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Abstract

The stabilizer of a fixed point class of a map is the fixed subgroup of the
induced fundamental group homomorphism based at a point in the class.
A theorem of Jiang, Wang and Zhang is used to prove that if a map of a
graph satisfies a strong remnant condition, then the stabilizers of all its fixed
point classes are trivial. Consequently, if φp, f is the n-valued lift to a cov-
ering space p of a map f with strong remnant of a graph, then the Nielsen
numbers are related by the equation N(φp, f ) = n · N( f ). Additional infor-
mation concerning Nielsen numbers is obtained for n-valued lifts of maps of
graphs with positive Lefschetz numbers and of maps of spaces with abelian
fundamental groups and for extensions of n-valued maps.

1 Introduction

The Nielsen fixed point theory of n-valued maps, that is, upper and lower semi-
continuous functions φ : X ⊸ X such that φ(x) is an unordered set of exactly
n points of X, was initiated by Schirmer in [14], [15], [16]. She defined a Nielsen
number N(φ) that is a lower bound for the number of fixed points, that is
x ∈ φ(x), for all n-valued maps that are n-valued homotopic to φ. The only
examples in those papers were of n-valued maps of the circle. Classes of non-
trivial n-valued maps of tori were studied, for instance, in [3] and [4], but there
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were no such examples on other spaces prior to [2]. In that paper, a lifting con-
struction defined n-valued maps on graphs, orientable double covers of nonori-
entable manifolds, handlebodies, free G-spaces and nilmanifolds. The purpose of
the present paper is to extend the classes of spaces on which n-valued maps are
defined and, especially, to use a recent result of Jiang, Wang and Zhang [12] to
refine the computations of the Nielsen numbers of the n-valued maps of graphs
obtained in [2].

Let p : X̃ → X be a finite covering space, of degree n, with X a connected finite

polyhedron and X̃ connected. For f : X → X a map, define φp, f : X̃ ⊸ X̃, the

n-valued lift of f by φ(x̃) = {p−1( f p(x̃))}. The relationship between N(φp, f ) and
the Nielsen number N( f ) of f was established in [2]. It depends on what is called
in [12] the “stabilizer” of a fixed point class, which is defined as follows. Let x1 be
a fixed point of f , let fx1

: π1(X, x1) → π1(X, x1) be the induced homomorphism
and let Fix( fx1

) = {α ∈ π1(X, x1) : fx1
(α) = α} be the fixed subgroup of fx1

.
It has long been known, see page 36 of [10], that if x2 ∈ X is in the same fixed
point class of f as x1, then Fix( fx1

) and Fix( fx2 ) are isomorphic. If the fixed point
classes of f are identified with equivalence classes of the lifts of f to the universal
covering space of X under conjugation by deck transformations, then Fix( fx1

)
can be identified as the stabilizer of the equivalence class corresponding to the
fixed point class of x1 under the action of conjugation by deck transformations
on the set of lifts of f . Since the stabilizer is an invariant of the fixed point class
Fx1

containing x1, in [12] the group Fix( fx1
) is called the stabilizer of the fixed point

class F and denoted Stab(Fx1
). The symbol #(S) will mean the cardinality of a

finite set S. For x in the fixed point class F we denote by #(p−1(x)/Stab(F ))
the number of orbits of the restriction to Stab(F ) of the monodromy action of
π1(X, x) on p−1(x). The relationship between the Nielsen numbers of f and of
φp, f is the following

Theorem 1.1. ([2]) Let φp, f : X̃ ⊸ X̃ be the n-valued lift of a map f : X → X to the

covering space p : X̃ → X. Let F1, . . . ,FN( f ) be the essential fixed point classes of f and
let xj be a point of Fj, then

N(φp, f ) =
N( f )

∑
j=1

#(p−1(xj)/Stab(Fj )).

Thus N(φp, f ) ≥ N( f ). If all the stabilizers are trivial, then N(φp, f ) = n · N( f ).
In Section 2 we present a more precise statement of the invariance of the stabi-

lizer, that implies that the stabilizers of all the fixed point classes are isomorphic
if the fundamental group of X is abelian. In that case, Theorem 1.1 allows us to
calculate the Nielsen number of an n-valued lift of a map f : X → X in terms of
the the Nielsen number of f and the homomorphism induced by f on the first
integer homology of X. As an application, we calculate the Nielsen numbers of
n-valued lifts of maps of tori and of lens spaces.

For f : X → X a map of a finite graph, the stabilizer of the fixed point class
is a free group that is finitely generated [6]. We denote by rank(Stab(F )) the
rank of the stabilizer of a fixed point class F , that is, the smallest number of free
generators. We will be making use of the following part of the main result of [12]
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that relates the rank of the stabilizer of a fixed point class to the fixed point index
ind(F ) of that class.

Theorem 1.2. (Jiang, Wang, Zhang [12]) Suppose X is a connected finite graph and
f : X → X is a map, then

ind(F ) ≤ 1 − rank(Stab(F ))

for every fixed point class F of f .

This result implies the index bound ind(F ) ≤ 1 of [11], [13] and it also implies
that if ind(F ) = +1, then Stab(F ) is the trivial group.

We use Theorem 1.2 in Section 3 to prove that for an n-valued lift φp, f of a map
f of a graph with Lefschetz number L( f ) > 0, the bound N(φp, f ) ≥ N( f ) can be
improved to

N(φp, f ) ≥ (n − 1)L( f ) + N( f ).

In Section 4 we develop a tool that allows us to describe the stabilizers of fixed
point classes in terms of homomorphisms of the fundamental group based at a
single point rather than basing the fundamental group at a different fixed point
for each fixed point class. We use that tool to obtain a condition on a map of a
graph that implies that the stabilizers of all the fixed point classes of f are trivial
and thus that N(φp, f ) = n · N( f ) holds for any n-valued lift of f . The required
property, called “strong remnant”, was introduced by Hart [8] as a stronger ver-
sion of the remnant condition of Wagner in [17]. In Section 5 we prove that, like
the remnant condition, the condition of strong remnant is satisfied by “most”
maps of graphs, in a sense that is made precise there.

Finally, in Section 6, we show that we can extend an n-valued map of a
finite polyhedron to an n-valued map of a polyhedron that retracts to it, with the
Nielsen number unchanged. In particular then, the results regarding n-valued
maps of graphs can be extended to n-valued maps of surfaces with boundary
and of handlebodies.

We thank Evelyn Hart for sending us several helpful messages in reply to our
queries; even finding time to send some of them during her family’s European
vacation. Conversations with Don Blasius contributed to an example. We thank
Michael Crabb for the result credited to him in the paper. Chris Staecker helped
with the exposition and brought [1] to our attention. We especially thank the
referee for several helpful suggestions for improving this paper.

2 Fixed Subgroups and the Basepoint Isomorphism

Let G be a group and h : G → G an endomorphism. The fixed subgroup of h, which
we denote by Fix(h) is the group of fixed points of h, that is,

Fix(h) = {g ∈ G : h(g) = g}.

Let X be a space and f : X → X a map such that f (x∗) = x∗. Then f induces
the endomorphism fx∗ : π1(X, x∗) → π1(X, x∗) of the fundamental group and we
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call its fixed subgroup the fixed subgroup of fx∗ , denoted Fix( fx∗ ). Although the
group π1(X, x∗) is independent of the basepoint x∗, up to isomorphism, Propo-
sition 2.2 of [2] illustrates the fact that, in general, the isomorphism class of the
group Fix( fx∗ ) depends on the choice of the fixed point x∗ of f .

Let X be a space, c : [0, 1] → X a path with c(0) = x0 and c(1) = x1 and
denote by βc : π1(X, x0) → π1(X, x1) the basepoint isomorphism defined by βc[w] =
[c−1wc] where c−1(t) = c(1 − t).

Proposition 2.1. Let x0 and x1 be fixed points of f : X → X and let c : [0, 1] → X be
a path such that c(0) = x0 and c(1) = x1. Then βc(Fix( fx0 )) ⊆ Fix( fx1

) if and only
if [c( f c)−1] is in the centralizer of Fix( fx0). Therefore, the restriction of βc to Fix( fx0 )
is an isomorphism onto Fix( fx1

) if and only if [c( f c)−1] is in the centralizer of Fix( fx0 )
and [c−1( f c)] is in the centralizer of Fix( fx1

).

Proof. If [c( f c)−1] is in the centralizer of Fix( fx0 ) and [w] ∈ Fix( fx0 ), then

fx0(βc[w]) = [( f c)−1( f w)( f c)] = [( f c)−1w( f c)]

= [c−1(c( f c)−1)w( f c)] = [c−1w(c( f c)−1)( f c)]

= βc[w].

Conversely, suppose βc(Fix( fx0)) ⊆ Fix( fx1
) and let [w] ∈ Fix( fx0 ). Then

fx0 βc[w] = [( f c)−1( f w)( f c)] = [c−1wc] = βc[w]

and consequently,

[w] = βc−1 fx0 βc[w] = [c( f c)−1( f w)( f c)c−1 ]

= [c( f c)−1w( f c)c−1] = [c( f c)−1][w][( f c)c−1 ]

= [c( f c)−1][w][c( f c)−1]−1

so
[c( f c)−1][w] = [w][c( f c)−1].

Fixed points x0 and x1 are in the same fixed point class if and only if there
exists a path c such that [c( f c)−1] = 1 ∈ π1(X, x0) so, in that case, the restriction
of βc is an isomorphism between Fix( fx0 ) and Fix( fx1

). We will follow the termi-
nology and notation of [12] from now on and call the fixed subgroup Fix( fx∗ ) at
x∗ ∈ F the stabilizer Stab(F ) of its fixed point class F .

If π1(X, x∗) is abelian, then by Proposition 2.1 all the groups Stab(F ) are iso-
morphic. Theorem 1.1 then implies that

N(φp, f ) = #(p−1(x)/Stab(F )) · N( f )

where x is any fixed point of f . If, in addition, Stab(F ) = 1 then N(φp, f ) =
n · N( f ).

In particular, if f : X → X is a map of the r-torus and A is the r-by-r integer
matrix determined by the induced fundamental group homomorphism of f , then

N(φp, f ) = n · |det(I − A)|.
The reason is that if N( f ) = |det(I − A)| 6= 0 then Stab(F ) = 1 whereas if
det(I − A) = 0 then f is homotopic to a fixed point free map and therefore φp, f

has the same property so N(φp, f ) = 0.
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Theorem 2.1. (Michael Crabb) Let f : X → X be a map of a connected finite polyhe-
dron with abelian fundamental group. The map f induces a homomorphism of the integer

homology group f∗ : H1(X) → H1(X). Let φp, f : X̃ ⊸ X̃ be the n-valued lift of f to the

covering space p : X̃ → X. Denote by H1(X̃) ⊆ H1(X) the subgroup that is the image

of p∗ : H1(X̃) → H1(X), then

N(φp, f ) = d · N( f )

where
d = #( f∗ − 1)(H1(X)/H1(X̃)).

Proof. If f has no fixed points, then N( f ) = N(φp, f ) = 0 so let x be a fixed point of

f and let x̃ ∈ p−1(x). We may identify p−1(x) with π1(X, x)/π1(X̃, x̃). Let F be
the fixed point class of x, then Stab(F ) = {α ∈ π1(X, x) : fx(α) = α} acts on the

left on p−1(x). Since π1(X, x) is abelian, we may replace π1(X, x) and π1(X̃, x̃)

by the integer homology groups H1(X) and H1(X̃) and Stab(F ) by

K = ker{ f∗ − 1 : H1(X) → H1(X)}.

Therefore,

d = #(H1(X)/(K + H1(X̃))

= #(( f∗ − 1)(H1(X))/( f∗ − 1)(H1(X̃)))

= #( f∗ − 1)(H1(X)/H1(X̃))

because the kernel of

f∗ − 1 : H1(X) → ( f∗ − 1)(H1(X))/( f∗ − 1)(H1(X̃))

is K + H1(X̃) and thus

Stab(F ) \ π1(X, x)/π1(X̃, x̃) = H1(X)/(K + H1(X̃)).

To illustrate this result, let L(m, q) denote a lens space, where m and q are
relatively prime integers, and let f : L(m, q) → L(m, q) be a map. Then f induces
f∗ : H1(L(m, q)) → H1(L(m, q)), an endomorphism of C[m] = Z/mZ, the cyclic
group of order m. Let f∗(1) = k. If k 6= 1, then by Example 3 on page 34 of
[10], the Nielsen number is N( f ) = (k − 1, m), the greatest common divisor of
k − 1 and m. If r divides m, then there is a covering space p : L(r, q) → L(m, q) of
degree m/r. Let φp, f : L(r, q) ⊸ L(r, q) be the m/r-valued lift of f . If k = 0, then

( f∗ − 1)(H1(X)/H1(X̃)) = H1(X)/H1(X̃) = C[m/r]

so N(φp, f ) = m/r.
If k ≥ 2, then by Theorem 2.1,

#( f∗ − 1)(H1(X)/H1(X̃)) = #( f∗ − 1)(C[m/r]) =
m/r

(k − 1, m/r)

and therefore

N(φp, f ) =
m · (k − 1, m)

r · (k − 1, m/r)
.
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3 Maps with Positive Lefschetz Numbers

Let f : X → X be a map of a connected (finite) graph. Since the Nielsen theory
of single-valued maps is invariant of homotopy type, we take X to be a wedge
X = a1 ∨ a2 ∨ · · · ∨ am of circles at a vertex that we will always denote by x0. The
circles are oriented so they generate the free group π1(X, x0). We homotope f so
that it maps a neighborhood of x0 to x0. Then, using the simplicial approximation
theorem, we further homotope f so that each circle ai is a union of arcs on each of
which the restriction of f takes the endpoints to x0 and the interior homeomor-

phically onto either some aj − {x0} or a−1
j − {x0}. The map f is then said to be in

standard form.

Proposition 3.1. Let f : X → X be a map of a graph. For p : X̃ → X a covering space

of degree n, let φp, f : X̃ ⊸ X̃ be the n-valued lift of f . If the Lefschetz number L( f ) > 0,
then

N(φp, f ) ≥ (n − 1)L( f ) + N( f ).

Proof. We assume that f is in standard form and let F1, . . . ,FN( f ) be the essential

fixed point classes. By Theorem 1.2, ind(Fi) ≤ 1. Therefore, since ∑
N( f )
i=1 ind(Fi) =

L( f ), at least L( f ) of the fixed point classes are of index +1. By Theorem 1.2, if
ind(Fi) = 1, then Stab(Fi) is the trivial group. Therefore #(p−1(xi)/Stab(Fi )) =
n and consequently Theorem 1.1 implies that

N(φp, f ) ≥ n · L( f ) + (N( f ) − L( f )) = (n − 1)L( f ) + N( f ).

4 Maps with Strong Remnant

Let X be a wedge of oriented circles based at x0 and f : X → X a map in standard
form fixing x0 and with one fixed point xj for each appearance aij

of a generator

ai or its inverse in f (ai). Then f induces fx0 : π1(X, x0) → π1(X, x0). As in [17],

write fx0(ai) = Vja
ǫj

ij
V j, where ǫj ∈ {+1,−1} and define the Wagner tails corre-

sponding to aij
as follows: Wj = Vj if ǫj = +1, Wj = Vja

−1
ij

if ǫj = −1, W j = V
−1
j

if ǫj = +1 and W j = V
−1
j aij

if ǫj = −1.

The following proposition allows us to study the stabilizers of the fixed point
classes of maps of X as fixed subgroups of endomorphisms of the fundamental
group at the basepoint x0. In this way, it becomes entirely an algebraic problem.

Proposition 4.1. For a fixed point xj of f we use the corresponding Wagner tails to

define θxj
, θ̄xj

: π1(X, x0) → π1(X, x0) by θxj
[ω] = W−1

j [ f (ω)]Wj and θ̄xj
[ω] =

W
−1
j [ f (ω)]W j. The stabilizer of Fxj

, the fixed point class of f that contains xj, is iso-

morphic to the fixed subgroups of θxj
and θ̄xj

.

Proof. Without loss of generality, we let xj = x1 ∈ a1. Let γ+ be the arc in the circle
a1 containing x1 from x1 to x0 in the positive direction and γ− in the negative. Let
β+ : π1(X, x0) → π1(X, x1) be the basepoint isomorphism defined by β+[w] =
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[γ−1
+ wγ+]. Lemma 1.2 of [17] implies that f (γ+) = W1γ+, meaning that they are

homotopic relative to the endpoints, so

fx1
β+[w] = [ fx1

(γ−1
+ ) f (w) fx1

(γ+)]

= [γ−1
+ W−1

1 f (w)W1γ+]

= β+θx1
[w].

If [w] ∈ Fix(θx1
), then

fx1
β+[w] = β+θx1

[w] = β+[w]

so β+(Fix(θx1
)) ⊆ Fix( fx1

). Similarly, θx1
β−1
+ = β−1

+ fx1
and therefore

β−1
+ (Fix( fx1

)) ⊆ Fix(θx1
) so these groups are isomorphic. Replacing γ+ with

γ−, it is proved in the same way that the stabilizer of Fxj
is isomorphic to the

fixed subgroup of θ̄xj
.

Let G be the free group on generators a1, . . . , an, let h : G → G be a homomor-
phism and set h(ai) = Ai. The homomorphism h has remnant if each Ai can be
written in the form Ai = Pi AiSi where Pi is the longest initial subword of Ai that

can be cancelled by A
ǫj

j , for ǫj ∈ {+1,−1}, except for A−1
i , the subword Si is the

longest such terminal subword and Ai 6= 1. Then Ai is called the remnant of Ai.
The homomorphism h has strong remnant if h has remnant and Ai 6= ai for all i.

A map f : (X, x0) → (X, x0) of a graph, in standard form, has remnant [17] if
the induced homomorphism fx0 : π1(X, x0) → π1(X, x0) has remnant and it has
strong remnant [8] if fx0 has strong remnant.

Let |Q| denote the length of the word Q in a free group, that is, the minimum
number of generators and their inverses needed to write it.

Lemma 4.1. If a homomorphism h : G → G has strong remnant, then Fix(h) = 1.

Proof. Suppose h(Q) = Q 6= 1. Write Q = ∏
m
j=1 a

uj

δj
in reduced form for some

m, then Q = h(Q) = ∏
m
j=1 A

uj

δj
. The homomorphism h has remnant so Q con-

tains ∑k∈Ci
|uk| appearances of the remnant Ai, where Ci = {j|δj = i}. Since

|Q| = |h(Q)|, then Q = ∏
m
j=1 A

uj

δj
in reduced form. By the uniqueness of the

representation of freely reduced words, Ai = ai for some 1 ≤ i ≤ n. However,
this contradicts the hypothesis that h has strong remnant so Fix(h) = 1.

Let f : X → X be a map that has remnant and let xi be a fixed point of f
corresponding to ai. Then, xi is called front-special if xi corresponds to the first
letter of the remnant Ai and the fixed point index ind( f , xi) = −1. The fixed point
xi is called back-special if xi corresponds to the last letter of Ai and ind( f , xi) = −1.

Lemma 4.2. Suppose f : X → X has strong remnant. Let xj ∈ ai be a fixed point that

corresponds to ai or a−1
i and is not a back-special fixed point of f . If |Wj| < |Pi Ai|, then

the fixed subgroup of θxj
is trivial and therefore the fixed point class of f containing xj

has trivial stabilizer.
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Proof. Without loss of generality, set i = 1. By Proposition 4.1 and Lemma 4.1,
it is sufficient to prove that θxj

has strong remnant. For 1 ≤ k ≤ n, let θxj
(ak) =

W−1
j ( fx0(ak))Wj = Yk, then since f has remnant, we may write

Yk = W−1
j AkWj = W−1

j Pk AkSkWj.

Since |Wj| < |P1A1|, then A1 cannot be cancelled completely when we reduce

W−1
j A1. Let Z be the subword of A1 that is not cancelled, then Z is a subword

of Y1 because P1A1 is not cancelled in A1Wj and |Wj| < |P1 A1|. Since A1 is the

remnant for A1, then Z is not cancelled when we reduce Y1Y1 = W−1
j A1A1Wj.

Similarly, Z is not cancelled when we reduce Y1Yk, YkY1, Y−1
1 Yk and Y1Y−1

k for

k = 2, . . . , n. Thus the remnant Y1 of Y1 contains Z 6= 1. However, Y1 = Z = a1

would imply that xj is a back-special fixed point of f , contrary to the hypotheses.

For k = 2, . . . , n, since Yk = W−1
j AkWj where W−1

j Ak = V−1
j Ak or a−1

1 V−1
j Ak

whereas AkWj = AkVj or AkVja
−1
1 and Vj is a subword of Aj, then the remnant Ak

is a subword of Yk and, since f has strong remnant, then Yk 6= ak. Therefore, θxj

has strong remnant.

The corresponding argument establishes

Lemma 4.3. Suppose f : X → X has strong remnant, a fixed point xj in the circle ai for

some 1 ≤ i ≤ n, is not a front-special fixed point of f that corresponds to ai or a−1
i and

|W j| < |AiSi|, then the fixed subgroup of θ̄xj
is trivial, where θ̄xj

[ω] = W
−1
j [ f (ω)]W j,

and therefore the fixed point class Fxj
of f containing xj has trivial stabilizer.

Theorem 4.1. If f : X → X has strong remnant, then Stab(F ) = 1 for any fixed point
class F .

Proof. Let xj be a fixed point of index −1 which, without loss of generality, we
may assume is in the circle a1. Since f has strong remnant, a fixed point with
index -1 cannot be both front-special and back-special because that would imply
that A1 = a1. Since ind( f , xj) = −1, then xj is represented by a1 so Wj = Vj and

W j = V
−1
j . Therefore at least one of |W−1

j | < |A1S1| or |Wj| < |P1A1| must be
true. Thus, by Lemma 4.2 or 4.3, the stabilizer of the fixed point class containing
any points of index -1 is trivial. Since ind(F ) ≤ 1 for any fixed point class F by
Theorem 1.2, a fixed point class containing only points of index +1 consists of a
single point. The index of that class is +1 so its stabilizer is trivial by Theorem
1.2.

The example of fx0(a) = a on the circle demonstrates that the conclusion of
Theorem 4.1 fails if f does not have strong remnant.

Let f : X → X be a map where X is a connected graph. For p : X̃ → X a cover-

ing space of degree n, let φp, f : X̃ ⊸ X̃ be the n-valued lift of f . As a consequence
of Theorem 4.1, if f has strong remnant then

N(φp, f ) = n · N( f ).
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In this case, it is easy to calculate N( f ) because, by part 2 of Theorem 3.3 of [7],
if f has strong remnant then any two fixed points in the same fixed point class
are directly related in the sense of [17] so the Nielsen number can be determined
by comparing Wagner tails.

5 Generic Properties of Maps of Graphs

Let f : Y → Y be a map of a graph that is of the homotopy type of a wedge of
n circles then, up to homotopy, f is characterized by an ordered n-tuple X =
(X1, . . . , Xn) of words in the free group Fn on n generators. Let Bn(M) denote the
set of n-tuples of words in Fn all of length less than or equal to M and Bn(m, M) ⊆
Bn(M) the n-tuples for which all the words are of length at least m. For a property
possessed by a subset of n-tuples, we identify the property with the set itself.
Specializing a concept due to Gromov [5], we define a property S of n-tuples of
words in Fn to be generic if

lim
k→∞

#(S ∩ Bn(k))

#(Bn(k))
= 1.

We denote by S(r), for r ≥ 1, the set of n-tuples X = (X1, . . . , Xn) that have
minimum remnant length r, that is, |Xi| ≥ r for all i, where Xi = PiXiSi for Xi the
remnant of Xi in X, compare [7]. Thus S(1) is the set of n-tuples with remnant in
the sense of [17]. The following result is a consequence of [1]. However, we take
this opportunity to present a self-contained, elementary proof, modelled on that
of Theorem 3.7 of [17], in order to add some details and to correct some minor
errors in the published proof of that theorem.

Theorem 5.1. The minimum remnant length property S(r) is generic for all r ≥ 1.

Proof. Suppose given ǫ > 0. We write

#(S(r) ∩ Bn(k))

#(Bn(k))
=

#(S(r) ∩ Bn(k))

#(Bn(m0, k))
· #(Bn(m0, k))

#(Bn(k))
.

We will prove that there exists m0 such that there is M > m0 with the property
that if k ≥ M then each factor of the product is greater than

√
1 − ǫ.

Without loss of generality, we assume that m has the same parity as r so that
(m − r)/2 is an integer. If X ∈ Bn(m, M) does not have minimum remnant
length r, then there is at least one Xi such that at least one of |Pi| > (m − r)/2 or
|Si| > (m − r)/2 is true. We observe that

#(X = PiY; X ∈ B1(m, M))

#(B1(m, M))
≤ 1

(2n)(2n − 1)(m−r)/2−1

<
1

(2n − 1)(m−r)/2

and that this inequality does not depend on the length of the word Xi and so it

holds for any value of M > m. Since Xi must be tested against all X±1
j ∈ X except
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X−1
i at both the start and the end of the word,

#((Xi /∈ S(r)) ∩ B1(m, M))

#(B1(m, M))
≤ 2(2n − 1)

(2n − 1)(m−r)/2

and therefore

#((X /∈ S(r)) ∩ Bn(m, M))

#(Bn(m, M))
≤ 2n(2n − 1)

(2n − 1)(m−r)/2
<

4n2

(2n − 1)(m−r)/2
.

We choose m = m0 so that

4n2

(2n − 1)(m0−r)/2
< 1 −

√
1 − ǫ.

Denoting the negation of a property S by the symbol ∼ S , we have proved that

#(∼ S(r) ∩ Bn(m0, M))

#(Bn(m0, M))
<

4n2

(2n − 1)(m0−r)/2

and therefore that
#(S(r) ∩ Bn(m0, M))

#(Bn(m0, M))
>

√
1 − ǫ.

Now, choose M so that

1 − (2n − 1)m0

1− (2n − 1)M
< 1 −

√
1 − ǫ.

then for k ≥ M we have

#(Bn(m0, k))

#(Bn(k))
=

∑
k
j=m0

2n(2n − 1)j−1

1 + ∑
k
j=1 2n(2n − 1)j−1

>

∑
k
j=1 (2n − 1)j−1 − ∑

m0−1
j=1 (2n − 1)j−1

∑
k
j=1 (2n − 1)j−1

= 1 −
∑

m0−1
j=1 (2n − 1)j−1

∑
k
j=1 (2n − 1)j−1

= 1 − 1 − (2n − 1)m0

1 − (2n − 1)k
>

√
1 − ǫ.

Therefore
#(S(r) ∩ Bn(k))

#(Bn(k))
> 1 − ǫ

and we have proved that

lim
k→∞

#(S(r) ∩ Bn(k))

#(Bn(k))
= 1.
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We denote the set of n-tuples that have strong remnant by S(s) then, since
S(2) ⊂ S(s), we have

Corollary 5.1. The strong remnant property S(s) is generic.

In [9], a map f is called essentially fix trivial if Stab(F ) = 1 for all essential
fixed point classes F of f . We extend the definition by calling f totally fix trivial
if Stab(F ) = 1 for all its fixed point classes, essential or not. Thus Theorem 6.1
implies that “most” maps of wedges of circles have only trivial stabilizers of their
fixed point classes in the following sense:

Corollary 5.2. For maps of graphs, the totally fix trivial property is generic.

Therefore, for “most” n-valued lifts φp, f of maps f of graphs, the Nielsen num-
ber is N(φp, f ) = n · N( f ).

6 Extensions of n-Valued Maps

Let X be a finite polyhedron, Y a subpolyhedron of X, φ : Y ⊸ Y an n-valued
map, and r : X → Y a retraction to the subpolyhedron. Then the n-valued map
φ̂ = ι ◦ φ ◦ r : X ⊸ X, where ι : Y → X is inclusion, is well-defined. We call φ̂ the
extension of φ with respect to the retraction r.

Theorem 6.1. The Nielsen number of an n-valued map is the same as that of any exten-
sion of it, that is, N(φ̂) = N(φ).

Proof. By Theorem 6 of [14], we can homotope φ so that the fixed point set Fix(φ)
is finite. Note that Fix(φ̂) = Fix(φ̂|Y) = Fix(φ). We claim that the fixed point
classes of φ and φ̂ are identical. Suppose x and y are in the same fixed point
class of φ in the sense of [15]. That means that there exists a path c : [0, 1] → Y
from x to y such that gj, for some j, is homotopic to c relative to the endpoints,
where {gi}1≤i≤n is the splitting of φc : I ⊸ Y. Since the path c is in Y, then
φ̂ ◦ c = φ ◦ c. Thus, they have the same splitting and gi is a map in the splitting
of φ̂ ◦ c. Therefore, x and y are in the same fixed point class of φ̂. Conversely,
suppose x and y are in the same fixed point class of φ̂. Then, there exists a path
c : [0, 1] → X from x to y such that ĝj is homotopic to c, for some integer j, where

{ĝi}1≤i≤n is the splitting of φ̂c. Therefore, rĝj and rc are homotopic relative to the

endpoints, which are in Y. Since the image of φ̂ is in Y, the map r ◦ ĝj = ĝj is a
member of the splitting of φ ◦ (r ◦ c). Thus, r ◦ c is a path from x to y such that
r ◦ c is homotopic to ĝj relative to the endpoints. This shows that x and y are in
the same fixed point class of φ and this establishes the claim that the fixed point
classes of φ and of φ̂ are identical.

Since Y is locally contractible, there is a contractible (open) neighborhood U0

of a fixed point y0 of φ. Therefore, there exist maps { fi : U0 → Y}1≤i≤n splitting
φ such that f j(y0) = y0 for some j. If x ∈ r−1(U0) = U, then

φ̂(x) = φ(r(x)) = { fi(r(x))}1≤i≤n
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and y0 = f̂ j(y0) = f j(r(y0)). Let V0 ⊂ U0 be a neighborhood of y0 such that

f j(V0) ⊂ U0 and let V = r−1(V0) so f̂ j(V) ⊂ U0 ⊂ U. Consider

f̂ j|V :

(
V

r→ V0
f→ U0

)
→֒ U

and

f j|V0 : V0 →֒
(

V
r→ V0

f→ U0

)
.

By the commutativity property of the fixed point index [10] , we have

ind( f̂ j |V, V) = ind( f j|V0, V0). The excision property implies that ind( f̂ j , U) =

ind( f j , U0). Thus, according to the definition in [15], ind(φ̂, x0) = ind(φ, x0) and

therefore F is essential as a fixed point class of φ̂ if and only if it is essential as a
fixed point class of φ and we conclude that N(φ̂) = N(φ).

We may construct a class of multiply fixed n-valued maps of surfaces with

boundary as follows. Suppose a graph X̃ is a finite covering of degree n of a

graph X by a covering map p : X̃ → X. Suppose Y is a surface with boundary

containing X̃ and there is a retraction r : Y → X̃. Let f : X → X be a map and

extend the lift φp, f : X̃ ⊸ X̃ to φ̂p, f = ι ◦ φp, f ◦ r : Y ⊸ Y. If f has strong remnant,
then

N(φ̂p, f ) = n · N( f )

by Theorem 5.1
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