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Abstract

A Nielsen-Borsuk-Ulam number (NBU(f, 7)) is defined for continuous
maps f : X — Y where X and Y are closed orientable triangulable n-mani-
folds and X has a free involution 7. This number is a lower bound, in the
homotopy class of f, for the number of pairs of points in X satisfying f(x) =
fot(x). Itis proved that NBU(f, T) can be realized (Wecken type theorem)
when n > 3.

1 Introduction

The classical Borsuk-Ulam Theorem of maps from the sphere S" in the Euclidean
space R" has been discussed and generalized in many different directions (see
[1,2,4,5,6]).

Given a triple (X, 7;Y), where X and Y are finite n-dimensional complexes
and 7 is a free simplicial involution, one possible approach is to study the ques-
tion - in the homotopy classes of maps - of the existence of points x € X such that
f(x) = for(x).

In a previous work ([1]) some notions, which can be seen as a Nielsen
theory approach for Borsuk-Ulam type problems, were defined. In the context
of maps between finite n-dimensional complexes, Nielsen Borsuk-Ulam coinci-
dence classes (named BU-coincidence classes) were defined and a mild version
of an index is proposed with the property that when such index is non-zero the
class is geometrically essential.
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This work went further in the same direction. In the context of closed
orientable triangulable manifolds, we define a “pseudo-index” for BU-coincidence
classes, then a Nielsen-Borsuk-Ulam number in such situation, demonstrating
that said number is a lower bound for the number of pairs of coincidences
between f and f o T in the homotopy class of f and that it can be realized (Wecken
type theorem) when the dimension of the manifolds are greater than 2 (as usual
in Nielsen theory).

In the last section an example where said number is greater than 1 is
presented, showing that this approach can contribute for the description of the
set of Borsuk-Ulam coincidences.

2 Nielsen Borsuk-Ulam theory

In [1] some ideas about a Nielsen Borsuk-Ulam theory were presented. In fact, the
theory was constructed using an index with image in Z, for the Nielsen Borsuk-
Ulam classes. Following [1] we have:

Definition 2.1. Let (X, T;Y) be a triple where X and Y are finite n-dimensional
complexes, T is a free simplicial involution on X for any map f : X — Y with
Coin(f,fot) = {x1,t(x1),*+ , Xm, T(xm)} we define the Borsuk-Ulam coincidence
set for the pair (f, T), as the set of pairs:

BUCoin(f;t) = {(x1,7(x1)); -+ ; (X, T(xm)) }

and we say that two pairs (x;, T(x;)), (xj, T(xj)) are in the same BU-coincidence class if
there exists a path <y from a point in {x;, T(x;)} to a point in {x;, T(x;)} such that f oy
is homotopic to f o T o «y with fixed endpoints.

Definition 2.2. A BU-coincidence class C is called single if for one (or any) pair
(x,T(x)) € C there exists a path 7y from x to T(x) such that f oy is homotopic to
f o T oy with fixed endpoints.

If we consider:

Remark 2.3. [1, Proposition 4.3] If C' is a usual Nielsen coincidence class for the pair
(f, f o T) then there exists a BU-coincidence class C of the pair (f, ) such that C"' C C.

We obtain:

Proposition 2.4. A BU-coincidence class C is single if, and only if, it is composed of just
one usual coincidence class of the pair (f, f o T). Moreover, if C is a finite BU-coincidence
class of the pair (f, T) that is not single (called double) then we can change the labels of
the elements of C in a way that:

o C= {(X1,T(x1))l' sy (xklr(xk))};

e C = Cy U Cy where Cy and Cy are usual coincidence classes of the pair (f, f o T);

o C1={x1,...,x¢}and C; = {t(x1),...,T(xx)}. ]
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Furthermore, for an isolated coincidence c of the pair (f, f o T) between closed
orientable n-manifolds, we have:

. N ind(f, fot;T(c)) if T preserves orientation,
ind(f, fotic) = { —ind(f, fot;T(c)) if T reverses orientation.

where ind(f, f o T;c) is the usual local index for coincidence.
Now it is possible to define a pseudo-index! for BU-coincidence classes:

Definition 2.5. Let X and Y be closed orientable triangulable n-manifolds, T a free
involution on X and f : X — Y a continuous map such that BUCoin(f, T) is finite.
If C = {(x1,7(x1)),..., (2, T(xx)) } is a BU-coincidence class of the pair (f,T) we
define the pseudo-index of C by

Y ind(f, f ot;x;) mod 2 if C is single and
T reverses orientation;

ind(f, fot;C)

5 if C is single and

, T preserves orientation;
ind|(f,7;C) = ’

lind(f, fo1;Cy)| if C is double, C = C; U Cy
and T reverses orientation;

ind(f, f ot;C) if C is double, C = C; U C,
and T preserves orientation.

where C1 and Cy are disjoint usual coincidence classes of the pair (f, f o T).

We note that when T reverses orientation, a single BU-coincidence class has
similar properties to the defective classes defined for coincidences of maps
between non-orientable manifolds (see [3, 7, 8]).

Definition 2.6. As usual, we call a BU-coincidence class C essential if |ind|(f, T; C) # 0
and we define NBU(f, T), the Nielsen Borsuk-Ulam number of the pair (f,T), as the
number of essential BU-coincidences classes.

Proposition 2.7. If f' is homotopic to f then f' has at least NBU(f,T) pairs of
BU-coincidence points.

Proof: Given an essential BU-coincidence class C of the pair (f, T) then we can
have

1. Cis double; so C = C; U Cy, two disjoint usual coincidence classes of the
pair (f, f o T) both with non-zero index;

2. C is single and T preserves orientation; so |ind|(f,7;C) # 0 implies
ind(f, f o7;C) # 0 as a usual coincidence class;

3. Cissingle and T reverses orientation; in this case the geometric essentiality
of C is a result of [1, Lemma 5.1];

in all cases C is geometrically essential and the result follows. m

1See [3, 7, 8] for a definition of a semi-index on coincidence classes for non-orientable closed
manifolds
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3 Realization

From classic coincidence theory it is easy to prove the following lemma:

Lemma 3.1. Let X and Y be closed triangulable n-manifolds, T a free involution on X
and f : X — Y a continuous map, suppose ¢ € X an isolated point such that the pair
(¢, t(c)) is a BU-coincidence pair of points (i.e. f(c) = f(t(c))) withind(f,fot;c) =
0, then, by a deformation of f in a small neighborhood of ¢ we can obtain a map f,
homotopic to f, such that BUCoin(f',t) = BUCoin(f, ) \ {c,t(c)}. ]

The following lemma corresponds to the geometric realizations of the join pro-
cedure defined in [1, page 3744]:

Lemma 3.2. Let X and Y be closed orientable triangulable n-manifolds, n > 3, T a free
involution on X and f : X — Y a continuous map. Suppose that

e BUCoin(f,7) = {(x1,7(x1));- - ; (Xm, T(xm)) };

e x1 and xy are in the same usual coincidence class of the pair (f, f o T) (so the pairs
(x1,T(x1)), (x2, T(x72)) are in the same BU-coincidence class);

then there exists a map f' ~ f such that:
e BUCoin(f',t) = {(x], t(x})); (x3,T(x3)); - - 5 (Xm, T(xm)) }
o ind(f,fot;x]) =ind(f, fot;x1) +ind(f, f o T, x2);

Proof: There exists a path <, from x; to xp, realizing the Nielsen relation
(i-e. f(7) is homotopic relative to the endpoints to f7(7)), and a closed neighbor-
hood U of y in X, such that U N t(U) = &, and U N BUCoin(f, f o) = {x1,%2}.

We can suppose that there exists a homeomorphism ¢ from U to a 6-neighbor-
hood U(I, 6) of the interval I (the line segment from the origin to (1,0, - - ,0)) in
R", with ¢(vy) = L.

The idea is to follow the steps used to define f’ in the proof of Theorem 2.1 in
[1] until the (n — 2)-skeleton of U without changing the map on the boundary of
U. Such construction consists in changing the definition of f in the simplexes in
the interior of U, using a triangularization of Y with small diameter, in a way that
the image of any point by f’ is so close to the image by f that the two maps are
homotopic.

Now, for the maximal simplexes of U and its faces (all the n and (n — 1)-
simplexes) we proceed in the following way: First we note that all n-simplexes of
U can be ordered by 07,07, ,0;" in a way that all 0]’ with i < r, contains one
face (named (71.”_1) which is a face of one (7]’7 withr >j > 1.

We will define f" without coincidences with f' o Tin o7, 0%, -, 07 ;.

In o', using a geometric construction similar to that one in the non maximal
simplexes we can extend f’ over all (n — 1)-simplexes of 9o} — o'~ where f’ is
not defined yet.

We can choose p ¢ 77 in a way that o] can be bijected over doj' — 5?‘1 by a
linear projection from p, (imagine p inside the other n-simplex that has (71”_1 as a
face c*).

]
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For each ag € dof' — E’f‘l let a7 be the intersection of ;Wo with Uf_l and we
define ay = (1 — #)ag + taq, for 0 < t < 1.

We can suppose [f oT(o})U f(oof — 0{1_1)] C V; where V; C Y is homeo-
morphic, by ¢y, to the unitary ball B (0) in R".
So, for all wy € af_l we can associate, in a continuous way, a positive number

Mayp) = |g01(for(oc1\))goi(f(oc1)j|. In the same way we define A(ag) =

|91(f o T(a0)) 91 (f ()], for all ag € dcll — @~ 1. Then, for each t € [0,1], we
define f(a¢) satisfying:

Maz)
AMao)

091(F (1)) = Ogn(For(ar)) + [1 Tt ( - 1)] o1 (Fot(@n)) o1 (F(a0)).

We can see that for all t € [0, 1], the vector 01 (f(a¢) ) is entirely contained in
B (0), then the map is well defined. So, f’ is extended in a continuous way in o7'.

Correspondingly, following the sequence, the map f’ can be defined in ¢7,
O'n, ce ’0'77_ .

’ The rr:all f' is already defined in d¢;" close enough to f’ o 7, then we can use
the same geometric constructions as in the proof of Theorem 2.1 in [1] to define
f’in 0}! in a way that it produces at most one coincidence with f" o T in ¢'.

We finish with a map f’, homotopic to f relatively to the set X \ U(7y), such
that f and f’ o T have, at most, one coincidence in U(7y). The conclusion about

the index of said coincidence follows from properties of the index. n

Remark 3.3. The geometrical equivalent to the procedure named blend, defined in [1,
page 3744], is exactly an interchange of the names in one pair (x;, T(x;)) € BUCoin(f, T)
and the geometric version of the split can be stated as the Lemma 3.4 below and it can be
seen as the reverse of Lemma 3.2.

Lemma 3.4. Let X and Y be compact connected orientable triangulable n-manifolds,
n > 3, T a free involution on X and f : X — Y a continuous map. Suppose that

BUCoin(f,) = {(x1, T(x1))i- - ; (X, Txm))}
then there exists a map f' ~ f such that:

. BLI(.TE)in(f’(, T))T}{ (x3, T(xp)); (7, T(x7)); (x2, T(x2)); - - -

o ind(f,fot;x1) =ind(f, fot;x}) +ind(f, fot;x{); |
Now the tools are complete to prove a Wecken type theorem:

Theorem 3.5. Let X and Y be closed orientable triangulable n-manifolds, T a free
involution on X and f : X — Y a continuous map, if n > 3 then there exists a map f’
homotopic to f such that f' has exact NBUCoin(f, T) pairs of BU-coincidence points.

Proof: Using [1, Theorem 2.1] we can suppose BUCoin(f, T) finite, moreover,
Theorem 3.5, Corollaries 3.8 and 3.9 in [1] prove that the pseudo-index is invariant
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by homotopies, in the sense that BU-coincidence classes related by one homotopy
have the same pseudo-index.

Using Lemma 3.2 we can produce a map f’ with exactly one BU-coincidence
pair in each BU-coincidence essential class, additionally, it can be done in a way
that the local index of one point of the pair is equal to the pseudo-index of its
class, so the non essential ones can be removed (Lemma 3.1). ]

4 Examples

Consider the torus T =

. ; that we will denote by:

T =10,1] x [0,1] mod 1

Let T : T — T be the free involution given by

T() = (x4 5, —9).

Define f : T — T by f(x,y) = (2x +y,y). The set BUCoin(f, ) corresponds
to the solutions of

1
(2x+y,y) = @2x+35) —y,~y) modl,

so all points with y = 0 or y = 3 are in BUCoin(f, 7).
Taking e(x) : [0,1] — [0, 1] such that

e ¢(x) =0ifx=0orx € [3,1];
e 0 <e(x) < {5ifx €]0,3]
It is not difficult to see that it is possible to deform f (by an e-homotopy) to a map:
fixy) = f(x,y) + (e(x),0),

such that the solutions to f'(x,y) = f’' o T(x,y) satisfy:

2x+y+e(x),y) = 2(x+ %) +y+e(x+ %), —y) mod 1.

Which corresponds to

1
flxy) +(e(x),0) = for(x,y) +e(x+3).
So there exist 4 exact points:

{(0,0),(3,0),(0,5), 5,3}

such that f/(x,y) = f o t(x,y).
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We have two usual coincidence classes:
1 1, 11
G ={(00),(30}  C=1{073)(37)
each of them is equal to one (single) BU-class, and both of them with pseudo-
index equals to 1.

So these two BU-classes are essential, and NBU(f, T) = 2.

In the examples in Theorem 5.2 in [1] (self-maps of the sphere S") there exists
only one BU-coincidence class, which is single, and its pseudo-index depends
on whether the involution (in that case the antipodal map) reverses or preserves
orientation.
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