sum is over the vertices in C and the inner sum is over the seg-
ments on the border of a critical region. This is equal to v − ∑ xi, with the sum
now over all xi corresponding to C. But this is less than or equal to v − (v − 1),
which establishes equation (1).

We now verify equation (2). If R is a small region in C, then by Lemma 4 its
index is zero and so does not contribute to the index calculation. We ignore these
regions. In this case index(C) = ∑(1 − xi), where the sum is taken over the large
critical regions in C. Also, if R is large, then each small segment on its border
contributes xi = 0 to the index calculation. So the conclusion of Lemma 3 can be
stated as

index(R) = 1 − l1(R) ,

where l1(R) counts the number of large segments with xi = 1. Let l0(R) denote
the number of large segments with xi = 0 and l(R) the total number of large
segments on the border of R. Summing over the large regions corresponding to
C we have

index(C) = ∑
R

( 1 − l1(R) ) = ∑
R

( 1 + l0(R)− l(R) )

= vl +∑
R

l0(R)−∑
R

l(R) ≥ vl + (vl − 1)− ∑
R

l(R) ,

where the inequality above is a result of Lemma 5. Hence,

index(C) + 1 ≥ ∑
R

( 2 − l(R) ) .

Now let C be any collection of components of G f . Then,

∑
C∈C

(index(C) + 1) ≥ ∑
R

( 2 − l(R) ) ,

where the summation on the right is over all large regions corresponding to C.
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We now establish the topological inequality

∑
R

(l(R) − 2) ≤ −2χ(F) . (3)

To do so first consider the case where all large regions in D which meet the
boundary of F are critical.

Now remove all small segments from the collection of critical regions and
segments corresponding to C. Also note that associated to each point of A ∩ ∂F
there is at most one length 1 large segment on the border of a large critical region.
To simplify counting we move any such segment that lies in D into the 1-handle
on the other side of A.

In a given 1-handle H, if there are no large segments of length 2, then there is
only one region and (l(R)− 2) ≤ 2, corresponding to the length 1 large segments
in this region. Otherwise all the large segments of length 2 are parallel in H
in that they all have endpoints in the same two components of ∂H \ ∂A, which
consists of four components. This implies that the complimentary regions each
satisfy l(R) − 2 = 0 with two exceptions. Each of the two end regions meeting
∂A will satisfy (l(R)− 2) ≤ 1 as a result of the length 1 large segments. As before

∑(l(R) − 2) ≤ 2.
Taking the sum over all of the 1-handles we get

∑(l(R) − 2) ≤ 2(1 − χ(F)) .

We now focus on D. We first include all large regions in D that are between
those regions in C. Since each region in this collection has at least two large sides
we note that if the inequality (3) holds for this new collection, then it is valid for
the regions in C.

Consider two regions in this collection that meet along a segment. By remov-
ing this segment we get a new configuration with one less region and a smaller
count by two towards ∑ l(R). Thus, the left hand side of (3) remains unchanged
in the process. By our assumption on the large critical regions meeting the bound-
ary we reduce to the case where D contains exactly one critical region R0 with no
large segments on the border. Hence, ∑(l(R)− 2) ≤ −2 for the original collection
of critical regions in D.

Combine regions of C in D with the 1-handles to get

∑(l(R)− 2) ≤ 2(1 − χ(F)) − 2 = −2χ(F) .

This establishes the desired inequality in the case where all large regions in D
meeting ∂F are critical.

Now suppose that one or more of the large regions in D meeting the bound-
ary are not critical. Consider one such region R′, bordered by the large segment
α. Since α is large, the boundary of R′ contains at least two points of A ∩ ∂F.
By definition of length 1 large, it follows that there is no length 1 large segment
corresponding to each of these k points.

This has the following effect on the sum in the first case. On the 1-handles the
right hand side is reduced by k. In D, since l(R′)− 2 = −1 and is not critical, we



Fixed point index bounds for self-maps on closed surfaces 683

increase the right hand side of the inequality by +1 when summing over critical
regions. A similar reasoning applies to a finite number of non-critical regions.

Finally, choosing C corresponding to the set of vertices of all components of
G f that have a negative index we obtain inequality (2) of the proposition.

Remark: In the next section of the paper we will give an adaptation of the con-
struction given in this section. One feature that this adaptation will use is that if
W is a finite set of points in F, the entire construction can be done relative to W.
That is, given a map f we choose a handle structure so that (W ∪ f (W)) ∩ A = ∅.
Then all homotopies applied in the construction can be made relative to the set
W. This was not the case with the methods from [10] where segments were often
moved across A by homotopies.

To conclude this section we now suppose that g : F → F has the additional
property that there exists a boundary component ∂0 of F such that g(∂0) is null
homotopic. We can then arrange for f ∈ I such that f−1(A)∩ ∂0 = ∅ and f−1(A)
does not contain any simple closed curves isotopic to ∂0. It then follows that there
is a region in D which contains two components of ∂0 ∩ D. This in turn detects
a difference of 2 in the inequality (3) above, resulting in the following variation
of inequality (2). See also [10, Proposition 6.1] for a slightly different proof of this
result.

Proposition 2. With f ∈ I as above ∑
index(C)≤−1

(index(C) + 1) ≥ 2χ(F) + 2 , where

C denotes a component of G f .

2 Closed surfaces

In this section we introduce a relative version of the method presented in the pre-
vious section. The main application of this will be to verify the HIBMF property
for surfaces without boundary. The result appears at the end of this section in
Theorem 1. Although we are primarily interested in closed surfaces in this sec-
tion, the method applies to bounded surfaces as well.

Let F be a compact, connected surface with non-positive Euler characteristic.
Consider a prescribed compact subsurface F0 in F. It is bordered by a collection of
simple closed curves which we denote by λ. Let f : F → F be given and suppose
that there are no fixed points on λ and that f−1(λ) is a 1-manifold meeting λ
transversally in a finite set of points. Throughout this section we assume that all
maps have this property.

Let S denote the closure of F \ F0. Consider a handle structure for S consisting
of one 0-handle for each connected component of S, and a total of n − χ(S) 1-
handles, where n is the number of components of S. We use the symbol D to
denote a 0-handle, and A will denote the union of all the attaching arcs for the
various 1-handles. Note that the border of a given D consists of a number of arcs
that are part of 1-handles and an equal number of arcs that are subsets of either
∂F or λ.

Given the assumptions on λ above we can consider the analogous notion
of an A-transverse map. Here we have that (1) the preimage of λ is a proper
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1-manifold Cλ and (2) the preimage of A is a 1-manifold with endpoints in ∂F∪Cλ

which meets A and λ transversally. Here transverse is as in the previous section;
the sets intersect transversally in a finite set of points, none of which are fixed
points, and the image of any open set meeting the preimage of A meets at least
two components of S \ A. All homotopies are constant along F0.

The following lemma is the analog of Lemma 1 for the relative setting. The
proof is exactly the same.

Lemma 6. Let F0 be as above. Given a fixed point minimal map f : F → F, relative
to F0, there is an A-transverse map homotopic to f rel F0 with the same number of fixed
points and the same fixed point indices.

Given an A-transverse map f a component R of S \ (A ∪ f−1(A) ∪ f−1(λ)) is
called a region. It is said to be critical if R and f (R) are contained in the same com-
ponent of S \ A. By a segment we will mean a component of ( f−1(A) ∪ f−1(λ))
on the border of a region. We define the graph G f just as in the absolute case.
Vertices are the critical regions and two regions are joined by an edge if and only
if there is a point p ∈ A common to both boundaries such that p and f (p) lie in
the same component of A.

Note that since we are only using A to connect vertices we should not expect
that G f is going to always obtain useful index bounds related only to the surface
S. Moreover, fixed points in F0 could also effect bounds.

Lemma 2 can be applied directly in this setting, but our main issue is going
to be with Lemma 3. To compute the index of a critical region we will need a
result similar to, and which generalizes, Lemma 3. When considering segments
in f−1(λ) which are on the border of a critical region, those that are proper arcs
(say in D) present no problem. They behave just as segments from f−1(A). The
difficulty occurs with segments formed from combinations of arcs from both of
f−1(λ) and f−1(A). In this case it is not immediately clear how to read off the
value of the index as was done in Lemma 3. We will refer to such segments as
being singular segments. The notions of large and small for regions and segments
is unchanged.

In order to avoid these potential problems, and also with fixed points in F0, we
will restrict our attention to situations where F0 has little topology. In particular,
F0 might be a neighborhood of a single simple closed curve, or as we consider
below, the extreme case where F0 is a disk and λ is an inessential curve in F.

In the following lemma we will use the fact that F0 is a disk to gain some
control over the singular segments for the purpose of our index calculations. A
critical region is said to be null if it is small, has exactly one segment on its border
and this segment is singular.

Lemma 7. Let F be a closed surface with χ(F) ≤ 0. Given a homotopy class of self-maps
there is a fixed point minimal representative f and a disk F0 in F such that f−1(F0) is a
finite set of disks, each disjoint from F0. Moreover, if f−1(F0) is non-empty there is an
associated handle structure of S such that
(1) singular segments have length zero and all have endpoints contained in a single com-
ponent of A,
(2) if an edge in G f corresponds to a point that is an endpoint of a singular segment, then
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the singular segment borders a null critical region,
(3) singular segments never intersect small segments.

Proof: After a suitable triangulation of F we may assume that the map f is
simplicial. If f is not onto, then F0 is simply a small neighborhood of a point not
in the image of f . Otherwise, the disk F0 is just a small neighborhood of a point in
the interior of a 2-simplex that is not fixed by f . We also arrange that each simple
closed curve on the border of a disk in f−1(F0) is mapped to λ by a monotone
map determined by the local degree, which we may assume to be nonzero.

We now produce the desired handle structure when f−1(F0) is non-empty. Let
τ denote a collection of 2 − 2χ(S) arcs in S each with one endpoint on λ. When
the arcs in τ are suitably small we arrange that f−1(τ) is also a pairwise disjoint
collection of arcs, each arc having one endpoint on f−1(λ).

The components of τ are paired as follows. Let w1, . . . , w1−χ(S) be a pairwise
disjoint collection of proper arcs in S such that a regular neighborhood of the arcs
gives a handle structure for S and each wi contains two components of τ.

We construct an arc η inductively as follows. Set η to be a component t0 of
τ on w1. Now choose a component E of f−1(λ ∪ τ) and consider an (oriented)
arc which starts at the free endpoint of η and then traverses each of the arcs of
E ∩ f−1(τ) in exactly one point. Furthermore, we keep η disjoint from f−1(F0) ∪
F0 ∪ τ, and also we assume (**) a further condition on the choice of η relative to
E which is given below. This is our new arc η. Proceed building the oriented arc
η by choosing another component of f−1(λ ∪ τ) and extending the old η to this
component. Continue until all components of f−1(λ ∪ τ) are used.

Now join η to t′0 to form a proper arc in S which we will assume to be isotopic
to w1. The remaining pairs of arcs in τ are joined by arcs, each isotopic to the
corresponding wi. The 1-handles for a handle structure are to be thin neighbor-
hoods of this collection of proper arcs. Now that we have 1-handles we explain
the extra condition (**). Let A1 denote one of the attaching arcs for the handle
corresponding to w1. Choose η so that A1 is the component nearest to E ∩ f−1(λ)
and also that the first and last arcs (of f−1(A)) traversed near E ∩ f−1(λ) do not
belong to f−1(A1). Since τ has at least 4 components (so at least two 1-handles)
this is always possible. The same attaching arc A1 is to be used for each of the
components E considered.

After making local adjustments as needed so that f−1(A) is a 1-manifold the
choice of η ensures that (1) holds. In addition, the condition (**) implies that (2)
holds. By the construction of the arc η each singular segment has the property
that an edge from f−1(λ) to A1 in the segment must extend into the 1-handle as
a large segment, one that intersects next the other attaching arc for the handle.
Hence, we have property (3).

We now show how the handle structure produced in the above lemma fits
with the three lemmas used to derive the index bounds for the bounded surface
case.

Each singular segment bordering a region constructed in the proof above can
be decomposed into three arcs. Two come from f−1(A) and the third is the preim-
age of one of the arcs in λ \ A. Moreover, f maps the singular segment onto this
arc in λ \ A together with points on A that are very close to the arc. As a result
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index calculations involving singular segments occur as follows:
(i) Null critical regions are quite simple. The bordering singular segment maps
to an arc outside the region and so the region has index zero. Also, in G f the null
critical region corresponds to a vertex that has valence at most one.
(ii) For all other critical regions. Since singular segments for these regions map to
an arc which does not intersect the segment the contribution to index is the same
as xi = 0 for a segment in Lemma 3. So we can ignore the singular segments for
index calculations.

In order for Lemma 4 to apply for index calculations we must be able to
arrange that each connected union of small segments is mapped to one side of
the union of the regions bounding the segments. Property (3) ensures this for the
singular segments, and so Lemma 4 applies as before. Properties (1) and (2) im-
ply that no singular segments are used to join large regions in G f . Hence the use
of Lemma 5 and the inequalities in the proof of 1 are exact;y the same.

In summary, starting with the CRG G f given by Lemma 7, we remove the ver-
tices (and adjacent edges) corresponding to null regions to obtain a new graph G0

which carries the same index data. We then proceed with the proof of Proposition
1 where we ignore singular segments on the border of critical regions. This leads
to a relative version of the index bounds for certain critical region graphs.

Proposition 3. Let F be a closed surface with Euler characteristic χ(F) ≤ 0. Then for
any g : F → F that satisfies the conclusion of Lemma 7 above, the HIBCRG hold. That is

∑
index(C)≥1

(index(C)− 1) ≤ 0 (4)

and

∑
index(C)≤−1

(index(C) + 1) ≥ 2χ(S) , (5)

where C denotes a component of Gg.

Remark: For the two closed surfaces having positive Euler characteristic the hy-
perbolic index bounds do not hold. We point out where the above construction
breaks down in these cases. For real projective space the surface S is a Möbvious
band. In this case it is not possible to arrange condition (**). Consequently, the
graph G f does not reduce to the bounded surface case. For the 2-sphere, the sur-
face S is a disk, and so there is no handle structure to start the construction. One
may proceed with a generalization of the method using two (or more) disks for
F0, but failure again occurs in that (**) is not possible to arrange. The presence of
edges that join singular segments to large regions in D has the effect of taking the
graph G0, which satisfies HIBCRG, and joining components with no control on
the indices.

We now return to fixed point minimal maps on closed surfaces. As men-
tioned in the introduction, the index bounds result was established for homeo-
morphisms of hyperbolic surfaces [8]. For surfaces with Euler characteristic zero
this result is classical. As a consequence of Proposition 3 we obtain the following
generalization.
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Theorem 1. The HIBMF property holds for all closed surfaces with non-positive Euler
characteristic.

Proof. Let F be a closed surface with non-positive Euler characteristic and let
f : F → F be a fixed point minimal self-map. Without loss we may assume that f
satisfies the conclusion of Lemma 7 for some disk F0. Since f is minimal, just as in
Lemma 2, each component of G f has one fixed point if its index is nonzero and no
fixed points if its index is zero. Equation (4) of Proposition 3 automatically gives
the desired upper bound. Equation (5) of the proposition gives a lower bound of
2χ(S), where S was obtained by removing the interior of the disk F0. Since the
image of λ is clearly null homotopic, by Proposition 2 we obtain a lower bound
of 2χ(S) + 2. But this is equal to 2χ(F).

This theorem when combined with Corollary 1 gives the main result of this
section.

Corollary 2. The HIBMF property holds for all compact surfaces with non-positive Euler
characteristic.
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