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Abstract

Given a selfmap f : X — X on a compact connected polyhedron X, H.
Schirmer gave necessary and sufficient conditions for a nonempty closed
subset A to be the fixed point set of a map in the homotopy class of f.
R. Brown and C. Soderlund extended Schirmer’s result to the category of
fiber bundles and fiber-preserving maps. The objective of this paper is to
prove an equivariant analogue of Brown-Soderlund theorem result in the
category of G-spaces and G-maps where G is a finite group.

1 Introduction and statement of results

A well-known and important question in classical topology is the fixed point prop-
erty. Recall that a topological space X is said to have the fixed point property
if every (continuous) map f : X — X must have a fixed point xyp € X such
that f(xo) = xo. A related question is the so-called complete invariance property for
deformation (CIPD). We say that X has the CIPD if for any nonempty closed subset
A C X, there exists a selfmap f : X — X homotopic to the identity 1x such that
A =Fix(f) = {x € X | f(x) = x}. In [9], H. Schirmer generalized the concept of
CIPD and gave necessary and sufficient conditions for a nonempty closed subset
A to be the fixed point set of a map g in the homotopy class of a given selfmap f.
That is, given a map f : X — X, Schirmer determined when a closed nonempty
subset A can be realized as A = Fix(g) for some ¢ homotopic to f. Upon relax-
ing the conditions given by Schirmer, C. Soderlund together with R. Brown [3]
generalized Schirmer’s result to fiber-preserving maps of fiber bundles.
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Suppose that X is a compact connected polyhedron without local cutpoints
and A is a closed subset imbedded inside a subpolyhedron K that can be by-passed
in X, thatis, every path C in X with C(0), C(1) € X — K, is homotopic to a path C’
in X — K relative to the endpoints. H. Schirmer [9] introduced the following two
conditions to realize A as the fixed point set of a selfmap in the homotopy class

Lf].

(C1) if there exists a homotopy Hy : A X [0,1] — X from f|4 to the inclusion
it A—X;

(C2) if for every essential fixed point class IF of f, there exists a patha : [0,1] — X
with a(0) € F,a(1) € Aand {a(t)} ~ {foa(t)} * {Ha(a(1),t)} relative to
the endpoints.

Soderlund [10, Theorem 3.5] showed, by relaxing the assumption on A given
by Schirmer, the following result.

Theorem 1.1. Let X be a compact, connected polyhedron with no local cut points
and A be a closed locally contractible subspace of X such that X — A is not a
2-manifold and A can be by-passed in X. Then A = Fix(g) for some g ~ f if and
only if (C1) and (C2) are satisfied.

Subsequently, R. Brown and C. Soderlund [3] introduced analogous condi-
tions in the fiber-preserving setting. Let § = (E, p, B; Y) be a (locally trivial) fiber
bundle and f : E — E a fiber preserving map.

(Clz) if there exists a fiber preserving homotopy Hq : A x [0,1] — E from f|4 to
the inclusioni: A < E;

(C2;) if for every essential fixed point class [F of f, there exists a patha : [0,1] — E
with a(0) € F,a(1) € Aand {a(t)} ~ {foa(t)} x {Ha(a(1),t)} relative to
the endpoints.

Following the terminology of [3], we call (X, A) a suitable pair if X is a finite
polyhedron with no local cut points and A is a closed locally contractible sub-
space of X such that X — A is not a 2-manifold and A can be by-passed in X.

In [3], it was shown that conditions (Clz) and (C2z) are also sufficient. The
following is their main result.

Theorem 1.2. Let § = (E, p, B;Y) be a fiber bundle where E, B and Y are con-
nected finite polyhedra, f : E — E a fiber preserving map and A a closed locally
contractible sub-bundle of E such that each component p(A); of p(A) is con-
tractible and (B, p(A)), (Y, Y;) for all sub-bundle fibers Y; of A, are suitable pairs.
Suppose (Clz) and (C25) are satisfied and A intersects every essential fixed point
class of f, : p~1(bj) = p~1(b;) for at least one b; in each component p(A);. If Z
is a closed bundle subset of A that intersects every component of A, then there

exists a map ¢ : E — E that is fiber preserving and fiberwise homotopic to f
(g ~5 f) such that Fix(g) = Z.
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In particular, when Z = A, this theorem shows that (Clz) and (C2j) are
necessary and sufficient for A = Fix(g) for some g ~3 f.

Many applications involve symmetries in the presence of a group action. As a
result, equivariant topology has been proven to be useful in the study of nonlin-
ear problems. In the equivariant setting, we are concerned with a group G acting
on a space X together with a G-map f : X — X which respects the group action,
thatis, for alla € G, f(ax) = af(x) for all x € X. In this case, the fixed point set
Fix(f) is a priori a G-invariant subset of X.

In [9], Schirmer observed that for a given selfmap f : 5" — S§" of an n-sphere,
n > 2, any closed nonempty proper subset A of 5" can be realized as the fixed
point set of a map ¢ € [f] with Fix(¢) = A. However, such phenomenon does
not hold if we impose a group action as we show in the following example, which
gives the underlying motivation for this paper.

Example 1.3. Let G = Z,, X = $? and the action is given by ¢&(x,y,z) —
(—x,—y,z). f A = {(x,y,0) € S?} then A is Zy-invariant, but there is no
Zy-map h : §* — S? that is Zy-homotopic to the identity map Id : S — S2
such that Fix(h) = A.

In fact, suppose there is a Zy-homotopy H from Id to h : $* — S? such that
Fix(h) = A. Then, h preserves X = {N,S}, where N = (0,0,1) and S =
(0,0, —1). Hence, h(N) = S and k(S) = N and the path p : I — X© defined by
p(t) = H°(N,t) is such that p(0) = Id(N) = N and p(1) = h(N) = S. But, this
is impossible.

In this situation, the location of A in X is more important than its topology,
because if we replace Aby A’ = {(x,0,z) € S?} then:

H(t,cosOsini,sinfsiny,cos ) =
(cos(6 + tesin @) sin ¢, sin(6 + te sin 0) sin , cos P),

is a Zp-homotopy (with polar coordinates) between the identity and the Z,-map
h such that Fix(h) = A’.

Example 1.4. It is easy to see, by modifying the last example, that the equivariant
analogue of Schirmer’s result does not hold in general. Let G = Z,, X = 5% x 2
and the action is given by &((x,y,2), («',v,2')) — ((—x,—y,2),(1,0,0)). The
set A = {((x,v,0),(1,0,0)) € X} is Zy-invariant and X = {N, S} x {(1,0,0)}
consists of two points. The same argument as in Example 1.3 shows that A cannot
be the fixed point set of any map Z,-homotopic to the identity map while (X, A)
satisfies the conditions of Schirmer’s result for A can be by-passed since A has
codimension 3 in X.

The main objective of this paper is to give an equivariant analogue of
Schirmer’s result and of Brown-Soderlund’s result. This paper is organized as
follows. In the first section, we briefly recall the non-equivariant results of [9]
and [3] and review some basic background on G-maps and G-spaces where G
denotes a compact Lie group. Then we review the necessary equivariant Nielsen
tixed point theory from [13]. In section 2, we prove our first main result, an equiv-
ariant analogue of [9]:
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Theorem 1.5. Let G be a compact Lie group, X be a compact and smooth
G-manifold and A be a nonempty, closed, locally contractible G-subset of X such
that for each finite WK we assume that dim(XX) > 3, dim(XX) —
dim(XX — Xg) > 2 and AKX is by-passed in XX, for all (K) € Iso(X). Suppose
that the following conditions holds for a G-map f : X — X:

(Cgl) there exists a G-homotopy Hy : A x I — X from f|4 to the inclusion
it A—X;

(Cg2) for each finite WK, for every WK-essential fixed point class F of fK - XK -
XX there exists a path a : [ — XX with (0) € F, a(1) € AK, and {a(t)} ~
{fXoa(t)} = {Hy(a(1),)}.

Then for every closed G-subset ® of A that has nonempty intersection with
every component of A there exists a G-map h : X — X, G-homotopic to f with
Fix(h) = .

In the last section, we apply Theorem 1.5 to prove an equivariant analogue of [3]
when G is finite:

Theorem 1.6. Let G be a finite group, § = (X, p, B,Y) be a G-fiber bundle where
X, B and Y are compact and smooth G-manifolds, dim(BX) > 3, dim(BX) —
dim(BX — Bx) > 2, for all (K) € Iso(B), dim(YX) > 3, dim(YX) -
dim (YK — Yg) > 2, for all (K) € Iso(Y).

Let A be a nonempty, closed, locally contractible G-subset of X such that
(X, A) is G-fiber bundle pair with respect to the fiber bundle §, p(A) be a closed
G-subset of B such that each component p(A); of p(A) is equivariantly con-
tractible and pX(AX) is by-passed in BX, for all (K) € Iso(B). Let Y; be a sub-
bundle fiber of A such that Y; is a closed and locally contractible G-subset of Y

and Y]-K is by-passed in YX, for all (K) € Iso(Y), and f : X — X be a G-fiber-
preserving map such that AX intersects every essential WK-fixed point class of
flfj : WK(p®) 1 ({b;}) — WK(p*)~1({b;}) for at least one b; in each component
pX(AK);, for all (K) € Iso(X). Suppose that the following conditions hold for f
and A:

(Cgl)g there exists a G-fiberwise-homotopy Hy : A x I — X from f| 4 to the inclu-
sioni: A — X;

(Cg2); for every WK-essential fixed point class F of fX : XX — XX there exists a
path & : I — XX with a(0) € F, a(1) € AK, and {a(t)} ~ {fRoa(t)} *
{Hx(a(1), 1)}

Then for every nonempty closed G-bundle subset ® of A that intersects every
component of A there exists a G-fiber-preserving map h, G-fiberwise homotopic
to f with Fix(h) = &.

In order to establish the notations, let G be a topological group and X be a (left)
G-space. Given a subgroup K of G we denote by NK the normalizer of K in G,
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WK = MK is the Weyl group of K in G. The orbit type of K is the conjugacy class
of K in G denoted by (K). If (Kj) is subconjugate to (K3), we write (K;) < (Kj).

If x € X, then Gy = {g € G; gx = x} denotes the isotropy subgroup of x € X,
and (Gy) is called an isotropy type of X. We denote by Iso(X) the set of isotropy
types of X. Moreover, XK = {x € X;K < G,}, X®) = {x € X;(K) < (Gy)},
Xk = {x € X;Gy = K} and X(K) = {X € X;Gy, C (K)}

If Iso(X) is finite (in particular when G is finite), we can choose an admissible
ordering on Iso(X) such that (K;) < (K;) implies i < j. Then we have a filtration
of G-subspaces X; C --- C X, = X where X; = {x € X; (Gx) = (H;) for some
j<i}

If f: X — XisaG-map, then fK = f|yx : XK — XX is a WK-map. Let
F = {(K) € Iso(X) | [WK|] < o} and (K) € F. If x,y € Fix(fK) then
x ~g y if either y = ax for some « € WK or 3 ¢ : [0,1] — XX such that
o ~ fK o relative to endpoints. Then ~ is an equivalence relation on Fix(fX)
and the equivalence classes are called the WK—fixed point classes of fX. BEvi-
dently, a WK-fixed point class W is a disjoint union of a finite number of ordi-
nary fixed point classes Wy, ..., W, of fX and thus the fixed point index ind(W) is
defined as ind(W) = Y ;ind(W;). A WK-fpc (fixed point class) W is essential if
ind(W) # 0. For further information on equivariant Nielsen fixed point theory,
see [13]. Throughout, by a smooth G-manifold X, we assume that the fixed point
set X' is a smooth connected submanifold for each isotropy subgroup H < G.

2 Proof of Theorem 1.5 - An equivariant analogue of a result of
Soderlund-Schirmer

If X is a smooth G-manifold and A is a closed smooth G-submanifold of X, G be-
ing a finite group, then there exists a smooth equivariant triangulation
f1: (K, Kp) — (X, A) as proved in [8]. If B is another closed smooth G-submani-
fold of X then there is a smooth equivariant triangulation f, : (L,Ly) — (X, B)
and G-subdivisions K’ of K and L' of L such that f{ ' o f; : |L'| — |K'| is a simpli-
cial G-homeomorphism, where f] and f; are smooth G-triangulations (see [8]).

By Corollary 3.3.5 of [11] and G being finite, we can find unique G-subcom-
plexes L, of L and KJ, of K such that L}, is a refinement of Ly and KJ} is a refinement
of Ko. Then, f{~ ' o f3(L}) = Kj is a G-subcomplex of K’ and a G-triangulation of
B. In fact, f{(Ky) = f{o fi 1o fi(Lh) = f4(L}) = B. Hence, by induction if
{A;}!, is a finite collection of closed smooth G-submanifolds of X then there
exists a smooth equivariant triangulation f : K — X and a finite collection of
G-subcomplexes {L;} ; of K such that L; is a G-triangulation of A;, for i =
1,...,n.

To realize A as the fixed point set of some /1 : X — X, it is necessary to remove
every fixed point x € X of f : X — X outside of A. Hence, we need to extend
the notion of neighborhood by-passed for a closed subset A as in [10, Definition 2.1]
in order to handle these undesired fixed points.. Thus, a G-invariant subset A is
said to be G-neighborhood by-passed if there exists an invariant open subset U C X
such that A C U and U can be by-passed in X.
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We observe that if (X, A) is a G-ENR pair then A is an invariant neighborhood
retract in X and if {Y;}} , is a finite collection of closed smooth G-submanifolds
such that dim(Y;) +1 < dim(X), then AUY (Y = UL, Y;) remains a by-passed
G-subset of X provided A is by-passed in X. Furthermore, a close inspection
of the proof of Theorem 2.2 of [10] indicates that the same argument works for
the same result in the equivariant setting. That is, if A is a by-passed locally
contractible G-subset of X then A is G-neighborhood by-passed, for X a com-
pact smooth G-manifold with dim(X) > 3. To see that, we note that if K is the
G-triangulation of X then there is a by-passed neighborhood (may not be equiv-
ariant) U of A in |K|. We obtain the open G-subpolyhedron:

StAK)= | [t
THnA#@
tek
such that St(A, K) is a subset of U by taking a G-refinement K’ of K if necessary,
where t is a simplex of K. Therefore, if p : I — X is a path with endpoints in

U — St(A, X) and outside St(A, X) then using Corollary 3.3.11 of [11] we deform

p out of St(A, X').

Thus, if {Y;}; is a finite collection of closed smooth G-submanifolds such
that dim(Y;) + 1 < dim(X) (thus each Y; has codimension at least 2 in X so
that Y; can be by-passed in X), then AUY (Y = U, Y;) remains a by-passed
G-subset of X using a finite collection of G-subcomplex {L;}" ; of K such that L;
is a G-triangulation of Y;, fori =1,...,n.

The next lemma shows how the fixed points outside A may be removed (see
also [7]).

Lemma 2.1. Let {Y;}" ; be a finite collection of closed G-submanifolds of the
G-manifold X such that dim(Y;) +1 < dim(X) and the action of G outside
Y = UL, Y, is free, where G is a finite group. Let f : X — X be a G-selfmap,
A be a non-empty closed locally contractible and by-passed G-subset of X such
that A C Fix(f), there are no fixed points of f in Y — A, and f has a finite num-
ber of fixed points in X — (AUY). Let xo and x; be two fixed points of f that
are G-Nielsen equivalent from different orbits such that xp € X — (AUY) and
x1 € X—(AUY) or x; € d(A), where 9(A) is the boundary of A in X and
g : I — X a path with end points g(0) = xg and g(1) = x; such that fogis
homotopic to g relative to the endpoints.

Then, f is G-homotopic, relative to (AU Y), to a G-selfmap h : X — X such
that Fix(h) = Fix(f) — G{xo}.

Proof of Lemma 2.1: Since A is locally contractible and can be by-passed in
X, the discussion above shows that A is G-neighborhood by-passed in X. Fur-
thermore, A UY can be by-passed in X. Thus, the path g is homotopic, relative
to endpoints, to a path ¢/(¢) such that for 0 < t < 1, ¢/(t) € X — (AUY) with
7'(0) = x0,9'(1) = x;. Since G acts freely on X — Y and hence on X — (AUY),
taking the G-translates of ¢’ yields |G| paths from the orbit G{xp} to the orbit
G{x1}. Note that the segments G{4'([0,1))} are disjoint while {G{4'(1)}} con-
sists of [G : Gy, distinct endpoints. Here, the isotropy subgroup Gy, at xj is
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trivial if x; € X — (AUY). Now we coalesce these two fixed orbits in the same
fashion as in [14, Lemma 3.1]. (For slightly more general spaces in which normal
arcs are used, see [7, Theorem 2].) [ |

We will prove Theorem 2.2 before Theorem 1.5 and for the same reason we
prove Theorem 2.2 by first establishing Lemma 2.3 and Lemma 2.5.

Theorem 2.2. Let G be a compact Lie group, X be a compact smooth G-manifold
and A be a nonempty, closed, locally contractible G-subset of X such that for each
finite WK we assume that dim(XX) > 3, dim(XX) — dim(XX — Xx) > 2 and AX
is by-passed in XX, for all (K) € Iso(X). Then, given a G-map f : X — X there
exists a G-map h : X — X G-homotopic to f with Fix(h) = A if, and only if, the
conditions (Cg1) and (Cg2), given in Theorem 1.5, hold for f relative to A.

Lemma 2.3. Let G be a compact Lie group, X be a G-space G-ANR and A be
a nonempty closed G-subset of X. If f : X — X is a G-map G-homotopic to
h : X — X such that Fix(h) = A then the conditions (Cs1) and (Cg2) given by
Theorem 1.5 hold for f relative to A.

Proof of Lemma 2.3: Let H : X x I — X be a G-homotopy which starts at f and
ends at . Then H = H|xx {opu(axn) : (X x {0}) U (A x I) — X satisfies (C1).
If F is a WK-essential fixed point class of fX, then, there exists a path p : I — XX
such that p(0) € Fand p(1) € J, where ] C AX is a WK-essential fixed point class

of hK, HX-related to F and {p(t)} ~ {HK(p(t), t)}. In fact,

(H (p(t), )} ~ {H" (p(£),0)} +{H" (p(1), 1)}
={fop(t)}

So, (Cg2) is satisfied. u

Lemma 2.3 shows that the conditions (Cgl) and (Cg2) are necessary for
A = Fix(h). The example below shows that these two conditions are indepen-
dent of each other.

Example 2.4. Let G = Z,, X = $? and the action given by &(x,v,z) — (—x, —y, z).
Then, there is no Z,-homotopy H from the identity Id to h such that Fix(h) =
{(x,y,0) € S?}. Note that (Cg1) occurs, because the map is the identity, but
(Cg2) does not. On the other hand, let G = Z,, X = S? and the action given by
¢(x,y,z,w) — (x,y,z,—w). Then, there is no Z-homotopy H from the antipo-
dal map —Id to h such that Fix(h) = {(x,y,z,0) € S*}. This time (C52) holds
because the map is fixed point free but (Cg1) does not hold.

Lemma 2.5. Let G be a compact Lie group, X be a compact smooth G-manifold
and A be a nonempty, closed, locally contractible G-subset of X such that for each
finite WK we assume that dim(XX) > 3, dim(XX) — dim(XX — Xx) > 2 and AX
is by-passed in XX, for all (K) € Iso(X). If the conditions (Cg1) and (Cg2), given
in Theorem 1.5, hold for a G-map f : X — X relative to A, then there exists a
G-map h : X — X, G-homotopic to f with Fix(h) = A.
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Proof of Lemma 2.5: This proof follows the steps of the proof of Theorem 3.2
of [9]. Consider a G-map H : (X x {0}) U (A xI) — X given by (Cgl). It is

possible to extend H to a G-homotopy 1Hj : (X X {0}) U ((A U X7) X I) —

X. As commented above, there is a closed G-invariant neighborhood V of A;
inside X; and V retracts onto A; equivariantly. Note that WK; acts freely on
Xfl = Xk, and 1h{<1 is a WKi-map. Hence, if WK; has positive dimension we
apply Lemma 3.3 of [12] and Lemma 2.1 of [6] to extend 1H; to a G-homotopy
Hy: (X x{0})U((AUXy) x I) = X, relative to V. Moreover, h; has no fixed
points in X; — A; and Fix(h;) = A, where iy = Hy(e,1) : AUX; — X.

On the other hand, if WK] is a finite group then XX is a WK;-polyhedron such
that Afl is a WK;-subpolyhedron and St( A1, XX1) is neighborhood by-passed in
XXi. We apply Lemma 3.1 of [12] and Lemma 2.1 to obtain a WK;-homotopy
H: (A;UX))X x I — XK which can be extended by Lemma 2.1 of [6] to a
G-homotopy Hy : (X x {0}) U ((AUX;) x I) — X, relative to V, such that h; has
no fixed points in X; — A; and Fix(h;) = A, where iy = Hy(e,1) : AUX; — X.

By induction, we may assume that we have a G-map H; 1 : (X x {0}) U
((AUX;_1) x I) — X such that Fix(h;_1) = A, where h;_1 = H;_1(e,1) :
AU X;_1 — X and the proof follows the steps we did for WKj. [ |

Now Theorem 2.2 follows easily from Lemma 2.3 and Lemma 2.5.

Proof of Theorem 1.5: First of all, by Theorem 2.2, there is a G-map
h1 : X — X G- homotopic to f such that Fix(h;) = A. We may apply Propo-
sition 2.5 of [12] and Theorem 4.3 of [13] to conclude that /7 is G-homotopic to hp
such that K, |y has a finite number of fixed points, all of which inside St(AX) and
lying in the interior of a maximal simplex of XX and h; is a G-proximity map in
St(A) (for some G-triangulation of X).

Since @ has nonempty intersection with every component of A we can pull
the fixed points of h; to ®. Let a be the G-map of Lemma VIII.C.1 of [2] and d the
equivariant bounded distance in X then we define

Hs: (X x{0})U(St(A) xI) - X
given by:

(x,t) { zz(x;cglz(x)zl — (1 —d(x,®))t) i{c Ex, t) € St(A) x I;

Then, we extend Hs, relative to d(St(A)), to a G-map Hy : X x [ — X. By
Lemma 3.1 of [12], we eliminate the fixed points of Hy(e,1) inside X — St(A) x
{1}. This finite set of fixed points can be removed because these fixed points lie in
some non essential fixed point classes of Hy(e,1) since hy|x_ Int(4) is fixed point
free. Thus, the resulting G-map is a G-homotopy H : X x I — X connecting f to
a G-map h such that Fix(h) = ®.
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3 Proof of Theorem 1.6 - An equivariant analogue of a theorem
of Brown-Soderlund

Throughout this last section, G will denote a finite group. Given a G-fiber-preser-
ving map f : X — X of the total space X of a G-fiber bundle § = (X, p,B,Y),
it is known that the fixed point set of f is related with the fixed point set of the
induced map f : B — B. However, there are equivariant homotopies that are not
tiber-preserving as in the example below:

Example 3.1. Let G = Z; and X = S? x S! and the action is given by &((a,b,c),
cosx +isinx) — ((a,b,c),cosx —isinx). The G-map f, defined on X by set-
ting f((a,b,c),cosx +isinx) = ((—a, —b, —c),cos x + isinx), is the start of the
following equivariant homotopy:

H((COSQSin(P,SiI’IQSin(P,COSl/}),COSX —i—isinx,t) =

(( — cos (6 + t| sin x| ) sin ¢, — sin(6 + ¢| sin x| 7) sin ¢, — cos ), cos x + isinx).

Then, A = {(a,b,0) € S?} x {—i,i} = S! x {i,—i} is the fixed point set of
h € [flc where h = H(e,1). Let p = m; : §> x S — S? be the projection,
then (S? x S!,711,5?%) is a Z,-fiber bundle, f is a fiber-preserving map and the
induced map f = a : S — S? is the antipodal map. However, p((x,y,z),1) =
(x,v,z) = p((x,y,2),i) and po h((x,y,2),1) = (—x,—y, —z) is different from
poh((x,y,z),i) = (x,y,—z). So, h is not a fiber preserving map and H is not a
tiber-preserving homotopy. In fact, A cannot be realized as the fixed point set of
any map equivariantly fiberwise homotopic to f. To see that, we note that X© =
§? x {£1} = S?US?,, where (w, £1) € §%,, consists of two disjoint 2-spheres
S2. If I is a Z, fiber-preserving homotopy such that Fy = f and Fix(F;) = A,
then FP is a homotopy on X¢. Now, f© = F¢ maps S? to 57 and S to $2 ;.
On the other hand, Fj is fiber-preserving and A is the fixed point of Fj, it follows
that the induced map F; fixes the circle {(a,b,0) € S} pointwise. This implies
that F; maps the (non-fixed) point ((a,b,0),1) to the point ((a,b,0), —1) so that F
maps the equator of S? to that of $? |, and vice versa. Thus F maps X© to itself
by interchanging the two disjoint spheres 52 ;. The images of X® under F{’ and

FE contradict the continuity of F°. Hence such an equivariant fiber-preserving
homotopy F; cannot exist.

The example above indicates the importance of modifying the conditions
(Cc1) and (Cg2) and replacing them by (Cg1)z and (Cg2);5 for the fiber-preser-
ving map setting.

Lemma 3.2. Let f : X — X be a G-fiber preserving map in the total space of the
G-fiber bundle § = (X, p,B,Y), where X, B and Y are G-ANR spaces. Suppose
that there is a G-fiber preserving homotopy connecting a G-fiber preserving map
h: X — X to f such that Fix(h) = A for a nonempty and closed G-subset A of X.
Then the conditions (Cg1)z and (Cg2)z given in Theorem 1.6 hold for f and A.
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The proof of Lemma 3.2 follows the steps of Lemma 2.3. Since § = (X, p, B, Y)
is a G-fiber bundle where X, B and Y are compact smooth G-manifolds, we ob-
serve that (X, p, B) is a G-fibration and there is a G-lift map A : Q, — E! such
that A(e,a)(0) =¢,poAle,a)(t) = a(t) and A(e, p(e))(t) = e, forallt € I, where
E'={a:1— E; aisapath} and Q, = {(e,a) € X x B; p(e) = a(0)}.

Remark 3.3. We should point out that Lemma 3.2 holds for any compact Lie
group G if we modify condition (Cg2)z by only considering those (K)’s with
|WK| < oo.

The next proposition is an equivariant analogue of Theorem 2.1 of [1].

Proposition 3.4. Let H : (X x {0}) U (A x I) — E be a G-map in the G-fibration
§ = (E,p,B), where E is a G-ANR, A is a closed G-subset of X, (X,A) is a
G-metric pair and p o H(x,0) = p o H(x,t) for all (x,t) € A x I. Then H can
be extended to a G-homotopy H : X x I — E such that po H(x,0) = po H(x,t)
forall (x,t) € X x I.

Proof of Proposition 3.4: Let H : X x I — E a G-extension of H. Then H' is
given by:

Then define H(x,t) = A(H'(x,t),p(H'(x,)):)(1), where p(H'(x,)):(s) =
p(H'(x, (1 —s)t)) and A is a G-lift map. ]

Lemma 3.5. Let § = (X, p, B, Y) be a G-fiber bundle where X, B and Y are com-
pact and smooth G-manifolds, dim(BX) > 3, dim(BX) — dim(BX — Bg) > 2, for
all (K) € Iso(B), A be a nonempty, closed, locally contractible G-subset of X
such that p(A) be a closed G-subset of B and pX(AX) is by-passed in BX, for all
(K) € Iso(B), and f : X — X a G- fiber preserving map such that conditions
(Ccl)z and (Cg2)5 given in Theorem 1.6 hold for f and A.

Then there exists a G-fiber-preserving map h, G-fiberwise homotopic to f with
A C Fix(h) € p~Y(p(A)) and Fix(h) N (B — p(A)) is a finite set.

Proof of Lemma 3.5: p(A) is a closed G-subset of B then the G-fiber-preserving
map Hy : A x [ = X given by (Cg1)z induces a G-map H, : p(A) x [ — Bsuch
that H4(e,0) = fand Hy(e,1) = ip(a): P(A) — B the inclusion map.

Observe that we have almost the same conditions that we had in Theorem 1.5
except for (Cg2). In this situation, suppose we have a G-map H; 14 : (p(A) U
B;_1) x I — B. As commented in Lemma 2.5, it is possible to extend H; 1 4 to a
G-map H;1: (B;Up(A)) x I — Brelative to p(A) U B;_1.

Since WK; is a finite group, BlK" is a WK;- polyhedron such that BZ.K_I'1 is a
WK;-subpolyhedron of Bf(i and St(p(AlKi)) is neighborhood by-passed in Bf(i.
Let V be a G-invariant neighborhood retract of St(p(4;)) U B;_1. It follows from
Lemma 3.1 of [12] and Lemma 2.1 that there exists of a WK;-homotopy

H;: B x [ — B from Hf{(o, 1) to h = H;(e,1) such that:
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1. p(A)N C Fix(h);
2. I has a finite number of fixed points in BIK" - vk

3. given a WK;-fixed point class F of & such that F N p(A)lK" = @ then
F = WK;{x}, where x € Bf(" — VKi and F is an essential WK;-fixed point
class of h.

Then, the G-map given by:

Tu(x) = gHi(g7'x,t), forx € X — A, where Gy = gWK;g™1;
! o\ h(x), forxeV.

extends a WK;-homotopy to a G-homotopy H; : (B; Up(A)) x I — B relative to
V and such that

Fix(Hi(e,1)) = p(A)U (U (Glbja} U+ UG{b )

jeT, i<i

and WK;{b;;} is a essential WK;-fixed point class of Hf"(o, 1), for1 <1< m;.
Observe that if pX(F) = WK{b;;} for an essential WK-fixed point class F of
X where (K) € Iso(X), then we have a path & such that:

(@) ~ {F oa} {Hy@(1),6)} ~ {H @(1),1)}.

Hence, a(1) = gb;;, for some ¢ € WK and &(1) € pX(A). However, this cannot
occur because b;; ¢ pX(A) and pX(A) is WK-invariant. By induction we extend
the G-map H, : p(A) x I — B to a G-homotopy H : B x I — B with the proper-
ties above.

Note that H' : X x I — B defined by H'(x,t) = H(p(x),t) is such that

H'(x,0) = H(p(x),0) = fop(x) =po f(x).

Therefore, the lift of H' is a fiber-preserving G-homotopy H; : X x I — X such
that f(x) = Hy(x,0) and h1(x) = Hi(x,1). Thus,

Fix(h1) C p~" (Fix(h)) = p~ ' (p(A) UG{b1} U--- UG{b;}).

For each G-orbit G{b;} take the restriction hyp of hy for Gp~ (b)) =
p1(G{b;}),so hap; : Gp~1(bj) = Gp~'(bj) has no essential fixed point classes. In
fact, suppose that hfbj has an essential WK-fixed point class F. Then, given x € F
we have WK{x} lying inside an essential WK-fixed point class of /K. Thus, there

exists a WK-fixed point class Q of k¥ which contains WK{x}. But, h¥ is fiber-
preserving WK-homotopic to X, so, there exists an essential WK-fixed point class
D of X HK-related to Q. Note that pX(D) cannot be H"-related to WK{b;}. Con-
sequently, 1y 5, is fiber-preserving G-homotopic to /i, Gp~1(bj) — Gp~ (b))
tixed point free.
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Consider the G-map
H,: (X x {0}) U (p~ Y (Fix(h)) x I) = X
defined by:

_ _ [ ift=0orifxepi(p(A));
Hy(x,t) = { Hyp (x,t) if x € p 1 (G{b;}).

With Proposition 3.4 we extend H to a fiber-preserving G-homotopy Hj : X x
I — X and hy = Hj(e,1) is such that Hy(e,1) = h. By (Cgl)g, k|, is fiber-
preserving G-homotopic to is. Let Hy4 such that hala = H A(e,0) and iy =
Ha(e,1). Define H : (X x {0}) U ((AUp~Y(G{by,...,b;})) x I) — X given
by:

H(x,t) = { hyy(x), if x € Gp l(by);

I:IA(.X,i’), Zf x € A.

{ hy(x), ift=0;

Applying Proposition 3.4 again we extend H to a fiber-preserving G- homotopy
H: X x I — X such that A C Fix(h) C p~'(p(A)) and Fix(h) N (B — p(A)) is a
finite set. n

Lemma 3.6. Let (F,50) = ((X,A),p, B, (Y,Yy)) be a G-fiber bundle pair, where
X, B and Y are compact and smooth G-manifolds, B retracts equivariantly to
a point by € B and dim(YX) > 3 and dim(YX) — dim(YX — Yx) > 2, for all
(K) € Iso(Y). Let Yy be a closed and locally contractible G-subset of Y such that
YK is by-passed in YX, for all (K) € Iso(Y), A be a nonempty, closed,
locally contractible G-subset of X and f : X — X be a G-map such that
pof = p, A C Fix(f), AK intersects every essential WK-fixed point class of
f  WK(p®) 71 ({bo}) — WK(p*)~'({bo}), for all (K) € Tso(X).

Then for every closed G-invariant subset Z of A that intersects every compo-
nent of A and (A, Z) is G-fiber bundle pair of § there exists a fiber-preserving
G-map h, G-fiberwise homotopic to f with Fix(h) = Z.

Proof of Lemma 3.6: (X,p,B) is G-equivalent to a trivial G-fibration
(B x Y, m, B), where 7 is a projection in B. So, there exists a G- homeomor-
phism ® : BxY — X such that ®(B x Yp) = A and po® = 7. Define
f*=® lofod:BxY — Bx Y and note that:

nof*:(pocb)o(cb_lofo(b):pofoCI):poCI):ﬂ.
(. 7 v

Therefore, f*(b,y) = (b, f; () and gf* (b,y) = (gb, f7,(y)), forall g € G.
B retracts equivariantly to by, so, there exists a G-homotopy D : B x I — B

such that for each b € B we have D(b,0) = b and D(b,1) = by. Then, define
U*:BxY xI— BxY givenby:
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(O fypon @), ifO<t<3
(b,fis(bo,z_zg (), Zf% <t<l
Note that U*(b,y,0) = (b, f; (v)) = f*(b,y) and U*(b,y,1) = (b, f; (v)). Then,

f* is G-homotopic to id x f; . Since ®(B x Yp) = A C Fix(f) we have, for each
(b, y) € B x Yy

us(b,y,t) = {

fr(by) =@ o fod(by) =D od(by) = (by).
N——
€A
—_———
=2(by)
Then, B x Yy C Fix(f*) and Yy C Fix(f;) because (b, f;(y)) = f*(b,y) = (b,y).
By hypothesis, A intersects each essential WK-fixed point class of
fég : WK(pX) =1 (bg) — WK(pX)~1(bg). So, ANWK(pX)~1(by) intersects each
essential WK-fixed point class of fég So, Yp intersects each essential WK-fixed
point class of ( fg‘O)K because:

(@71 (AR NWK(p*) 7 (ko)) = WK{bo} x Y-

The G-fiber bundle pair ((A,Z),p, B, (YO,Q)> is such that () intersects

every component of Yy because Z intersects every component of A. Therefore,
(Cc1)g and (C62)5 hold for Yp and f; . By Theorem 2.2 there exists a homotopy
V*:Y x 1 — Ysuchthat fy = V*(e,0),V*(e,1) =g, : Y — YandFix(g; ) =
Q). Define a fiber-preserving G-homotopy H* : B x Y x I — B x Y given by:

. _ [ urby2t), if0sts
H by, t) —{ (b V*(y,2t—1)), if§<t<

Therefore, f* is G-homotopic to id x g; and Fix(id x g; ) = B x Q. Then,

H: Xx1 — X given by H(e,t) = ® o H*(® (e),t) is a G-homotopy such
that H(x,0) = f(x) and Fix(H(e,1)) = ®(B x Q) = Z. ]

Proof of Theorem 1.6: With Lemma 3.5 we assume that:

1. A CFix(f) c p~(p(A));

2. F =Fix(f) N (B — p(A)) is a finite set.

Let f; = f|p_1(p(A)j) : p i (p(A)j) — p(p(A);) a restriction of f, so
pofi = p. Using X = p~i(p(A);), A = Anp~i(p(A);), B = p(A);,
bo = bj, Yo = Y;and f = f; the hypotheses of Lemma 3.6 are satisfied and
there exists a fiber-preserving G-homotopy H; : p~1(p(A);) x I — p~1(p(A);)
from f; to h; = H;(e, 1) such that Fix(h;) = Z;.
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Define H, : (X x {0}) U (p~Y(FU p(A)) x I) = X by:

_ _ J f(x), ift=0o0rp(x)€F
Ha(x,t) = { Hj(x,t), if p(x) € p(A);.

With Proposition 3.4 the;re is a fiber-preserving G-homotopy H : X x I — X

such that p(H(x,t)) = f o p(x). Therefore, h = H(e,1) : X — X is such that
Fix(h) = Z and h is fiber-preserving G-homotopic to f. ]

Corollary 3.7. Let § = (X, p,B,Y) be a G-fiber bundle where X, B and Y are
compact and smooth G-manifolds, dim(BX) > 3, dim(BX) — dim(BX — Bx) >
2, for all (K) € Iso(B), dim(YX) > 3, dim(YX) — dim(YX — Yx) > 2, for all
(K) € Iso(Y).

Let A be a nonempty, closed, locally contractible G-subset of X such that
(X, A) is a G-fiber bundle pair with respect to the fiber bundle §F, p(A) be a
closed G-subset of B such that each component p(A); of p(A) is equivariantly
contractible and p*(AX) is by-passed in B, for all (K) € Iso(B). Let Y; be a sub-
bundle fiber of A such that Y; is a closed and locally contractible G-subset of Y

and Y].K is by-passed in YX, for all (K) € Iso(Y), and f : X — X be a G-fiber-
preserving map such that AX intersects every essential WK-fixed point class of
féj : WK(p®)~1({b;}) — WK(p®)~1({b;}) for at least one b; in each component
pX(AK);, for all (K) € Iso(X).

Then there exists a G-fiber-preserving map h, G-fiberwise homotopic to f with
Fix(h) = A if, and only if, the following conditions holds for f and A:

(Ccl)z there exists a G-fiber-homotopy Hu : A x I — X from f| 4 to the inclusion
1:A—X;

(Cg2); for every WK-essential fixed point class F of fX : XX — XX there exists a
path & : I — XX with «(0) € F, a(1) € AK, and {a(t)} ~ {fKoa(t)} *

{Hx(a(1),5)}.
Proof of Corollary 3.7: 1f the conditions hold then we apply Theorem 1.6 for
Z = A. If there exists h then by Lemma 3.2 (C;1)z and (Cg2)z hold. u
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