Maps between Sol 3-manifolds and coincidence Nielsen numbers*

Karen Regina Panzarin

Abstract

Let M_{A} be the torus bundle over S^{1} obtained using as gluing map an Anosov matrix A. In this paper we discuss maps from $M_{A^{r}}$ to M_{A} and compute the coincidence Nielsen numbers for such maps, moreover we use that such manifolds are double covers of torus semi-bundles and compute the coincidence Nielsen number for selfmaps of Sol 3-manifolds which are torus semi-bundles.

1 Introduction

Maps between torus bundles over the circle and Nielsen theory for such spaces were studied by many authors (e.g. [Sa, SWW, GW, Vi, JL]). In some of these works the authors are concerned with the description of possible maps between such spaces (specially the non-trivial maps) and in others they try to compute Nielsen numbers for some maps. In this work, following some ideas from [GW], we discuss maps between Sol 3-manifolds which are torus bundles, in particular we study maps from a torus bundle obtained using a gluing map that is a power of the Anosov matrix used in the target space, such situation explore some covering maps. In the end, using [Je2], we compute the coincidence Nielsen numbers for those maps.

[^0]Let T denote the torus obtained as the quotient space $\frac{\mathbb{R} \times \mathbb{R}}{\mathbb{Z} \times \mathbb{Z}}$. For each homeomorphism A on T, induced by a linear operator in $\mathbb{R} \times \mathbb{R}$ that preserves $\mathbb{Z} \times \mathbb{Z}$, we identify A with an integer matrix with determinant either 1 or -1 .

We constructed $M_{A}=\frac{T \times \mathbb{R}}{((x, y), t) \sim\left(A^{n}(x, y), t-n\right)}$ which is a torus bundle over S^{1}. If A is an Anosov matrix (i.e. either $\operatorname{det}(A)=1$ and $|\operatorname{tr}(A)|>2$ or $\operatorname{det}(A)=-1$ and $\operatorname{tr}(A) \neq 0[\mathrm{Sa}]$), we have that M_{A} is a 3-manifold with Solgeometry [[SWW], (1.3)].

The present paper is organized in two sections besides this Introduction. In Section 2 we present some general facts about maps between Sol-torus bundles, in special we describe the possible maps from $M_{A^{r}}$ to M_{A} (such situation includes many covering maps) and we compute the Nielsen coincidence numbers for said maps. In Section 3 we use the fact that torus bundles are double covers of Soltorus semi-bundles (also named sapphire manifolds) to compute the coincidence Nielsen number for these manifolds.

2 Coincidence Nielsen numbers

As observed above, $T \rightarrow M_{A} \xrightarrow{p} S^{1}$ is a fiber bundle where p is the projection given by $p[((x, y), t)]=[t] \in \frac{\mathbb{R}}{\mathbb{Z}} \simeq \frac{[0,1]}{0 \sim 1} \simeq S^{1}$.

$$
\begin{aligned}
& \text { Let } f, g: M_{A^{r}}=\frac{T \times \mathbb{R}}{((x, y), t) \sim\left(\left(A^{r}\right)^{n}(x, y), t-n\right)} \rightarrow \\
& \quad M_{A}=\frac{T \times \mathbb{R}}{((x, y), t) \sim\left(A^{n}(x, y), t-n\right)},
\end{aligned}
$$

where $r \in \mathbb{N}, n \in \mathbb{Z}$.
By [[Je2], (5.5)], we have that the pair (f, g) is homotopic to a fiber pair, so the following diagram is commutative:

The theorem below describe the possible maps in such context (that includes many covering maps). This characterization will be useful later.

Theorem 2.1. Let $f: M_{A^{r}} \rightarrow M_{A}$ be a map between Sol-torus bundles $M_{A^{r}}$ and M_{A} with Anosov matrices A^{r} and A, respectively, $A \in G L(2, \mathbb{Z}), r \in \mathbb{N}$. Let $f^{\prime}: T \rightarrow T$ be the induced map on the fiber such that $f_{\#}^{\prime}=B=\left(\begin{array}{cc}m & n \\ p & q\end{array}\right)$, and let $\bar{f}: S^{1} \rightarrow S^{1}$. Suppose that $A^{r}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$. Then:

where $\left[\frac{a^{\prime}-d^{\prime}}{c^{\prime}}\right] p,\left[\frac{b^{\prime}}{c^{\prime}}\right] p,\left[\frac{a^{\prime}-d^{\prime}}{c^{\prime}}\right] q,\left[\frac{b^{\prime}}{d^{\prime}}\right] q,\left[\frac{c^{\prime}}{a^{\prime}}\right] q \in \mathbb{Z}$.
Proof. Suppose $\operatorname{deg} \bar{f}=r$. The commutative diagram (2.1) implies that $B A^{r}=$ $A^{r} B$. By solving this matrix equation we get to the first case.

If $\operatorname{deg} \bar{f}=-r$, then the commutative diagram (2.1) implies that $B A^{r}=A^{-r} B$, and the result follows solving this matrix equation.

Suppose now that $\operatorname{deg} \bar{f}=k \neq \pm r$.
Since A is an Anosov matrix, A is diagonalizable. So, there exists $P \in G L(2, \mathbb{R})$ such that $P^{-1} A P=\bar{A}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, where λ_{1} and λ_{2} are the eigenvalues of A.

Let $\bar{B}=P^{-1} B P=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$. By the commutative diagram (2.1) we have that $B A^{r}=A^{k} B$.

It follows that $\bar{B} \bar{A}^{r}=\bar{A}^{k} \bar{B}$, that is, $\left(\begin{array}{cc}x \lambda_{1}^{r} & y \lambda_{2}^{r} \\ z \lambda_{1}^{r} & w \lambda_{2}^{r}\end{array}\right)=\left(\begin{array}{cc}\lambda_{1}^{k} x & \lambda_{1}^{k} y \\ \lambda_{2}^{k} z & \lambda_{2}^{k} w\end{array}\right)$.
Since $\lambda_{1} \lambda_{2}=\operatorname{det} \bar{A}= \pm 1, k \neq r$ and $\lambda_{1}^{|k-r|} \neq 1 \neq \lambda_{2}^{|k-r|}$, we conclude that $x=0=w$. Also $y=0=z$ since $\lambda_{1}= \pm \frac{1}{\lambda_{2}}, \lambda_{2}^{r+k} \neq \pm 1$, and $k \neq-r$.

Thus, $\bar{B}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and consequently, $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
REMARK 1: This form of the matrix B coincides with the one given by [SWW] when f is a selfmap, that is, $r=1$.

The next theorem follows from Corollary (5.5) of [Je2].

Theorem 2.2. Let $f, g: M_{A^{r}} \rightarrow M_{A}$ be maps between Sol-torus bundles $M_{A^{r}}$ and M_{A} with Anosov matrices A^{r} and A, respectively, $A \in G L(2, \mathbb{Z}), r \in \mathbb{N}$. Let $f^{\prime} g^{\prime}: T \rightarrow T$ be the induced maps on the fiber such that $f_{\#}^{\prime}=B$ and $g_{\#}^{\prime}=C$. Let $\bar{f}, \bar{g}: S^{1} \rightarrow S^{1}$ such that $\operatorname{deg} \bar{f}=k$ and $\operatorname{deg} \bar{g}=l$. Then

$$
N(f, g)=\left\{\begin{array}{cl}
0 & , \text { if } k=l \\
\sum_{i=0}^{|k-l|-1}\left|\operatorname{det}\left(A^{\operatorname{sign}(k) i} B-C\right)\right| & , \text { if } k \neq l
\end{array}\right.
$$

where $\operatorname{sign}(k):=\left\{\begin{aligned}-1, & \text { if } k<0 \\ 1, & \text { if } k>0 .\end{aligned}\right.$
REMARK 2: Under the hypotheses of Theorem [2.2, if $A \in S L(2, \mathbb{Z})$ and $f, g: M_{A^{r}} \rightarrow M_{A}$, when B and C are of the form of Theorem 2.1, then a straightforward calculation shows that $\operatorname{det}\left(A^{i} B-C\right)=\operatorname{det}(B)+\operatorname{det}(C)$.

Corollary 2.1. Under the hypotheses of Theorem [2.2, if $A \in S L(2, \mathbb{Z})$, then

$$
N(f, g)=|k-l||\operatorname{det}(B)+\operatorname{det}(C)| .
$$

Corollary 2.2. Under the hypotheses of Theorem 2.2, if $f, g: M_{A} \rightarrow M_{A}$ are self homeomorphisms, then either $N(f, g)=0$ or $N(f, g)=4$.

Proof. First, we observe that since f and g are homeomorphisms, $k=\operatorname{deg}(\bar{f})=$ ± 1 and $l=\operatorname{deg}(\bar{g})= \pm 1$.

If $\operatorname{det}(A)=-1$, then by [[Sa],Lemma 1.7 (3)] we have that there exists no matrix B with $\operatorname{det}(B)= \pm 1$ such that $B A=A^{-1} B$. Thus, $\operatorname{deg} \bar{f}=1$, that is, \bar{f} must induce the identity homomorphism on $\pi_{1}\left(S^{1}\right)$. Analogously, \bar{g} also induces the identity homomorphism on $\pi_{1}\left(S^{1}\right)$. Therefore, $N(f, g)=0$.

If $\operatorname{det}(A)=1$, then in the cases where $k=1=l$ and $k=-1=l$, we get $N(f, g)=0$. For $k=-1$ and $l=1$ (or the symmetric case) we have, by Corollary 2.1, that $N(f, g)=2|\operatorname{det}(B)+\operatorname{det}(C)|$.

So, we see that

- $N(f, g)=0$ when either $\operatorname{det}(B)=1$ and $\operatorname{det}(C)=-1$ or $\operatorname{det}(B)=-1$ and $\operatorname{det}(C)=1$;
- $N(f, g)=4$ when $\operatorname{det}(B)=\operatorname{det}(C)$.

REMARK 3: This corollary generalizes to coincidence the Theorem 2.2 of [GW].

3 Coincidence Nielsen numbers for selfmaps on sapphires

The family of 3-dimensional manifolds with Sol-geometry has two subfamilies, one of them consists of the torus bundles with an Anosov gluing map, the other one contains the torus semi-bundles (also named sapphire manifolds) (see [Mo]).

The construction of torus semi-bundles can be found in [SWW] or [Mo]. We will follow the approach of [GW] about such spaces, and we will use the same notation found there.

Let N_{ϕ} be a sapphire space that is not a torus bundle over S^{1}. By [SWW] we have that N_{ϕ} admits a Sol-geometry if and only if $\operatorname{det} \phi *= \pm 1$ and $x y z w \neq 0$ where $\phi_{*}=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$. By $[[G W],(3.2)]$ we have that N_{ϕ} is double-covered by a torus bundle M over S^{1}, that has Anosov gluing map, and the Lemma 3.3 of the same paper shows that the fundamental group $\pi_{1}(M)$ is fully-invariant in $\pi_{1}\left(N_{\phi}\right)$. This torus bundle, M, is always orientable [[SWW],(2.8)].

In this section we compute the coincidence Nielsen number of selfmaps $f, g: N_{\phi} \rightarrow N_{\phi}$, beginning with self homeomorphisms.

Theorem 3.1. Let N_{ϕ} be a sapphire space that is not a torus bundle over S^{1}. If N_{ϕ} supports Sol-geometry, then for every pair of self homeomorphisms $(f, g): N_{\phi} \rightarrow N_{\phi}$, we have either $N(f, g)=0$ or $N(f, g)=4$.

Proof. Since $f, g: N_{\phi} \rightarrow N_{\phi}$ are self homeomorphisms, they can be lifted to $\left(f_{1}, g_{1}\right),\left(\alpha f_{1}, \alpha g_{1}\right),\left(\alpha f_{1}, g_{1}\right),\left(f_{1}, \alpha g_{1}\right): M \rightarrow M$, where $\alpha: M \rightarrow M$ is a deck transformation. Besides, we have that $\operatorname{deg} f= \pm 1$ and $\operatorname{deg} g= \pm 1$. So we have to analyze three possibilities:
(i) $\operatorname{deg} f=1=\operatorname{deg} g$;
(ii) $\operatorname{deg} f=-1=\operatorname{deg} g$;
(iii) $\operatorname{deg} f=-1$ and $\operatorname{deg} g=1$.

Note that if \bar{f}_{1} induces the identity on $\pi_{1}\left(S^{1}\right)$, then \bar{f}_{1} is homotopic to the identity map on S^{1} and since α induces -id on the base S^{1} [GW], we have that $\overline{\alpha f_{1}}$ induces -id on $\pi_{1}\left(S^{1}\right)$.

So, we have four possibilities for the maps $\bar{f}_{1}, \overline{g_{1}}, \overline{\alpha f_{1}}, \overline{\alpha g_{1}}$:

- \bar{f}_{1} and $\overline{g_{1}}$ induce $i d_{S^{1}}$ while $\overline{\alpha f_{1}}$ and $\overline{\alpha g_{1}}$ induce $-i d_{S^{1}}$;
- \bar{f}_{1} induces $i d_{S^{1}}$ and $\overline{g_{1}}$ induces $-i d_{S^{1}}$ while $\overline{\alpha f_{1}}$ induces $-i d_{S^{1}}$ and $\overline{\alpha g_{1}}$ induces $i d_{S_{1}}$;
- \bar{f}_{1} induces $-i d_{S^{1}}$ and $\overline{g_{1}}$ induces $i d_{S^{1}}$ while $\overline{\alpha f_{1}}$ induces $i d_{S^{1}}$ and $\overline{\alpha g_{1}}$ induces $-i d_{S^{1}}$;
- \bar{f}_{1} and $\overline{g_{1}}$ induce $-i d_{S^{1}}$ while $\overline{\alpha f_{1}}$ and $\overline{\alpha g_{1}}$ induce $i d_{S^{1}}$.

The first and last cases are symmetric, as well as the second and the third cases, so we need to analyze just the third and fourth cases.
(i) If $\operatorname{deg} f=1=\operatorname{deg} g$, then $\operatorname{deg} f_{1}=1=\operatorname{deg} \alpha f_{1}$ and $\operatorname{deg} g_{1}=1=\operatorname{deg} \alpha g_{1}$.

Also, if $\bar{f}_{1}, \overline{g_{1}} \simeq-i d_{S^{1}}$ and $\overline{\alpha f_{1}}, \overline{\alpha g_{1}} \simeq i d_{S^{1}}$, then $\operatorname{deg} \bar{f}_{1}=\operatorname{deg} \overline{g_{1}}=-1$ and $\operatorname{deg} \overline{\alpha f_{1}}=\operatorname{deg} \overline{\alpha g_{1}}=1$. So, by Theorem [2.2, we have that $N\left(f_{1}, g_{1}\right)=0$ and $N\left(f_{1}, \alpha g_{1}\right)=\sum_{i=0}^{1}\left|\operatorname{det}\left(A^{-i} B-\alpha_{\#} C\right)\right| \stackrel{\text { Corollary 2.1 }}{=} 2\left|\operatorname{det}(B)+\operatorname{det}\left(\alpha_{\#} C\right)\right|$.
We only need to analyze these two pairs of lifts because $\left(\alpha f_{1}, \alpha g_{1}\right)=\alpha\left(f_{1}, g_{1}\right)$ and $\left(\alpha f_{1}, g_{1}\right)=\alpha\left(f_{1}, \alpha g_{1}\right)$, which means that the two first pairs of lifts $\left(\alpha f_{1}, \alpha g_{1}\right)$ and $\left(f_{1}, g_{1}\right)$ are conjugated and so are the two last $\left(\alpha f_{1}, g_{1}\right)$ and $\left(f_{1}, \alpha g_{1}\right)$.
Now, $f_{1_{\#}}^{\prime}=B$ with $\operatorname{det}(B)= \pm 1$ and $g_{1_{\#}}^{\prime}=C$ with $\operatorname{det}(C)= \pm 1$. Since α induces $\alpha_{\#}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ on the fiber $T[G W], \operatorname{det}\left(\alpha_{\#} C\right)=-\operatorname{det}(C)$. Besides, it can not happen that $\operatorname{det}\left(\alpha_{\#} C\right)=-1$ and $\operatorname{det}(B)=1$, because for $\operatorname{det}\left(\alpha_{\#} C\right)=-1$ we must have $\operatorname{deg} g_{1}^{\prime}=1$ and since $\operatorname{deg} \overline{g_{1}}=-1$, we obtain $\operatorname{deg} g_{1}=-1$, a contradiction. The same occurs to $\operatorname{det}(B)=1$. Therefore, we can only have $\operatorname{det}(B)=-1$ and $\operatorname{det}\left(\alpha_{\#} C\right)=1$, which implies $\mid \operatorname{det}(B)+$ $\operatorname{det}\left(\alpha_{\#} C\right) \mid=0$, that is, $N\left(f_{1}, \alpha g_{1}\right)=0$.
Now, since the coincidence Nielsen numbers of the lifts are null, we conclude that $N(f, g)=0$.
As for the other case, that is, $\bar{f}_{1}, \overline{\alpha g_{1}} \simeq-i d_{S^{1}}$ and $\overline{g_{1}}, \overline{\alpha f_{1}} \simeq i d_{S^{1}}$, we can argue in the same way as above to conclude that we can only have $\operatorname{det}(B)=$ -1 and $\operatorname{det}(C)=1$, which means that $|\operatorname{det}(B)+\operatorname{det}(C)|=0$, that is, $N\left(f_{1}, g_{1}\right)=0$. And since $N\left(f_{1}, \alpha g_{1}\right)=0$, we obtain that $N(f, g)=0$.
(ii) If $\operatorname{deg} f=-1=\operatorname{deg} g$, then $\operatorname{deg} f_{1}=-1=\operatorname{deg} \alpha f_{1}$ and $\operatorname{deg} g_{1}=-1=$ $\operatorname{deg} \alpha g_{1}$. Following the same procedure as above, we find $N\left(f_{1}, g_{1}\right)=0$ and $N\left(f_{1}, \alpha g_{1}\right)=0$ for the first case, and for the other case we have $N\left(f_{1}, g_{1}\right)=0$ and $N\left(f_{1}, \alpha g_{1}\right)=0$. So, we conclude that $N(f, g)=0$.
(iii) If $\operatorname{deg} f=-1$ and $\operatorname{deg} g=1$, then $\operatorname{deg} f_{1}=-1=\operatorname{deg} \alpha f_{1}$ and $\operatorname{deg} g_{1}=$ $1=\operatorname{deg} \alpha g_{1}$. Thus, $N\left(f_{1}, g_{1}\right)=0$ and $N\left(f_{1}, \alpha g_{1}\right)=4$ for the first case, and $N\left(f_{1}, g_{1}\right)=4$ and $N\left(f_{1}, \alpha g_{1}\right)=0$ for the other case. So, we conclude that $N(f, g)=4$.

Now, we will need of some definitions from [DJ].
In our context, the lift f_{1} will be called odd if $f_{1}(\alpha \tilde{x})=\alpha f_{1}(\tilde{x})$ and will be called even if $f_{1}(\alpha \tilde{x})=f_{1}(\tilde{x})$, for all $\tilde{x} \in M$ and a deck transformation $\alpha: M \rightarrow M$.

We already know that $\left(\alpha f_{1}, \alpha g_{1}\right)$ and $\left(f_{1}, g_{1}\right)$ are in the same lifting class; and the same for $\left(\alpha f_{1}, g_{1}\right)$ and $\left(f_{1}, \alpha g_{1}\right)$.

Now:
$\alpha\left(\alpha f_{1}, g_{1}\right)=\left(f_{1}, \alpha g_{1}\right)$.
$\left(\alpha f_{1}, g_{1}\right) \alpha=\left(\alpha f_{1} \alpha, g_{1} \alpha\right)= \begin{cases}\left(\alpha f_{1}, g_{1}\right) & \text { if } f_{1} \text { and } g_{1} \text { are both even; } \\ \left(f_{1}, \alpha g_{1}\right) & \text { if } f_{1} \text { and } g_{1} \text { are both odd; } \\ \left(\alpha f_{1}, \alpha g_{1}\right) & \text { if } f_{1} \text { is even and } g_{1} \text { is odd; } \\ \left(f_{1}, g_{1}\right) & \text { if } f_{1} \text { is odd and } g_{1} \text { is even. }\end{cases}$

$$
\alpha\left(\alpha f_{1}, g_{1}\right) \alpha=\left(f_{1} \alpha, \alpha g_{1} \alpha\right)= \begin{cases}\left(f_{1}, \alpha g_{1}\right) & \text { if } f_{1} \text { and } g_{1} \text { are both even; } \\ \left(\alpha f_{1}, g_{1}\right) & \text { if } f_{1} \text { and } g_{1} \text { are both odd; } \\ \left(f_{1}, g_{1}\right) & \text { if } f_{1} \text { is even and } g_{1} \text { is odd; } \\ \left(\alpha f_{1}, \alpha g_{1}\right) & \text { if } f_{1} \text { is odd and } g_{1} \text { is even }\end{cases}
$$

Thus, if f_{1} and g_{1} are simultaneously even or odd, then we have two lifting classes, $\left\{\left(f_{1}, g_{1}\right) ;\left(\alpha f_{1}, \alpha g_{1}\right)\right\}$ and $\left\{\left(\alpha f_{1}, g_{1}\right) ;\left(f_{1}, \alpha g_{1}\right)\right\}$. If one of f_{1}, g_{1} is even and the other is odd, then all four pairs of lifts form one lifting class.

Let us denote $C\left(f_{\#}, g_{\#}\right)_{x}=\left\{\beta \in \pi_{1}\left(N_{\phi}, x\right): f_{\#} \beta=g_{\#} \beta\right\}$, for $x \in \operatorname{Coin}(f, g)$.
Theorem 3.2. Let N_{ϕ} be a sapphire space that is not a torus bundle over S^{1}. Suppose N_{ϕ} supports Sol-geometry, then for every pair of selfmaps $(f, g): N_{\phi} \rightarrow N_{\phi}$, let $\left(f_{1}, g_{1}\right),\left(f_{1}, \alpha g_{1}\right): M \rightarrow M$ be the lifts to the torus bundle M which is a two fold cover of N_{ϕ}. Then

$$
N(f, g)=\left\{\begin{array}{rr}
\frac{N\left(f_{1}, g_{1}\right)+N\left(f_{1}, \alpha g_{1}\right)}{2} & \text { if } C\left(f_{\#}, g_{\#}\right)_{p \tilde{x}} \subseteq p_{\#} \pi_{1}(M, \tilde{x}) \\
& \forall \tilde{x} \in \operatorname{Coin}\left(f_{1}, g_{1}\right) ; \\
& \\
N\left(f_{1}, g_{1}\right)+N\left(f_{1}, \alpha g_{1}\right) & \text { if } C\left(f_{\#}, g_{\#}\right)_{p \tilde{x} \nsubseteq p_{\#} \pi_{1}(M, \tilde{x})}
\end{array}\right.
$$

Proof. Suppose that f_{1} and g_{1} are simultaneously even or odd.
If $C\left(f_{\#}, g_{\#}\right)_{p \tilde{x}} \subseteq p_{\#} \pi_{1}(M, \tilde{x})$ for any $\tilde{x} \in \operatorname{Coin}\left(f_{1}, g_{1}\right)$, then following [[DJ],(2.5)], we obtain that if a Nielsen class $A \subset \operatorname{Coin}(f, g)$ satisfies $A \subset p\left(\operatorname{Coin}\left(f_{1}, g_{1}\right)\right)$, then $p^{-1} A$ is the sum of two Nielsen classes of $\left(f_{1}, g_{1}\right)$ both of the same index as A. Therefore, these classes are essential if and only if A is essential. The same is true for any class in $p\left(\operatorname{Coin}\left(f_{1}, \alpha g_{1}\right)\right)$ and since the pair of lifts $\left(f_{1}, g_{1}\right)$ and $\left(f_{1}, \alpha g_{1}\right)$ aren't conjugated, the sets $p\left(\operatorname{Coin}\left(f_{1}, g_{1}\right)\right)$ and $p\left(\operatorname{Coin}\left(f_{1}, \alpha g_{1}\right)\right)$ are disjoint [[DJ],(2.3)].

Thus, $N(f, g)=\frac{N\left(f_{1}, g_{1}\right)+N\left(f_{1}, \alpha g_{1}\right)}{2}$.
If $C\left(f_{\#}, g_{\#}\right)_{p \tilde{x}} \nsubseteq p_{\#} \pi_{1}(M, \tilde{x})$, then there exists $w \in C\left(f_{\#}, g_{\#}\right)_{x_{0}}$ that lifts to the open path \tilde{w} such that $f_{1} \tilde{w} \simeq g_{1} \tilde{w}$. Such w establishes the Nielsen relation between $\tilde{x_{0}}$ and $\alpha \tilde{x_{0}}$; since p is a local homeomorphism and α is orientation preserving [GW], the index on $\tilde{x_{0}}$ and $\alpha \tilde{x_{0}}$ are equal, so this class has the double of the index of the class A, therefore it is essential if and only if A is essential. Since we have two lifting classes, $N(f, g)=N\left(f_{1}, g_{1}\right)+N\left(f_{1}, \alpha g_{1}\right)$.

Now, let us assume that f_{1} is even and g_{1} is odd.
If $C\left(f_{\#}, g_{\#}\right)_{p \tilde{x}} \subseteq p_{\#} \pi_{1}(M, \tilde{x})$ for any $\tilde{x} \in \operatorname{Coin}\left(f_{1}, g_{1}\right)$, then $p: \operatorname{Coin}\left(f_{1}, g_{1}\right) \rightarrow$ $\operatorname{Coin}(f, g)$ is a bijection preserving Nielsen relation. So, for each class $A \in \operatorname{Coin}(f, g)$, we have that $p^{-1} A$ is the sum of two Nielsen classes, $\tilde{A}_{1} \subset \operatorname{Coin}\left(f_{1}, g_{1}\right)$ and $\tilde{A}_{2} \subset \operatorname{Coin}\left(f_{1}, \alpha g_{1}\right)$, both of the same index as A, thus $N(f, g)=\frac{N\left(f_{1}, g_{1}\right)+N\left(f_{1}, \alpha g_{1}\right)}{2}$.

The case $C\left(f_{\#}, g_{\#}\right)_{p \tilde{x}}^{2} \nsubseteq p_{\#} \pi_{1}(M, \tilde{x})$ does not happen when f_{1} and g_{1} don't have the same parity.

Suppose otherwise; then there exists $w \in C\left(f_{\#}, g_{\#}\right)_{x_{0}}$ that lifts to the open path \tilde{w}. Since f_{1} is even and g_{1} is odd, $f w$ lifts to a loop and $g w$ lifts to a open path [DJ], which is a contradiction because $f w \simeq g w$ relative to the endpoints.

References

[DJ] R. Dobreńko, J. Jezierski, The coincidence Nielsen number on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993) 67-85.
[GW] D. Gonçalves, P. Wong, Nielsen numbers of selfmaps of Sol 3-manifolds, Topology Appl. 159 (2012) 3729-3737.
[Je1] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989) 183-212.
[Je2] J. Jezierski, The semi-index product formula, Fund. Math. 140 (1992) 99-120.
[JL] J.H. Jo, J.B. Lee, Nielsen fixed point theory on infra-solvmanifolds of Sol, Topological Methods in Nonlinear Analysis (Online First).
[Mo] K. Morimoto, Some orientable 3-manifolds containing Klein bottles, Kobe J. Math. 2 (1985) 37-44.
[Sa] M. Sakuma, Involutions on torus bundles over S^{1}, Osaka J. Math. 22 (1985) 163-185.
[SWW] H. Sun, S. Wang, J. Wu, Self-mapping degrees of torus bundles and torus semibundles, Osaka J. Math. 47 (2010) 131-155.
[Vi] J.P. Vieira, Coincidence of maps on torus fibre bundles over the circle, Topological Methods in Nonlinear Analysis 46 (2015) 507-548.

Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil.
email: krpanzarin@yahoo.com.br

[^0]: *Work supported by CAPES
 Received by the editors in October 2016 - In revised form in April 2017.
 Communicated by K. Dekimpe, D.L. Gonçalves.
 2010 Mathematics Subject Classification : 55M20.
 Key words and phrases : Coincidence Nielsen numbers; Sol 3-manifolds; Torus bundles over S^{1}.

