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Abstract

Let G be a compact Lie group. We prove that if V and W are orthogo-
nal G-representations such that VG = WG = {0}, then a G-equivariant map
S(V) → S(W) exists provided that dim VH ≤ dim WH for any closed sub-
group H ⊆ G. This result is complemented by a reinterpretation in terms of
divisibility of certain Euler classes when G is a torus.

1 Introduction

A basic problem in the theory of transformation groups is to find necessary and
sufficient conditions for the existence of a G-equivariant map between two
G-spaces. Perhaps the most well-known result in the necessary direction is the
celebrated Borsuk–Ulam theorem [1], which states that if V and W are two
orthogonal fixed-point free Z2-representations, then the existence of a Z2-equi-
variant map S(V) → S(W) implies that dim V ≤ dim W. This result has numer-
ous and far reaching generalizations, see e.g. [9], [10] for an overview. One such
generalization, particularly interesting from the point of view of this note, is:

Theorem 1.1 ([6]). Let V and W be orthogonal representations of G = (S1)k or
G = (Zp)ℓ, p a prime, such that VG = WG = {0}. If there exists a G-equivariant
map S(V) → S(W), then

dim VH ≤ dim WH for any closed subgroup H ⊆ G. (∗)

Received by the editors in October 2016.
Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.
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On the other hand, sufficient conditions for the existence of G-equivariant
maps between representation spheres have not been investigated nearly exten-
sively. This is our starting point: we prove in Corollary 3.3 that (∗) is sufficient for
the existence of a G-equivariant map S(V) → S(W) for any compact Lie group G.
It is not a new result in the sense that it can be extracted from the existing liter-
ature, see [3, Chapter II], although it is rather buried in the text. This, coupled
with the fact that the second-named author has been inquired about converses to
various versions of the Borsuk–Ulam theorem, makes us believe that it is worth-
while to carefully spell the details out.

A corollary to the discussion above is that if G is a torus or a p-torus, then
(∗) is equivalent to the existence of a G-equivariant map S(V) → S(W). When
G is a torus, we reinterpret this result in terms of divisibility of Euler classes of
VH and WH in H∗(BG; Z). This angle of research has been pursued previously
in various guises, e.g. by Marzantowicz [8] (in the same setting, for G a compact
Lie group) and Komiya [4], [5] (with K-theoretic Euler classes, for G an abelian
compact Lie group). However, in each case only the necessary criteria were
described.

2 Preliminaries

2.1 Notation

Let G be a compact Lie group. If H ⊆ G is a closed subgroup, then NH
denotes the normalizer of H in G and WH = NH/H the Weil group of H. Given a
G-space X, write O(X) for the set of isotropy groups of X. If H ∈ O(X), then (H)
stands for its conjugacy class, referred to as an orbit type. There is a natural partial
order on the set of orbit types of X, namely:

(H) ≤ (K) if and only if K is conjugate to a subgroup of H.

Recall that a finite-dimensional G-complex is a G-space X that possesses a
filtration

X(0) ⊆ X(1) ⊆ · · · ⊆ X(n) = X

by G-invariant subspaces, with X(k+1) obtained from X(k) by attaching equivari-

ant cells Dk+1 × G/H via G-equivariant maps Sk × G/H → X(k), 0 ≤ k ≤ n − 1.
The space X(k) is called the k-skeleton of X and the integer n is the (cellular) dimen-
sion of X.

Observe that if X is a G-complex and H ⊆ G is a closed subgroup, then
XH = {x ∈ X | hx = x for any h ∈ H}, the H-fixed point set of X, is a WH-complex,

while X(H) =
⋃

K∈(H) XK is a G-subcomplex of X. The cellular dimension of X(H)

as a G-complex is equal to the cellular dimension of XH as a WH-complex. We
denote this dimension by dH(X).
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2.2 Euler classes calculus

Let G →֒ EG → BG be the universal principal G-bundle and V an orthogonal
G-representation. The Borel space EG ×G V = (EG × V)/G, where the orbit space
is taken with respect to the diagonal action, is a vector bundle with base space BG
and fibre V. Provided that this bundle is R-orientable for some ring R, its Euler
class, denoted e(V), is called the Euler class of V (over R).

Let G = Tk = (S1)k. Recall that any non-trivial irreducible orthogonal repre-
sentation of G is given by

V(α1,...,αk)
= Vα1

1 ⊗ · · · ⊗ V
αk
k ,

where the tensor product is considered over the field of complex numbers, and:

• Vi stands for the irreducible complex G-representation corresponding to the
projection G → S1 onto the i-th coordinate, 1 ≤ i ≤ k,

• V j denotes the j-th tensor power of a representation V,

• 0 ≤ αi for any 1 ≤ i ≤ k.

In particular, every non-trivial irreducible orthogonal G-representation is com-
plex one-dimensional and admits complex structure. Consequently, the latter
is also true for any orthogonal G-representation V without a trivial direct sum-
mand, and it follows that the corresponding vector bundle EG ×G V is integrally
orientable.

Now recall that
H∗(BG; Z) ∼= Z[t1, . . . , tk],

where ti = e(Vi) for 1 ≤ i ≤ k. Using the facts that e(V ⊕ W) = e(V)e(W) and,
for one-dimensional representations, e(V ⊗ W) = e(V) + e(W), we see that the
Euler class of V =

⊕

α rαVα is given by

e(V) = ∏
α

(α1t1 + · · ·+ αktk)
rα .

In particular, e(V) = 0 if and only if V contains a trivial direct summand.

3 The existence of equivariant maps for compact Lie groups

Throughout this section G is a compact Lie group. We will be interested in the
existence of G-equivariant maps between representation spheres. The main result
of this section is Corollary 3.3, and the main ingredient in its proof is the following
fact from equivariant obstruction theory.

Theorem 3.1 ([3, Chapter II, Proposition 3.15]). Let n ≥ 1 be an integer. Suppose that
(X, A) is a relative G-complex with a free action on X \ A and Y is an (n − 1)-connected
and n-simple G-space.

(1) Any G-equivariant map A → Y can be extended over the n-skeleton of X.
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(2) Let f0, f1 : A → Y be G-equivariant maps and f̃0, f̃1 : X(n) → Y their extensions.

If f0 and f1 are G-homotopic, then there exists a G-homotopy between f̃0|X(n−1)
and

f̃1|X(n−1)
extending the one between f0 and f1.

As a matter of fact, Theorem 3.2 below is also formulated in [3, Chapter II],
but its proof is spread throughout the text. We provide what we believe to be a
more accessible treatment for the convenience of the reader.

Theorem 3.2. Let X be a finite G-complex and Y a G-space such that Y(H) is non-empty
for any minimal orbit type (H) of X.

(1) If YH is (dH(X)− 1)-connected and dH(X)-simple for any H ∈ O(X), then there
exists a G-equivariant map X → Y.

(2) If YH is dH(X)-connected and (dH(X) + 1)-simple for any H ∈ O(X), then any
two G-equivariant maps X → Y are G-homotopic.

Proof. (1) In order to construct a G-equivariant map f : X → Y, we will proceed
inductively with respect to partial order on the set of orbit types of X.

If H is a representative of a minimal orbit type of X, then XH is a free
WH-complex. Define a WH-equivariant map (XH)(0) → YH by sending the

0-cells of XH to an arbitrary orbit of YH and extend it to a map f H : XH → YH by

means of Theorem 3.1. Since X(H) has a single orbit type, it is G-homeomorphic
to (G/H) ×WH XH by [2, Chapter II, Corollary 5.11]. We can therefore saturate

f H to obtain a G-equivariant map X(H) → Y(H) via the composition

X(H) ≈ (G/H)×WH XH → (G/H)×WH YH → Y(H),

where the last map is given by [gH, y] 7→ gy (see [2, Chapter II, Corollary 5.12]).
It is straightforward to see that any two distinct minimal orbit types (Hi),

(Hj) have X(Hi) ∩ X(Hj) = ∅, thus the above procedure yields a G-equivariant
map

⋃

(H)

X(H) →
⋃

(H)

Y(H),

where (H) runs over all minimal orbit types of X.
Now choose K ∈ O(X) and assume inductively that f is defined on a sub-

complex

X<(K) =
⋃

(H)<(K)

X(H).

By construction, f takes values in Y<(K). In view of [3, Chapter I, Proposition 7.4],

G-extensions of X<(K) → Y<(K) to X(K) → Y(K) are in one-to-one correspondence
with WK-extensions of X<K → Y<K to XK → YK. However, the WK-action on
XK \ X<K is free, hence Theorem 3.1 applied to the relative complex

(

XK, X<K
)

results in a WK-equivariant map XK → YK. There are only finitely many or-
bit types, hence this process stops after a finite number of steps, producing a
G-equivariant map X → Y.
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(2) Let H ∈ O(X) be a representative of a minimal orbit type. Since YH is
path-connected, any two NH-equivariant maps WH → YH are G-homotopic.
Therefore any two G-equivariant maps (XH)(0) → YH are also G-homotopic. It
now suffices to successively apply the second part of Theorem 3.1 just as above.

As a consequence, we obtain the following corollary.

Corollary 3.3. Let V, W be two orthogonal G-representations with VG = WG = {0}.

(1) If dim(VH) ≤ dim(WH) for any H ∈ O
(

S(V)
)

, then there exists a G-equivariant
map S(V) → S(W).

(2) If, additionally, G is connected and for any H ∈ O
(

S(V)
)

we have dim WH > 0,
then any two G-equivariant maps S(V) → S(W) are G-homotopic.

Proof. Let H ∈ O
(

S(V)
)

and note that the cellular dimension of the G-complex

S(V)(H) is at most dim VH − 1, since this dimension is equal to the dimension of

the orbit space S(V)(H)/G = S(V)H/ WH. On the other hand, the space S(W)H

is non-empty, simple and (dim WH − 2)-connected. Since dim VH ≤ dim WH,
applying Theorem 3.2 concludes the proof.

4 Torus equivariant maps between representation spheres

4.1

Let G = Tk. Unless otherwise stated, V and W are assumed to be orthogonal
G-representations such that VG = WG = {0}. Given a decomposition of V into
irreducible components, say V =

⊕

α∈A rαVα, we introduce the following nota-
tion. For any α ∈ A,

• Kα denotes the kernel of Vα, and

• Tα the connected component of identity of Kα.

Then Kα is a (k − 1)-dimensional subgroup of G and Tα is a (k − 1)-dimensional
torus. Furthermore, let mα be the index of Tα in Kα. The number mα is in fact the
greatest common divisor of the k-tuple α = (α1, . . . , αk). In particular, it indicates
whether Vα is a tensor power of another irreducible G-representation Vα̃, where
α̃ = (α̃1, . . . , α̃k) and α = mαα̃. Let Ã = {α̃ | α ∈ A} and, for α̃ ∈ Ã, define
HV

α̃ = {α ∈ A | mαα̃ = α}. Geometrically, HV
α̃ corresponds to the set of α ∈ A

such that Tα = Tα̃.

Proposition 4.1. Let V =
⊕

α∈A rαVα and W =
⊕

β∈B qβVβ be orthogonal G-represen-

tations such that dim V < dim W. Any G-equivariant map S(V) → S(W) can be
extended to a G-equivariant map S(V ′) → S(W), where V ′ is an orthogonal
G-representation such that V ⊆ V ′ and dim V ′ = dim W.
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Proof. Let S(V) → S(W) be a G-equivariant map. Note that since VG = WG =

{0}, we have V =
⊕

α̃∈Ã VTα̃ and W =
⊕

β̃∈B̃ W
Tβ̃ . In view of Theorem 1.1,

dim VTα̃ ≤ dim WTα̃ for any α̃ ∈ Ã, which shows that Ã ⊆ B̃. Furthermore,

∑
α̃∈Ã

dim VTα̃ = dim V < dim W = ∑
β̃∈B̃

dim W
Tβ̃ .

Consequently, Ã ( B̃ or dim WTα̃ − dim VTα̃ = dα̃ > 0 for some α̃ ∈ Ã1 ⊆ Ã. Set

V ′ = V ⊕
(

⊕

α̃∈Ã1

dα̃Vα̃

)

⊕
(

⊕

β̃∈B̃\Ã

(dim W
Tβ̃)Vβ̃

)

.

Then dim V ′ = dim W and dim (V ′)H ≤ dim WH for any H ∈ O
(

S(V ′)
)

. Indeed,

if H properly contains a (k − 1)-dimensional torus, then dim (V ′)H = dim VH.
Otherwise, since Ã′ = B̃,

(V ′)H =
(

⊕

β̃∈B̃

(V ′)
Tβ̃

)H
=

⊕

β̃∈B̃

(

(V ′)
Tβ̃

)H
=

⊕

β̃ : β̃∈B̃
H⊆Tβ̃

(V ′)
Tβ̃ .

But dim (V ′)
Tβ̃ = dim W

Tβ̃ for any β̃ ∈ B̃ by construction, hence dim (V ′)H =
dim WH. The existence of a G-equivariant map S(V ′) → S(W) now follows from
Corollary 3.3.

Lemma 4.2. If there exists a G-equivariant map S(V) → S(W), then e(V) divides
e(W) in H∗(BG; Z).

Proof. In view of Theorem 1.1, dim V ≤ dim W. If dim V < dim W, use Propo-
sition 4.1 to obtain a G-equivariant map S(V ′) → S(W), where V ′ is an or-
thogonal G-representation such that V ⊆ V ′ and dim V ′ = dim W. In view of
[8, Proposition 1.8], e(V ′) divides e(W). Since e(V ′) = e(V)e(V⊥), where V⊥ is
the orthogonal complement of V in V ′, we see that e(V) also divides e(W).

Theorem 4.3. Let V =
⊕

α∈A rαVα and W =
⊕

β∈B qβVβ be orthogonal G-represen-
tations. The following conditions are equivalent.

1. There exists a G-equivariant map S(V) → S(W).

2. For any H ∈ O
(

S(V)
)

, the Euler class of VH divides the Euler class of WH in
H∗(BG; Z).

3. For any H ∈ O
(

S(V)
)

, dim VH ≤ dim WH.

4. For any (k− 1)-dimensional isotropy subgroup H ∈ O
(

S(V)
)

, dim VH ≤ dim WH.

5. For any α̃ ∈ Ã and any m ∈ N,

∑
α : α∈HV

α̃
m | mα

rα ≤ ∑
β : β∈HW

α̃
m | mβ

qβ.
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Proof. “(1) ⇒ (2) ⇒ (3) ⇒ (1)”. Let S(V) → S(W) be a G-equivariant map.
Choose a subgroup H ∈ O

(

S(V)
)

and restrict to a G-equivariant map

S(VH) → S(WH). It follows from Lemma 4.2 that e(VH) divides e(WH) in
H∗(BG; Z). If this happens, then deg e(VH) ≤ deg e(WH), which directly trans-
lates into dim VH ≤ dim WH . This last condition for any H ∈ O

(

S(V)
)

implies
the existence of a G-equivariant map S(V) → S(W) via Corollary 3.3.

“(4) ⇒ (3)”. Assume without loss of generality that k ≥ 2. As exhibited in
the proof of Proposition 4.1, for H ∈ O

(

S(V)
)

at most (k − 2)-dimensional,

VH =
⊕

α̃ : α̃∈Ã
H⊆Tα̃

VTα̃ and WH =
⊕

β̃ : β̃∈B̃
H⊆Tβ̃

W
Tβ̃ .

Since dim VKα ≤ dim WKα for any α ∈ A, we infer that Ã ⊆ B̃. Thus in order
to wrap this part of the proof up, it suffices to observe that dim VTα̃ ≤ dim WTα̃

for any α̃ ∈ Ã. Indeed, H =
⋂

α∈HV
α̃

Kα is a (k − 1)-dimensional isotropy of S(V)

such that VTα̃ = VH, hence

dim VTα̃ = dim VH ≤ dim WH ≤ dim WTα̃ .

“(4) ⇔ (5)”. Note that if we view VTα̃ and WTα̃ as representations of
S

1 = G/Tα̃, then (4) can be rephrased as dim (VTα̃)Zm ≤ dim (WTα̃)Zm for any
α̃ ∈ A and m ∈ N. But

(VTα̃)Zm =
⊕

α : α∈HV
α̃

m | mα

rαVα,

which shows that
dim (VTα̃)Zm = ∑

α : α∈HV
α̃

m | mα

rα.

An analogous thing happens for W, which concludes the proof.

Remark 4.4. The implication “(4) ⇒ (3)” can be seen in a more geometrical man-
ner. As observed above, (4) amounts precisely to the condition (∗) for VTα̃ and
WTα̃ viewed as representations of S1 = G/Tα̃, for any α̃ ∈ Ã. Therefore Corollary
3.3 implies the existence of an S1-equivariant map f Tα̃ : S(VTα̃) → S(WTα̃), which
can be considered as a G-equivariant map. Consequently, the join construction

S(V) = S
(

⊕

α̃∈Ã

VTα̃

)

= ∗
α̃∈Ã

S(VTα̃) −→ ∗
α̃∈Ã

S(WTα̃) = S
(

⊕

α̃∈Ã

WTα̃

)

⊆ S(W)

yields the desired G-equivariant map.
On a related note, the implication “(5) ⇒ (2)” is a purely algebraic fact and

can be derived directly, without any geometrical interpretation. We would like to
thank A. Schinzel for suggesting the following argument to us.

Suppose that (5) is satisfied and fix α̃ ∈ Ã. We will show that

e(VTα̃) = ∏
α∈HV

α̃

(α1t1 + · · ·+ αktk)
rα =

(

∏
α∈HV

α̃

mrα
α

)

(α̃1t1 + · · ·+ α̃ktk)
∑

α∈HV
α̃

rα
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divides

e(WTα̃) =
(

∏
β∈HW

α̃

m
qβ

β

)

(α̃1t1 + · · ·+ α̃ktk)
∑

β∈HW
α̃

qβ
.

If m = 1, then (5) yields ∑α∈HV
α̃

rα ≤ ∑β∈HW
α̃

qβ, thus it suffices to prove that

∏α∈HV
α̃

mrα
α divides ∏β∈HW

α̃
m

qβ

β .

Let n be the highest power of a prime p appearing in any of mα’s. Observe
that p appears in ∏α∈HV

α̃
mrα

α with the power

M = ∑
p | mα

p2 ∤mα

rα + 2 ∑
p2 | mα

p3 ∤mα

rα + · · · + n ∑
pn | mα

rα

= ∑
p | mα

rα + ∑
p2 | mα

p3 ∤mα

rα + 2 ∑
p3 | mα

p4 ∤mα

rα + · · · + (n − 1) ∑
pn |mα

rα = · · ·

= ∑
p | mα

rα + ∑
p2 | mα

rα + · · · + ∑
pn | mα

rα,

where α varies over HV
α̃ . Likewise, if m is the highest power of p appearing in

any of mβ’s, then p appears in ∏β∈HW
α̃

m
qβ

β with the power

N = ∑
p | mβ

qβ + ∑
p2 | mβ

qβ + · · · + ∑
pm | mβ

qβ,

where β varies over HW
α̃ . By assumption, for any i ≥ 0,

∑
α : α∈HV

α̃

pi | mα

rα ≤ ∑
β : β∈HW

α̃

pi | mβ

qβ,

hence M ≤ N. This shows that, for any prime p, the power of p which appears
in the decomposition of e(VTα̃) does not exceed the one which appears in the
decomposition of e(WTα̃). Therefore e(VTα̃) divides e(WTα̃). Consequently, using

the fact that Ã ⊆ B̃, e(V) = ∏α∈Ã e(VTα̃) divides e(W) = ∏β∈B̃ e(W
Tβ̃). A

similar argument shows that the same thing happens for e(VH) and e(WH).

The second-named author asked the following question in [8, Problem 2.6].

Given orthogonal S1-representations V and W with VS1
= WS1

= {0}, is
divisibility of e(W) by e(V) sufficient for the existence of an S1-equivariant map
S(V) → S(W)? The following example shows that the answer is negative in
general.

Example 4.5. Let V1 be the one-dimensional fixed-point free S1-representation.
Define V = 2V3

1 ⊕ V5
1 and W = V18

1 ⊕ 2V5
1 . Then e(V) = 45t3 divides e(W) =

450t3, but the existence of an S1-equivariant map S(V) → S(W) would violate
Theorem 4.3, as dim VZ3 = 2 > 1 = dim WZ3 .
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4.2

It is known that if a group G is not an extension of a finite p-group of exponent p
by a torus, then G does not have the strong Borsuk–Ulam property, see [7]. It is
an open problem whether every such extension enjoys the strong Borsuk–Ulam
property; this is not even clear in the case G = Tk × (Zp)ℓ. (We note that the
proof of [7, Lemma 1.2] is incomplete and thus does not settle this last problem.)

Conjecture. A compact Lie group G has the strong Borsuk–Ulam property if and only if
G = Tk × (Zp)ℓ.

It remains to be verified that the following classes of groups do not have this
property:

• non-abelian finite groups with exponent p, and

• non-trivial extensions 0 → T
k → G → (Zp)

ℓ → 0.
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