Maps between Sol 3-manifolds and coincidence Nielsen numbers*

Karen Regina Panzarin

Abstract

Let M_A be the torus bundle over S^1 obtained using as gluing map an Anosov matrix A. In this paper we discuss maps from M_{A^r} to M_A and compute the coincidence Nielsen numbers for such maps, moreover we use that such manifolds are double covers of torus semi-bundles and compute the coincidence Nielsen number for selfmaps of Sol 3-manifolds which are torus semi-bundles.

1 Introduction

Maps between torus bundles over the circle and Nielsen theory for such spaces were studied by many authors (e.g. [Sa, SWW, GW, Vi, JL]). In some of these works the authors are concerned with the description of possible maps between such spaces (specially the non-trivial maps) and in others they try to compute Nielsen numbers for some maps. In this work, following some ideas from [GW], we discuss maps between Sol 3-manifolds which are torus bundles, in particular we study maps from a torus bundle obtained using a gluing map that is a power of the Anosov matrix used in the target space, such situation explore some covering maps. In the end, using [Je2], we compute the coincidence Nielsen numbers for those maps.

^{*}Work supported by CAPES

Received by the editors in October 2016 - In revised form in April 2017.

Communicated by K. Dekimpe, D.L. Gonçalves.

²⁰¹⁰ Mathematics Subject Classification : 55M20.

Key words and phrases : Coincidence Nielsen numbers; Sol 3-manifolds; Torus bundles over S^1 .

Let *T* denote the torus obtained as the quotient space $\frac{\mathbb{R} \times \mathbb{R}}{\mathbb{Z} \times \mathbb{Z}}$. For each homeomorphism *A* on *T*, induced by a linear operator in $\mathbb{R} \times \mathbb{R}$ that preserves $\mathbb{Z} \times \mathbb{Z}$, we identify *A* with an integer matrix with determinant either 1 or -1.

We constructed $M_A = \frac{T \times \mathbb{R}}{((x, y), t) \sim (A^n(x, y), t - n)}$ which is a torus bundle over S^1 . If A is an Anosov matrix (*i.e.* either det(A) = 1 and |tr(A)| > 2 or det(A) = -1 and $tr(A) \neq 0$ [Sa]), we have that M_A is a 3-manifold with Solgeometry [[SWW], (1.3)].

The present paper is organized in two sections besides this Introduction. In Section 2 we present some general facts about maps between Sol-torus bundles, in special we describe the possible maps from M_{A^r} to M_A (such situation includes many covering maps) and we compute the Nielsen coincidence numbers for said maps. In Section 3 we use the fact that torus bundles are double covers of Sol-torus semi-bundles (also named sapphire manifolds) to compute the coincidence Nielsen number for these manifolds.

2 Coincidence Nielsen numbers

As observed above, $T \to M_A \xrightarrow{p} S^1$ is a fiber bundle where p is the projection given by $p[((x,y),t)] = [t] \in \frac{\mathbb{R}}{\mathbb{Z}} \simeq \frac{[0,1]}{0 \sim 1} \simeq S^1$. Let $f,g: M_{A^r} = \frac{T \times \mathbb{R}}{((x,y),t) \sim ((A^r)^n(x,y),t-n)} \to M_A = \frac{T \times \mathbb{R}}{((x,y),t) \sim (A^n(x,y),t-n)}$,

where $r \in \mathbb{N}$, $n \in \mathbb{Z}$.

By [[Je2], (5.5)], we have that the pair (f, g) is homotopic to a fiber pair, so the following diagram is commutative:

$$T \longrightarrow M_{A^{r}} \longrightarrow S^{1}$$

$$f' \bigg|_{g'} f \bigg|_{g} f_{f} \bigg|_{\bar{g}}$$

$$T \longrightarrow M_{A} \longrightarrow S^{1}$$

$$(2.1)$$

The theorem below describe the possible maps in such context (that includes many covering maps). This characterization will be useful later.

Theorem 2.1. Let $f : M_{A^r} \to M_A$ be a map between Sol-torus bundles M_{A^r} and M_A with Anosov matrices A^r and A, respectively, $A \in GL(2,\mathbb{Z})$, $r \in \mathbb{N}$. Let $f' : T \to T$ be the induced map on the fiber such that $f'_{\#} = B = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$, and let $\overline{f} : S^1 \to S^1$. Suppose that $A^r = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$. Then:

$$B = \begin{cases} \begin{pmatrix} q + \left[\frac{a'-d'}{c'}\right]p & \left[\frac{b'}{c'}\right]p \\ p & q \end{pmatrix} &, \text{ if } \deg \bar{f} = r \\ \begin{pmatrix} -q & \left[\frac{a'-d'}{c'}\right]q - \left[\frac{b'}{c'}\right]p \\ p & q \end{pmatrix} &, \text{ if } \deg \bar{f} = -r \\ \begin{pmatrix} -q & \left[\frac{b'}{d'}\right]q \\ -\left[\frac{c'}{a'}\right]q & q \end{pmatrix} &, \text{ if } \deg \bar{f} = -r; r \text{ odd and } \det A = -1 \\ \begin{pmatrix} 0 & , \text{ if } \deg \bar{f} = -r; r \text{ odd and } \det A = -1 \\ 0 & , \text{ if } \deg \bar{f} \neq \pm r \end{cases} \\ where \left[\frac{a'-d'}{c'}\right]p, \left[\frac{b'}{c'}\right]p, \left[\frac{a'-d'}{c'}\right]q, \left[\frac{b'}{d'}\right]q, \left[\frac{c'}{a'}\right]q \in \mathbb{Z}. \end{cases}$$

Proof. Suppose deg $\overline{f} = r$. The commutative diagram (2.1) implies that $BA^r = A^r B$. By solving this matrix equation we get to the first case.

If deg $\overline{f} = -r$, then the commutative diagram (2.1) implies that $BA^r = A^{-r}B$, and the result follows solving this matrix equation.

Suppose now that deg $\bar{f} = k \neq \pm r$.

Since *A* is an Anosov matrix, *A* is diagonalizable. So, there exists $P \in GL(2, \mathbb{R})$ such that $P^{-1}AP = \overline{A} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, where λ_1 and λ_2 are the eigenvalues of *A*. Let $\overline{B} = P^{-1}BP = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. By the commutative diagram (2.1) we have that $BA^r = A^k B$. It follows that $\overline{B}\overline{A}^r = \overline{A}^k \overline{B}$, that is, $\begin{pmatrix} x\lambda_1^r & y\lambda_2^r \\ z\lambda_1^r & w\lambda_2^r \end{pmatrix} = \begin{pmatrix} \lambda_1^k x & \lambda_1^k y \\ \lambda_2^k z & \lambda_2^k w \end{pmatrix}$. Since $\lambda_1\lambda_2 = \det \overline{A} = \pm 1$, $k \neq r$ and $\lambda_1^{|k-r|} \neq 1 \neq \lambda_2^{|k-r|}$, we conclude that x = 0 = w. Also y = 0 = z since $\lambda_1 = \pm \frac{1}{\lambda_2}$, $\lambda_2^{r+k} \neq \pm 1$, and $k \neq -r$.

Thus,
$$\bar{B} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and consequently, $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

REMARK 1: This form of the matrix *B* coincides with the one given by [SWW] when *f* is a selfmap, that is, r = 1.

The next theorem follows from Corollary (5.5) of [Je2].

Theorem 2.2. Let $f, g: M_{A^r} \to M_A$ be maps between Sol-torus bundles M_{A^r} and M_A with Anosov matrices A^r and A, respectively, $A \in GL(2,\mathbb{Z})$, $r \in \mathbb{N}$. Let $f'g': T \to T$ be the induced maps on the fiber such that $f'_{\#} = B$ and $g'_{\#} = C$. Let $\bar{f}, \bar{g}: S^1 \to S^1$ such that deg $\bar{f} = k$ and deg $\bar{g} = l$. Then

$$N(f,g) = \begin{cases} 0 , & \text{if } k = l \\ \sum_{i=0}^{|k-l|-1} \left| \det(A^{sign(k)i}B - C) \right| , & \text{if } k \neq l \end{cases}$$

where $sign(k) := \begin{cases} -1 & , & if k < 0 \\ 1 & , & if k > 0. \end{cases}$

REMARK 2: Under the hypotheses of Theorem 2.2, if $A \in SL(2,\mathbb{Z})$ and $f,g: M_{A^r} \to M_A$, when *B* and *C* are of the form of Theorem 2.1, then a straightforward calculation shows that $\det(A^iB - C) = \det(B) + \det(C)$.

Corollary 2.1. Under the hypotheses of Theorem 2.2, if $A \in SL(2, \mathbb{Z})$, then

$$N(f,g) = |k - l||\det(B) + \det(C)|.$$

Corollary 2.2. Under the hypotheses of Theorem 2.2, if $f,g : M_A \to M_A$ are self homeomorphisms, then either N(f,g) = 0 or N(f,g) = 4.

Proof. First, we observe that since f and g are homeomorphisms, $k = deg(\bar{f}) = \pm 1$ and $l = deg(\bar{g}) = \pm 1$.

If det(A) = -1, then by [[Sa],Lemma 1.7 (3)] we have that there exists no matrix B with det(B) = ±1 such that $BA = A^{-1}B$. Thus, deg $\bar{f} = 1$, that is, \bar{f} must induce the identity homomorphism on $\pi_1(S^1)$. Analogously, \bar{g} also induces the identity homomorphism on $\pi_1(S^1)$. Therefore, N(f,g) = 0.

If det(A) = 1, then in the cases where k = 1 = l and k = -1 = l, we get N(f,g) = 0. For k = -1 and l = 1 (or the symmetric case) we have, by Corollary 2.1, that N(f,g) = 2|det(B) + det(C)|.

So, we see that

- *N*(*f*, *g*) = 0 when either det(*B*) = 1 and det(*C*) = −1 or det(*B*) = −1 and det(*C*) = 1;
- N(f,g) = 4 when det(B) = det(C).

REMARK 3: This corollary generalizes to coincidence the Theorem 2.2 of [GW].

3 Coincidence Nielsen numbers for selfmaps on sapphires

The family of 3-dimensional manifolds with Sol-geometry has two subfamilies, one of them consists of the torus bundles with an Anosov gluing map, the other one contains the torus semi-bundles (also named sapphire manifolds) (see [Mo]).

The construction of torus semi-bundles can be found in [SWW] or [Mo]. We will follow the approach of [GW] about such spaces, and we will use the same notation found there.

Let N_{ϕ} be a sapphire space that is not a torus bundle over S^1 . By [SWW] we have that N_{ϕ} admits a Sol-geometry if and only if det $\phi_* = \pm 1$ and $xyzw \neq 0$ where $\phi_* = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. By [[GW],(3.2)] we have that N_{ϕ} is double-covered by a torus bundle M over S^1 , that has Anosov gluing map, and the Lemma 3.3 of the same paper shows that the fundamental group $\pi_1(M)$ is fully-invariant in $\pi_1(N_{\phi})$. This torus bundle, M, is always orientable [[SWW],(2.8)].

In this section we compute the coincidence Nielsen number of selfmaps $f, g: N_{\phi} \rightarrow N_{\phi}$, beginning with self homeomorphisms.

Theorem 3.1. Let N_{ϕ} be a sapphire space that is not a torus bundle over S^1 . If N_{ϕ} supports Sol-geometry, then for every pair of self homeomorphisms $(f,g) : N_{\phi} \to N_{\phi}$, we have either N(f,g) = 0 or N(f,g) = 4.

Proof. Since $f, g : N_{\phi} \to N_{\phi}$ are self homeomorphisms, they can be lifted to $(f_1, g_1), (\alpha f_1, \alpha g_1), (\alpha f_1, g_1), (f_1, \alpha g_1) : M \to M$, where $\alpha : M \to M$ is a deck transformation. Besides, we have that deg $f = \pm 1$ and deg $g = \pm 1$. So we have to analyze three possibilities:

- (i) $\deg f = 1 = \deg g;$
- (ii) $\deg f = -1 = \deg g$;
- (iii) deg f = -1 and deg g = 1.

Note that if \bar{f}_1 induces the identity on $\pi_1(S^1)$, then \bar{f}_1 is homotopic to the identity map on S^1 and since α induces -id on the base S^1 [GW], we have that $\overline{\alpha f_1}$ induces -id on $\pi_1(S^1)$.

So, we have four possibilities for the maps $\overline{f}_1, \overline{g}_1, \overline{\alpha f_1}, \overline{\alpha g_1}$:

- \bar{f}_1 and \bar{g}_1 induce id_{S^1} while $\overline{\alpha f_1}$ and $\overline{\alpha g_1}$ induce $-id_{S^1}$;
- \bar{f}_1 induces id_{S^1} and \bar{g}_1 induces $-id_{S^1}$ while $\bar{\alpha}\bar{f}_1$ induces $-id_{S^1}$ and $\bar{\alpha}\bar{g}_1$ induces id_{S^1} ;
- \bar{f}_1 induces $-id_{S^1}$ and \bar{g}_1 induces id_{S^1} while $\overline{\alpha f_1}$ induces id_{S^1} and $\overline{\alpha g_1}$ induces $-id_{S^1}$;
- \bar{f}_1 and \bar{g}_1 induce $-id_{S^1}$ while $\overline{\alpha f_1}$ and $\overline{\alpha g_1}$ induce id_{S^1} .

The first and last cases are symmetric, as well as the second and the third cases, so we need to analyze just the third and fourth cases.

- (i) If deg $f = 1 = \deg g$, then deg $f_1 = 1 = \deg \alpha f_1$ and deg $g_1 = 1 = \deg \alpha g_1$.
 - Also, if $\bar{f}_1, \bar{g}_1 \simeq -id_{S^1}$ and $\overline{\alpha f_1}, \overline{\alpha g_1} \simeq id_{S^1}$, then deg $\bar{f}_1 = \deg \bar{g}_1 = -1$ and deg $\overline{\alpha f_1} = \deg \overline{\alpha g_1} = 1$. So, by Theorem 2.2, we have that $N(f_1, g_1) = 0$ and $N(f_1, \alpha g_1) = \sum_{i=0}^{1} \left| \det(A^{-i}B \alpha_{\#}C) \right| \stackrel{\text{Corollary 2.1}}{=} 2 |\det(B) + \det(\alpha_{\#}C)|.$

We only need to analyze these two pairs of lifts because $(\alpha f_1, \alpha g_1) = \alpha(f_1, g_1)$ and $(\alpha f_1, g_1) = \alpha(f_1, \alpha g_1)$, which means that the two first pairs of lifts $(\alpha f_1, \alpha g_1)$ and (f_1, g_1) are conjugated and so are the two last $(\alpha f_1, g_1)$ and $(f_1, \alpha g_1)$.

Now, $f'_{1\#} = B$ with $det(B) = \pm 1$ and $g'_{1\#} = C$ with $det(C) = \pm 1$. Since α induces $\alpha_{\#} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ on the fiber T [GW], $det(\alpha_{\#}C) = -det(C)$. Besides, it can not happen that $det(\alpha_{\#}C) = -1$ and det(B) = 1, because for $det(\alpha_{\#}C) = -1$ we must have $deg g'_1 = 1$ and since $deg \bar{g}_1 = -1$, we obtain $deg g_1 = -1$, a contradiction. The same occurs to det(B) = 1. Therefore, we can only have det(B) = -1 and $det(\alpha_{\#}C) = 1$, which implies $|det(B) + det(\alpha_{\#}C)| = 0$, that is, $N(f_1, \alpha g_1) = 0$.

Now, since the coincidence Nielsen numbers of the lifts are null, we conclude that N(f,g) = 0.

As for the other case, that is, $\overline{f_1}, \overline{\alpha g_1} \simeq -id_{S^1}$ and $\overline{g_1}, \overline{\alpha f_1} \simeq id_{S^1}$, we can argue in the same way as above to conclude that we can only have $\det(B) = -1$ and $\det(C) = 1$, which means that $|\det(B) + \det(C)| = 0$, that is, $N(f_1, g_1) = 0$. And since $N(f_1, \alpha g_1) = 0$, we obtain that N(f, g) = 0.

- (ii) If deg $f = -1 = \deg g$, then deg $f_1 = -1 = \deg \alpha f_1$ and deg $g_1 = -1 = \deg \alpha g_1$. Following the same procedure as above, we find $N(f_1, g_1) = 0$ and $N(f_1, \alpha g_1) = 0$ for the first case, and for the other case we have $N(f_1, g_1) = 0$ and $N(f_1, \alpha g_1) = 0$. So, we conclude that N(f, g) = 0.
- (iii) If deg f = -1 and deg g = 1, then deg $f_1 = -1 = \text{deg } \alpha f_1$ and deg $g_1 = 1 = \text{deg } \alpha g_1$. Thus, $N(f_1, g_1) = 0$ and $N(f_1, \alpha g_1) = 4$ for the first case, and $N(f_1, g_1) = 4$ and $N(f_1, \alpha g_1) = 0$ for the other case. So, we conclude that N(f, g) = 4.

Now, we will need of some definitions from [DJ].

In our context, the lift f_1 will be called *odd* if $f_1(\alpha \tilde{x}) = \alpha f_1(\tilde{x})$ and will be called *even* if $f_1(\alpha \tilde{x}) = f_1(\tilde{x})$, for all $\tilde{x} \in M$ and a deck transformation $\alpha : M \to M$.

We already know that $(\alpha f_1, \alpha g_1)$ and (f_1, g_1) are in the same lifting class; and the same for $(\alpha f_1, g_1)$ and $(f_1, \alpha g_1)$.

Now:

$$\alpha(\alpha f_1, g_1) = (f_1, \alpha g_1).$$

$$(\alpha f_1, g_1)\alpha = (\alpha f_1 \alpha, g_1 \alpha) = \begin{cases} (\alpha f_1, g_1) & \text{if } f_1 \text{ and } g_1 \text{ are both even;} \\ (f_1, \alpha g_1) & \text{if } f_1 \text{ and } g_1 \text{ are both odd;} \\ (\alpha f_1, \alpha g_1) & \text{if } f_1 \text{ is even and } g_1 \text{ is odd;} \\ (f_1, g_1) & \text{if } f_1 \text{ is odd and } g_1 \text{ is even.} \end{cases}$$

$$\alpha(\alpha f_1, g_1)\alpha = (f_1\alpha, \alpha g_1\alpha) = \begin{cases} (f_1, \alpha g_1) & \text{if } f_1 \text{ and } g_1 \text{ are both even;} \\ (\alpha f_1, g_1) & \text{if } f_1 \text{ and } g_1 \text{ are both odd;} \\ (f_1, g_1) & \text{if } f_1 \text{ is even and } g_1 \text{ is odd;} \\ (\alpha f_1, \alpha g_1) & \text{if } f_1 \text{ is odd and } g_1 \text{ is even.} \end{cases}$$

Thus, if f_1 and g_1 are simultaneously even or odd, then we have two lifting classes, $\{(f_1, g_1); (\alpha f_1, \alpha g_1)\}$ and $\{(\alpha f_1, g_1); (f_1, \alpha g_1)\}$. If one of f_1, g_1 is even and the other is odd, then all four pairs of lifts form one lifting class.

Let us denote $C(f_{\#}, g_{\#})_x = \{\beta \in \pi_1(N_{\phi}, x) : f_{\#}\beta = g_{\#}\beta\}$, for $x \in Coin(f, g)$.

Theorem 3.2. Let N_{ϕ} be a sapphire space that is not a torus bundle over S^1 . Suppose N_{ϕ} supports Sol-geometry, then for every pair of selfmaps $(f,g) : N_{\phi} \to N_{\phi}$, let $(f_1,g_1), (f_1,\alpha g_1) : M \to M$ be the lifts to the torus bundle M which is a two fold cover of N_{ϕ} . Then

$$N(f,g) = \begin{cases} \frac{N(f_1,g_1) + N(f_1,\alpha g_1)}{2} & \text{if } C(f_{\#},g_{\#})_{p\tilde{x}} \subseteq p_{\#}\pi_1(M,\tilde{x}), \\ \forall \tilde{x} \in Coin(f_1,g_1); \\ N(f_1,g_1) + N(f_1,\alpha g_1) & \text{if } C(f_{\#},g_{\#})_{p\tilde{x}} \nsubseteq p_{\#}\pi_1(M,\tilde{x}). \end{cases}$$

Proof. Suppose that f_1 and g_1 are simultaneously even or odd.

If $C(f_{\#}, g_{\#})_{p\tilde{x}} \subseteq p_{\#}\pi_1(M, \tilde{x})$ for any $\tilde{x} \in Coin(f_1, g_1)$, then following [[DJ],(2.5)], we obtain that if a Nielsen class $A \subset Coin(f, g)$ satisfies $A \subset p(Coin(f_1, g_1))$, then $p^{-1}A$ is the sum of two Nielsen classes of (f_1, g_1) both of the same index as A. Therefore, these classes are essential if and only if A is essential. The same is true for any class in $p(Coin(f_1, \alpha g_1))$ and since the pair of lifts (f_1, g_1) and $(f_1, \alpha g_1)$ aren't conjugated, the sets $p(Coin(f_1, g_1))$ and $p(Coin(f_1, \alpha g_1))$ are disjoint [[DJ],(2.3)].

Thus,
$$N(f,g) = \frac{N(f_1,g_1) + N(f_1,\alpha g_1)}{2}$$

If $C(f_{\#}, g_{\#})_{p\tilde{x}} \not\subseteq p_{\#}\pi_1(M, \tilde{x})$, then there exists $w \in C(f_{\#}, g_{\#})_{x_0}$ that lifts to the open path \tilde{w} such that $f_1\tilde{w} \simeq g_1\tilde{w}$. Such w establishes the Nielsen relation between $\tilde{x_0}$ and $\alpha \tilde{x_0}$; since p is a local homeomorphism and α is orientation preserving [GW], the index on $\tilde{x_0}$ and $\alpha \tilde{x_0}$ are equal, so this class has the double of the index of the class A, therefore it is essential if and only if A is essential. Since we have two lifting classes, $N(f, g) = N(f_1, g_1) + N(f_1, \alpha g_1)$.

Now, let us assume that f_1 is even and g_1 is odd.

If $C(f_{\#},g_{\#})_{p\bar{x}} \subseteq p_{\#}\pi_1(M,\bar{x})$ for any $\bar{x} \in Coin(f_1,g_1)$, then $p: Coin(f_1,g_1) \rightarrow Coin(f,g)$ is a bijection preserving Nielsen relation. So, for each class $A \in Coin(f,g)$, we have that $p^{-1}A$ is the sum of two Nielsen classes, $\tilde{A}_1 \subset Coin(f_1,g_1)$ and $\tilde{A}_2 \subset Coin(f_1,\alpha g_1)$, both of the same index as A, thus $N(f,g) = \frac{N(f_1,g_1) + N(f_1,\alpha g_1)}{2}$.

The case $C(f_{\#}, g_{\#})_{p\tilde{x}} \not\subseteq p_{\#}\pi_1(M, \tilde{x})$ does not happen when f_1 and g_1 don't have the same parity.

Suppose otherwise; then there exists $w \in C(f_{\#}, g_{\#})_{x_0}$ that lifts to the open path \tilde{w} . Since f_1 is even and g_1 is odd, fw lifts to a loop and gw lifts to a open path [DJ], which is a contradiction because $fw \simeq gw$ relative to the endpoints.

References

- [DJ] R. Dobreńko, J. Jezierski, The coincidence Nielsen number on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993) 67–85.
- [GW] D. Gonçalves, P. Wong, Nielsen numbers of selfmaps of Sol 3-manifolds, Topology Appl. 159 (2012) 3729–3737.
- [Je1] J. Jezierski, *The Nielsen number product formula for coincidences*, Fund. Math. 134 (1989) 183–212.
- [Je2] J. Jezierski, The semi-index product formula, Fund. Math. 140 (1992) 99–120.
- [JL] J.H. Jo, J.B. Lee, *Nielsen fixed point theory on infra-solvmanifolds of Sol*, Topological Methods in Nonlinear Analysis (Online First).
- [Mo] K. Morimoto, *Some orientable 3-manifolds containing Klein bottles*, Kobe J. Math. 2 (1985) 37–44.
- [Sa] M. Sakuma, Involutions on torus bundles over S¹, Osaka J. Math. 22 (1985) 163–185.
- [SWW] H. Sun, S. Wang, J. Wu, Self-mapping degrees of torus bundles and torus semibundles, Osaka J. Math. 47 (2010) 131–155.
- [Vi] J.P. Vieira, *Coincidence of maps on torus fibre bundles over the circle*, Topological Methods in Nonlinear Analysis 46 (2015) 507–548.

Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil. email: krpanzarin@yahoo.com.br