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Abstract

A Nielsen-Reidemeister index is constructed for multivalued maps
defined by fractions f /p where p : X̃ → X is a fibrewise manifold with
closed fibres over a compact ENR and f : X̃ → X is a continuous map. In the
case that p is a finite n-fold cover, this index is shown to agree with the index
of the n-valued map X̃ ⊸ X̃ associated with f /p by a construction of Brown
[4].

1 Introduction

Let p : X̃ → X be a finite (not necessarily connected) n-fold cover of a compact
ENR (Euclidean Neighbourhood Retract) X and suppose that f : X̃ → X is a
continuous map. Then we can define a multivalued map F : X ⊸ X by

F(x) = { f (x̃) | x̃ ∈ X̃, p(x̃) = x} (x ∈ X).

Thus F(x) is a finite non-empty set with cardinality at most n: #F(x) 6 n.
If #F(x) = n for all x, the multivalued map F is an n-valued map in the sense
of Schirmer [16]. In any case, following Brown [4] we can associate with the pair
( f , p) an n-valued map F̃ : X̃ ⊸ X̃ by setting

F̃(x̃) = {ỹ ∈ X̃ | p(ỹ) = f (x̃)} (x̃ ∈ X̃).
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(To be accurate, Brown considered only the case of a map f that factors through
p as a composition X̃ → X → X.)

A systematic study of the fixed point theory of the pair ( f , p), by analogy with
the theory of Vietoris fractions (see [13, Section 19]), was undertaken in [8], using
the notation ‘ f /p ’ for the pair considered as a fraction. The primary object of
study, which we shall call the fixed-point set of f /p, is the coincidence set of the
pair.

Definition 1.1. The fixed-point set of f /p is the closed subspace

Fix( f /p) = {x̃ ∈ X̃ | f (x̃) = p(x̃)}

of X̃. It projects by p onto the fixed subspace Fix(F) = {x ∈ X | x ∈ F(x)} of the
multivalued map F.

The basic fixed-point index of f /p was constructed in [8], and called there the
homotopy Lefschetz index, as an element

h-L( f /p) ∈ ω0(h-Fix( f /p))

of the stable homotopy group of the homotopy fixed-point set of f /p.

Definition 1.2. The homotopy fixed-point set of f /p is the subspace

h-Fix( f /p) = {(x̃, α) | x̃ ∈ X̃, α : [0, 1]→ X, α(0) = p(x̃), α(1) = f (x̃)},

of X̃ ×map([0, 1], X). Thus, each element is given by a point x̃ of X̃ and a (con-
tinuous) path from p(x̃) to f (x̃) in X. We write π : h-Fix( f /p) → X̃ for the
projection to the first factor. The fixed-point set is included as a subspace of the
homotopy fixed-point set, Fix( f /p) →֒ h-Fix( f /p), by mapping to x̃ to (x̃, α)
where α is the constant path at p(x̃) = f (x̃).

Now ω0(h-Fix( f /p)) is just the direct sum
⊕

γ Z[γ], of copies of Z indexed
by the components γ of h-Fix( f /p), and we can decompose h-L( f /p) as

h-L( f /p) = ∑
γ

lγ[γ],

where lγ ∈ Z is zero for all but finitely many components γ. Classically, when p
is the identity X̃ = X → X, this is the Reidemeister trace of f , and the Nielsen
number counts the components γ such that lγ 6= 0. We make the same definition
for the fraction f /p.

Definition 1.3. The Nielsen number N( f /p) of f /p is the number of components
γ of h-Fix( f /p) such that lγ is non-zero.

It is a consequence of [8, Proposition 3.5] that, when F is an n-valued map,
N( f /p) is equal to Schirmer’s Nielsen index N(F). The main purpose of this
note is to show that, in general, N( f /p) is equal to the Nielsen number N(F̃) of
the n-valued map F̃ studied by Brown. This will be deduced in Section 3 from the
commutativity property of the fixed-point index.
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In Section 2, expanding a brief account in [7, Section 5], we give a definition
of the fixed-point index following the pattern of Dold’s construction [10, 11, 12]
of the index for single-valued maps on ENRs, treating the finite cover p : X̃ → X
as the 0-dimensional special case of a fibrewise smooth manifold p : X̃ → X over
a compact ENR X with each fibre a closed manifold of some fixed dimension m.

Section 4 computes the index in a particular example involving projective
spaces.

Notation. Given a real vector bundle ξ over a space X and a subspace U of X,
we shall use the superscript notation Uξ for the Thom space of the restriction ξ|U of
the vector bundle ξ to the subspace U. Similar notation is used for virtual vector
bundles. In particular, the Thom space U−ξ of the negative −ξ|U is realized, by a
trivialization ξ ⊕ η ∼= X ×Rk for some vector bundle η over X, as the desuspen-
sion Σ−k(Uη) of the Thom space of η|U.

2 Construction of the fixed-point index

We now fix a compact ENR X and a fibrewise smooth manifold p : X̃ → X with
each fibre a closed smooth manifold of dimension m. Its fibrewise tangent bundle,
which is an m-dimensional real vector bundle over X̃, will be denoted by τ(p).

An account of general fibrewise manifolds (or manifolds over a base) can be
found in [1, Section 1] or [9, Part II, Section 11]. Many examples arise as follows.
Suppose that G is a compact Lie group, M is a closed G-manifold of dimension
m and P → X is a principal G-bundle. Then X̃ = P×G M → X is a fibrewise
manifold. Its fibrewise tangent bundle is P×G τM → P×G M, where τM → M
is the tangent bundle of M. Every finite n-fold covering space arises in this way,
with G a finite group acting on a finite set M of cardinality n.

Consider a (continuous) map f : X̃ → X. The fixed-point set and homotopy
fixed-point set of f /p

Fix( f /p) ⊆ h-Fix( f /p)
π
−→ X̃

are defined as in Definitions 1.1 and 1.2. There are associated multivalued maps
F : X ⊸ X and F̃ : X̃ ⊸ X̃, given by

F(x) = f (p−1(x)) and F̃(x̃) = p−1( f (x̃)), (x ∈ X, x̃ ∈ X̃).

Suppose that U ⊆ X̃ is an open subspace such that U ∩ Fix( f /p) is compact.
We shall first construct a topological Lefschetz index

t-L( f /p |U) ∈ ω̃0(U
−τ(p))

in the stable homotopy group of the Thom space of the restriction −τ(p)|U of the
virtual bundle −τ(p) to the subspace U.

We choose a fibrewise smooth embedding j : X̃ →֒ X × F, over X, for some
Euclidean space F. The (fibrewise) normal bundle ν of j satisfies τ(p) ⊕ ν =
X̃× F (up to homotopy). Using the Riemannian metric (on F) we can construct a
fibrewise tubular neighbourhood of j over X: D(ν) →֒ X × F. (Here D(ν) is the
closed unit disc bundle in an appropriately scaled metric.) We also need to choose



486 M. C. Crabb

an embedding i : X →֒ X′ ⊆ E of the ENR X as a retract of an open subspace X′

of a Euclidean space E, with a retraction r : X′ → X. Then construct the pullback
p′ : X̃′ = r∗X̃ → X′ of p : X̃ → X and the corresponding tubular neighbourhood
j′ : D(ν′) →֒ X′ × F, where ν′ = r∗ν, of X̃′. The map f : X̃ → X extends to a map
f ′ = i ◦ f ◦ r : X̃′ → X′.

Let U′ denote the open subset r−1(U) of X̃′. Then U′ ∩ Fix( f ′/p′) =
U ∩ Fix( f /p) is compact. To avoid complicating the notation, we shall regard
D(ν′), using i and j′, as a subspace of E⊕ F and X′ as a subspace of E.

The Lefschetz index will be represented by a pointed map

E+ ∧ F+ → E+ ∧Uν,

where the superscript ‘+’ means the one-point compactification so that E+ and
E+ ∧ F+ = (E⊕ F)+ are spheres with basepoint at infinity. The Thom space Uν

is the topological quotient of the disc bundle D(ν|U) by the unit sphere bundle
S(ν|U).

By the compactness of U′ ∩ Fix( f ′/p′), we may choose an open neighbour-
hood V in X̃′ with compact closure V such that

U′ ∩ Fix( f ′/p′) ⊆ V ⊆ V ⊆ U′

and then a real number ǫ > 0 such that ‖p′(x̃)− f ′(x̃)‖ > ǫ for all x̃ ∈ V −V.
Now we can write down an explicit pointed map

ϕ : E+ ∧ F+ = (E⊕ F)+ → E+ ∧Uν = E+ ∧ (D(ν|U)/S(ν|U))

as follows. A point v in the closed subspace D(ν′|V) of (E⊕ F)+ lies in the fibre
of ν′ over some point x̃ ∈ V: v ∈ D(ν′x̃). We define

ϕ(v) = [cǫ(p′(x̃)− f ′(x̃)), r(v)] ,

where cǫ : E→ E+ is given by

cǫ(u) =

{

(ǫ2 − ‖u‖2)−1/2u if ‖u‖ < ǫ,

∗ (= ∞) otherwise.

Notice that, if x̃ ∈ V −V, then ‖p′(x̃)− f ′(x̃)‖ > ǫ, so that ϕ(v) = ∗. This means
that ϕ takes the value ∗ on the boundary S(ν′|V) ∪ D(ν′|V − V) of D(ν′|V) and
we can extend ϕ over (E⊕ F)+ to take the value ∗ on the closed complement of
the open unit disc bundle B(ν′|V).

Forming the class of ϕ as a stable map from F+ to Uν, we obtain the topological
Lefschetz index

t-L( f /p |U) ∈ ω̃0(U
−τ(p)) = ω0{F+; Uν} .

(Here we use the notation ω0{A; B} for the group of stable maps from a pointed
space A to a pointed space B.)

To construct the homotopy Lefschetz index, we choose U to be an open neigh-
bourhood of Fix( f /p) such that the straight line segment joining p(x̃) to f (x̃) lies
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in X′ for all x̃ ∈ U (that is, (1− t)ip(x̃) + ti f (x̃) ∈ X′ for 0 6 t 6 1). Then we
have a map

U → h-Fix( f /p) : x̃ 7→ (x̃, α), where α(t) = r((1− t)ip(x̃) + ti f (x̃)),

extending the inclusion of Fix( f /p) in h-Fix( f /p).
We define the homotopy Lefschetz index, or Nielsen-Reidemeister index,

h-L( f /p) ∈ ω̃0(h-Fix( f /p)−π∗τ(p))

of f /p to be the image of t-L( f /p |U) under the induced map

ω̃0(U
−π∗τ(p))→ ω̃0(h-Fix( f /p)−π∗τ(p)) .

It determines the global topological Lefschetz index of f /p

t-L( f /p) ∈ ω̃0(X̃
−τ(p)),

which is defined as π∗(h-L( f /p)).
It is, of course, necessary to verify that the classes so constructed are inde-

pendent of the choices made. This is best done by placing the definition in the
wider context of fibrewise maps and simultaneously establishing the homotopy
invariance of the index. When p is the identity map 1 : X̃ → X, so that f is a map
X → X, the construction reduces to Dold’s definition of the fixed-point index of
a single-valued map as described, for example, in [9, 6]: we take F to be the zero
vector space and j to be the identity map 1 : X → X = X × 0. The verification
proceeds as in this special case, and the details will be omitted here.

It is clear from the construction that the index h-L( f /p) vanishes if the fixed-
point set Fix( f /p) is empty. The standard properties of the Lefschetz index
(localization at the fixed-point set, additivity, homotopy invariance, multiplica-
tivity) also follow essentially as in the classical case. Commutativity, which is
more subtle, will be the subject of the next section. In the remainder of this
section we look at two special features of the theory for multivalued maps.

Trivial bundles. We consider, first, the case in which the bundle p : X̃ → X is
trivial. Suppose that p is the projection X×M→ X, where M is a closed smooth
manifold of dimension m. The fibrewise tangent bundle τ(p) is the pullback of
the tangent bundle τM of M.

From f , which is now a map f : X × M → X, we can construct a fibrewise
map

f ♯ : X ×M→ X ×M, (x, y) 7→ ( f (x, y), y)

over the compact manifold M, that is, a family of maps f ♯y : X → X parametrized

by y ∈ M: f ♯y(x) = f (x, y).
The fibrewise fixed-point set

FixM( f ♯) = {(x, y) ∈ X ×M | f ♯y(x) = x}

and homotopy fixed-point set h-FixM( f ♯), defined as

{((x, y), α) | (x, y) ∈ X ×M, α : [0, 1]→ X, α(0) = x, α(1) = f ♯y(x)} ,
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are transparently the same as the fixed-point sets Fix( f /p) and h-Fix( f /p) of
f /p. We shall show, by comparing the definitions, that the index h-L( f /p) of the
fraction coincides with the fibrewise fixed-point index h-LM( f ♯) of the fibrewise
map.

The fibrewise homotopy Lefschetz index h-LM( f ♯) is an element of the group

ω0
M{M× S0; h-FixM( f ♯)+M}

of fibrewise stable maps over M from M × S0 to the fibrewise pointed space
obtained by adjoining a disjoint basepoint to each fibre of h-FixM( f ♯) → M.
The two indices are related by the Poincaré-Atiyah duality isomorphism

λM : ω0
M{M× S0; h-FixM( f ♯)+M}

∼=
−→ ω̃0(h-Fix( f ♯)−π∗τM).

(See, for example, [7, Proposition 4.1] and the references given there.)

Proposition 2.1. Suppose that p : X̃ = X × M → X is trivial, as described in the
text. Then the fixed-point index h-L( f /p) of f /p is equal to the image under the duality
isomorphism λM

ω0
M{M× S0; h-FixM( f ♯)+M}

∼=
−→ ω̃0(h-Fix( f /p)−π∗τM)

of the fibrewise fixed-point index h-LM( f ♯) of the fibrewise map f ♯ determined by f .

Outline proof. This will be verified by following through the explicit geometric
definitions. We choose an embedding of X as a retract r : X′ → X of an open
subspace X′ ⊆ E of a Euclidean space E, a smooth embedding of M in a Euclidean
space F, with normal bundle ν, and a tubular neighbourhood D(ν) →֒ F. This
allows us to treat X and M as subspaces of E and F, respectively.

Suppose that U ⊆ X ×M is an open neighbourhood of Fix( f /p) = Fix( f ♯).
Let V be in an open neighbourhood of Fix( f /p) in X′×M such that V is compact
and contained in (r × 1)−1U. There is some ǫ > 0 such that ‖x− f (r(x), y)‖ > ǫ
for all (x, y) ∈ V −V.

The topological fibrewise Lefschetz index t-LM( f ♯ |U) is a stable map
M × S0 → U+M over M. (See, for example, [9, Part II, Section 6].) It is repre-
sented by the map

E+ ×M → (E+ ×M) ∧M U+M

sending (x, y) ∈ V to [cǫ(x− f (r(x), y)), (r(x), y)] and a point (x, y) in the com-
plement of V in E+ ×M to the basepoint over y ∈ M. (Here, again, U+M is the
fibrewise pointed space U ⊔M obtained by adjoining a basepoint in each fibre.

The duality isomorphism λM is constructed in three steps by taking the smash
product over M with the identity map ν+M → ν+M on the fibrewise one-point com-
pactification of ν over M to get a fibrewise stable map

(E+ ×M) ∧M ν+M → (E+ ×M) ∧M U+M ∧M ν+M ,

then collapsing fibrewise basepoints to a single point to get a map of pointed
spaces

E+ ∧Mν → E+ ∧Uν ,
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and finally composing with the product of the Pontryagin-Thom map F+ → Mν

with the identity on E+ to produce an explicit map

E+ ∧ F+ → E+ ∧Uν.

This is exactly the map defining t-L( f /p |U).

Of course, the bundle X̃ → X is locally trivial and there is a similar local
result. Suppose that U ⊆ X̃ is an open set such that U ∩ Fix( f /p) is a component
N of the fibre M of p at a point x0 ∈ X. Choose a local trivialization p−1(W) =
W × M → W of X̃ → X over some open neighbourhood W of x0. To keep the
notation simple, we shall identify p−1(W) with W × M. By replacing U by a
smaller neighbourhood of N we may assume that it has the form U = V × N,
where V ⊆ W is an open neighbourhood of x0, and that f (U) ⊆ W. Then f
determines a fibrewise map f ♯ : V × N → W × N over N with fixed-point set
Fix( f ♯) = {x0} × N.

The argument outlined above expresses t-L( f /p |U) as the image of the fibre-
wise topological Lefschetz index t-LN( f ♯ |U) under the duality isomorphism

ω0
N{N × S0; V+ × N} = ω0{N+; V+}

∼=
−→ ω̃0(V+ ∧ N−τN) .

Because X is an ENR, there is a smaller open neighbourhood V0 ⊆ V of x0

inside V such that the inclusion V0 →֒ V is homotopic, through a homotopy
inside V that fixes x0, to the constant map at x0. It follows that t-LN( f ♯ |U) is the
image of the fibrewise Lefschetz index

LN( f ♯ |U) ∈ ω0(N) = ω0{N+; S0} = ω̃0(N−τN)

under the map induced by the inclusion of S0 as {x0}+ in V+. We shall refer to
this class LN( f ♯ |U) as a local index. It contributes to the index h-L( f /p) through
the homomorphism

k∗ : ω̃0(N−τN)→ ω̃0(h-Fix( f /p)−π∗τ(p))

induced by the inclusion k : N →֒ Fix( f /p) →֒ h-Fix( f /p).

Proposition 2.2. Consider a general (so locally trivial) fibrewise manifold p : X̃ → X.
Suppose that Fix( f /p) is the disjoint union of a finite number of connected components
Ni, i ∈ I, of the fibres over points xi ∈ X. Let ki : Ni →֒ Fix( f /p) →֒ h-Fix( f /p)

denote the inclusion and let Li ∈ ω0(Ni) = ω̃0(N
−τNi
i ) be the local Lefschetz index

described above. Then

h-L( f /p) = ∑
i∈I

(ki)∗(Li).

Proof. It suffices to show that, for any neighbourhood U of Fix( f /p), the index
t-L( f /p |U) is the sum of terms (kU

i )∗(Li), (i ∈ I), where kU
i : Ni →֒ U is the

inclusion. This follows, by the additivity of the index, from the discussion above
applied to disjoint neighbourhoods Ui of Ni in U.
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Corollary 2.3. Suppose that p : X̃ → X is a finite n-fold cover and that #F(x) = n for
all x ∈ X. Then h-L( f /p) coincides with the fixed-point index of the n-valued map F
defined by Schirmer in [16].

Proof. Schirmer’s definition proceeds by reduction, through a homotopy, to the
case in which Fix( f /p) is a finite set. In that case, we can apply Proposition 2.2
to express the index as a sum of local Lefschetz indices as in [16]. The assertion
then follows from the homotopy invariance of the index.

Smooth fibre bundles. We consider next the case in which X is a closed manifold
and p : X̃ → X is a smooth fibre bundle. The fixed-point set Fix( f /p) is just
the coincidence set {x̃ ∈ X̃ | p(x̃) = f (x̃)} of p and f , and we shall show that
h-Fix( f /p) is exactly the homotopy coincidence index, in the terminology of [7],
of p and f . We form the trivial bundle E = X̃ × X → X̃ over X̃ with a preferred
null section z, z(x̃) = (x̃, p(x̃)), and section s, s(x̃) = (x̃, f (x̃)), associated with f .
The pullback ν = z∗τX̃E of the fibrewise tangent bundle of E over X̃ is identified
with the tangent bundle τX of X.

The coincidence set is called in [7] the null set Null(s) = {x̃ ∈ X̃ | s(x̃) = z(x̃)}
of the section s. The homotopy null set h-Null(s), defined in [7, Definition 2.3] as
the space of pairs (x̃, α) where x̃ ∈ X̃ is a point of the base and α is a path in the
fibre over x̃ from z(x̃) to s(x̃), is exactly h-Fix( f /p).

The homotopy Euler index of s is constructed in [7, Definition 2.4] as an element

h-γ(s) ∈ ω0
X̃
{X̃ × S0; h-Null(s)π∗ν

X̃
},

which is the (asymmetric) homotopy coincidence index of p and f . Again we have a
duality isomorphism

λX̃ : ω0
X̃
{X̃× S0; h-Null(s)π∗ν

X̃
}
∼=
−→ ω̃0(Null(s)π∗ν−π∗τX̃).

Now the tangent bundle τX̃ of the total space X̃ of the bundle is identified,
up to homotopy, with p∗τX ⊕ τ(p). This allows us to substitute −π∗τ(p) for
π∗ν− π∗τX̃.

Proposition 2.4. Suppose p : X̃ → X is a smooth fibre bundle, as described in the text.
Then h-L( f /p) is the image under the isomorphism

λX̃ : ω0
X̃
{X̃ × S0; h-Null(s)π∗ν

X̃
}
∼=
−→ ω̃0(h-Fix( f /p)−π∗τ(p))

of the homotopy coincidence index h-γ(s) of p and f .

Proof. This is again established by a careful comparison of the two definitions.
See [7, Proposition 5.4].

When f is smooth and transverse to p, that is, when p× f : X̃ → X × X is
transverse to the diagonal, we can use Koschorke’s definition of the coincidence
index from [14, Section 4] to give a geometric description of h-L( f /p). The set
Fix( f /p) is then an m-dimensional closed submanifold, N say, of X̃, with tangent
bundle τN identified with the restriction of τ(p).



Nielsen-Reidemeister indices for multivalued maps 491

Corollary 2.5. Suppose that p : X̃ → X is a smooth fibre bundle and that f : X̃ → X is
smooth and transverse to p. Then the inclusion of N = Fix( f /p) in h-Fix( f /p)

ω̃0(N−τN)→ ω̃0(h-Fix( f /p)−π∗τ(p))

maps the fundamental class [N] of N to h-L( f /p).

Proof. The interpretation of λX̃(γ(s)) as the class represented by N is explained
in [7, Proposition 4.6].

3 Commutativity

We begin by introducing an informal category of fractions in which the objects
are compact ENRs and a morphism a/p from X to Y is a pair (a, p) consisting of
a fibrewise manifold p : X̃ → X, with fibres closed manifolds of some dimension,
m say, and a map a : X̃ → Y. (To be formal, a morphism should be specified by
such a pair up to equivalence, so that the morphisms form a set.) Associated with
the fraction a/p is the multivalued map A : X ⊸ Y given by

A(x) = {a(x̃) | x̃ ∈ X̃, p(x̃) = x} (that is, a(p−1(x))).

Composition is defined as follows. Suppose that Z is another compact ENR
and that b/q is a morphism from Y to Z prescribed by a fibrewise manifold
q : Ỹ → Y with fibres of dimension n and a map b : Ỹ → Z. We form the
pullback

a∗Ỹ = {(x̃, ỹ) ∈ X̃ × Ỹ | a(x̃) = q(ỹ)},

together with maps r : a∗Ỹ → X, specifying a fibrewise manifold of dimension
m + n, and c : a∗Ỹ → Z given by r(x̃, ỹ) = p(x̃) and c(x̃, ỹ) = b(ỹ). The composi-
tion b/q ◦ a/p is defined to be c/r, as illustrated in the following diagram.

a∗Ỹ

��
&&▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

X̃

p
��

a

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

Ỹ

q
��

b

%%▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

X Y Z

a∗Ỹ

r
��

c

%%❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

X Z

If B : Y ⊸ Z and C : X ⊸ Z are the multivalued maps associated with b/q and
c/r, then C = B ◦ A, that is,

C(x) =
⋃

y∈A(x) B(y) .

The identity morphism on X is the fraction 1/1 given by the fibrewise manifold
1 : X̃ = X → X of dimension 0 and the identity map 1 : X̃ = X → X.

The index was defined in Section 2 for endomorphisms in this category. Turn-
ing to a discussion of commutativity, we now suppose that Z = X so that we can
form the compositions b/q ◦ a/p, which is an endomorphism of X, and a/p ◦ b/q,
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an endomorphism of Y. There is also an associated endomorphism of X×Y given
by the fibrewise manifold p × q : X̃ × Ỹ → X × Y of dimension m + n and the
map τ ◦ (a× b) : X̃× Ỹ → X×Y, (x̃, ỹ) 7→ (b(ỹ), a(x̃)), where τ : Y×X → X×Y
interchanges the two factors.

Proposition 3.1. There are homotopy equivalences

h-Fix(b/q ◦ a/p)
∼
−→ h-Fix(τ ◦ (a× b)/(p × q))

∼
←− h-Fix(a/p ◦ b/q)

under which the fixed-point indices h-L(b/q ◦ a/p), h-L(τ ◦ (a × b)/(p × q)) and
h-L(a/p ◦ b/q) coincide.

Proof. The homotopy fixed-point set

h-Fix(b/q ◦ a/p) = {(x̃, ỹ, α) | x̃ ∈ X̃, ỹ ∈ Ỹ, α : [0, 1]→ X,

α(0) = p(x̃), α(1) = b(ỹ), a(x̃) = q(ỹ)}

is included in

h-Fix(τ ◦ (a× b)/(p × q)) = {(x̃, ỹ, α, β) | x̃ ∈ X̃, ỹ ∈ Ỹ, α : [0, 1]→ X,

β : [0, 1]→ Y, α(0) = p(x̃), α(1) = b(ỹ), β(0) = q(ỹ), β(1) = a(x̃)}

as the subspace of quadruples (x̃, ỹ, α, β) with β a constant path. Both contain the
fixed subspace (abbreviated for the purposes of this proof to ‘Fix’)

Fix = Fix(b/q ◦ a/p) = Fix(τ ◦ (a× b)/(p × q)) =

{(x̃, ỹ) | a(x̃) = q(ỹ), b(ỹ) = p(x̃)} ⊆ X̃× Ỹ

with both α and β constant.
Since q : Ỹ → Y is a fibration, we can choose a lifting function

ℓ : {(ỹ, β) | ỹ ∈ Ỹ, β : [0, 1]→ Y, β(0) = q(ỹ)} → map([0, 1], Ỹ)

such that β̃ = ℓ(ỹ, β) is a path lifting β with β̃(0) = ỹ.
Following [8, Proposition 3.10], we construct a deformation retraction of

h-Fix(τ ◦ (a× b)/(p × q)) to the subspace h-Fix(b/q ◦ a/p):

(x̃, ỹ, α, β) 7→ (x̃, β̃(t), αt, βt), (0 6 t 6 1),

where β̃ = ℓ(ỹ, β) and

αt(u) =

{

α((1 + t)u) if 0 6 u 6 (1 + t)−1,

b(β̃((1 + t)u− 1)) if (1 + t)−1 6 u 6 1,

and βt(u) = β(t + (1− t)u) for 0 6 u 6 1.
This establishes that inclusion

h-Fix(b/q ◦ a/p) →֒ h-Fix(τ ◦ (a× b)/(p × q))
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is a homotopy equivalence. Notice that the pullback of the fibrewise tangent
bundle τ(p× q) restricts to the pullback of the fibrewise tangent bundle of a∗Ỹ →
X: the fibre at (x̃, ỹ, α, β) is equal to τx̃(p)⊕ τỹ(q).

To prove commutativity, we shall essentially follow Dold’s argument in the
classical case [10] and reduce to working on subspaces of Euclidean spaces.

It suffices to show that, for any ‘small’ open neighbourhood U of the fixed-
point set Fix in X̃ × Ỹ, the inclusion

ω̃0((U ∩ a∗Ỹ)−(τ(p)⊕τ(q)))→ ω̃0(U
−(τ(p)⊕τ(q)))

maps t-L(b/q ◦ a/p |U ∩ a∗Ỹ) to t-L(τ ◦ (a× b)/(p × q) |U).
As in the construction of the index, we first choose embeddings X →֒ X′ →֒

EX and Y →֒ Y′ →֒ EY of X and Y as retracts r : X′ → X and s : Y′ → Y of open
subspaces of Euclidean spaces EX and EY, and form the pullbacks X̃′ = r∗X̃,
Ỹ′ = s∗Ỹ. Then a and b are extended, using the retractions, to maps a′ : X̃′ → Y
and b′ : Ỹ′ → X. Thus

(a′)∗Ỹ = {(x̃, ỹ) ∈ X̃′ × Ỹ | a′(x̃) = q(ỹ)} ⊆ X̃′ × Ỹ .

Now choose an open neighbourhood V of

Fix = {(x̃, ỹ) ∈ X̃′ × Ỹ | a′(x̃) = q(ỹ), b(ỹ) = p′(x̃)}

in (a′)∗Ỹ such that V is compact and contained in U′ = (r × s)−1(U).
Writing Dδ(EY) for a closed disc of radius δ > 0 centred at 0 in EY, we can

use the compactness of Y to choose δ such that y + w ∈ Y′ for all (y, w) ∈
Y× Dδ(EY) = Z, say. Then we have a map

(y, w) 7→ y + w : Z = Y× Dδ(EY)→ Y′

and can pull back q′ : Ỹ′ → Y′ to get a fibrewise manifold Z̃ → Z over Z. Since
Dδ(EY) is contractible, there is a fibrewise equivalence

θ : Ỹ× Dδ(EY)→ Z̃

of fibrewise manifolds over Y× Dδ(EY) = Z with θ(ỹ, 0) = (ỹ, 0) for ỹ ∈ Ỹ.
The equivalence θ provides a family of diffeomorphisms

θy,w : Ỹy → Ỹ′y+w, (y, w) ∈ Z,

such that q′(θy,w(ỹ)) = y + w and θy,0(ỹ) = ỹ. It is convenient to be slightly
imprecise and abbreviate θy,w(ỹ) to θ(ỹ, w). This allows us to write down a crucial
map

ψ : V × Dδ(EY)→ X̃′ × Ỹ′, ((x̃, ỹ), w) 7→ (x̃, θ(ỹ, w)).

Notice that, for (x̃, ỹ) ∈ Fix, ψ maps ((x̃, ỹ), 0) to (x̃, ỹ). The image of the open
neighbourhood V × Bδ(EY) of Fix× {0} is an open neighbourhood W of Fix in
X̃′ × Ỹ′ with closure W equal ψ(V × Dδ(EY)).

We shall use the neighbourhood V for the description of the topological
Lefschetz index of b/q ◦ a/p and the neighbourhood W for τ ◦ (a× b)/(p × q).



494 M. C. Crabb

The index t-L(b/q ◦ a/p) |U ∩ a∗Ỹ is determined by the map

g : V → EX , (x̃, ỹ) 7→ p′(x̃)− b(ỹ),

and the index t-L(τ ◦ (a× b) |U) by the map

h0 : W → EX × EY

taking ψ((x̃, ỹ), w), for ((x̃, ỹ), w) ∈ V × Dδ(EY), to

(p′(x̃)− b′(θ(ỹ, w)), q′(θ(ỹ, w))− a′(x̃)) = (p′(x̃)− b′(θ(ỹ, w)), w).

In order to relate h0 to g, we deform this map by a homotopy ht : W →
EX × EY:

ψ((x̃, ỹ), w) 7→ (p′(x̃)− (1− t)b′(θ(ỹ, w))− tb(ỹ), w), 0 6 t 6 1,

which is nowhere zero on the boundary W−W. (For, if w = 0, we have θ(ỹ, w) =
ỹ, so that p′(x̃)− (1− t)b′(θ(ỹ, w))− tb(ỹ) = p′(x̃)− b(ỹ), which is non-zero on
V − V.) By compactness, there is an ǫ > 0 such that ‖ht((x̃, ỹ), w)‖ > ǫ for all
points ((x̃, ỹ), w) in W −W.

We can thus use the map h1, taking ψ((x̃, ỹ), w) to (g(x̃, ỹ), w), rather than h0,
to realize the index.

To complete the construction we need to choose fibrewise embeddings
X̃ →֒ X × Fp : x̃ 7→ (x̃, jp(x̃)), Ỹ →֒ Y × Fq : ỹ 7→ (ỹ, jq(ỹ)), and tubular neigh-
bourhoods D(νp) ⊆ X × Fp, D(νq) ⊆ Y × Fq, which we pull back to tubular

neighbourhoods of X̃′ and Ỹ′.
The map h1 and the embedding of the disc bundle D(νp ⊕ νq|W) into

(EX ⊕ EY)× (Fp ⊕ Fq) determine the index of τ ◦ (a× b)/(p × q).

Using θ we can pull back the embedding of Ỹ′ into Y′ × Fq to an embed-

ding of (a′)∗Ỹ × Dδ(EY) into X̃′ × Dδ(EY) × Fq over X̃′ × Dδ(EY). Combining

this with the embedding of X̃′ into X′ × Fp, we obtain a fibrewise embedding of

(a′)∗Ỹ×Dδ(EY) into X′ ×Dδ(EY)× (Fp ⊕ Fq) over X′ ×Dδ(EY). Then we can in-

clude X′ into EX and D(EY) into EY to embed (a′)∗Ỹ × Dδ(EY) into (EX ⊕ EY)×
(Fp ⊕ Fq). A tubular neighbourhood of this embedding and the map g on V then

determine the index of (b/q) ◦ (a/p), or, to be precise, g× 1 on V × Dδ(EY) de-
termines the index of ((b/q) ◦ (a/p)) × (z/1), where z/1 is the fraction given by
the identity and zero maps 1, z : Dδ(EY)→ Dδ(EY).

The maps h1 on W and g× 1 on V × Dδ(EY) correspond via ψ. However, the
embeddings into (EX⊕ EY)× (Fp ⊕ Fq) do not correspond: they map ((x̃, ỹ), w) ∈

V×Dδ(EY) to (p′(x̃), a′(x̃)+w, jp(x̃), jp(ỹ)) and (p′(x̃), w, jp(x̃), jp(ỹ)), respec-
tively. But the two are connected, as in the classical proof [10], by a second homo-
topy:

((x̃, ỹ), w) 7→ (p′(x̃), (1− t)a′(x̃) + w, jp(x̃), jq(ỹ)), 0 6 t 6 1.

We conclude that the topological index of τ ◦ (a× b)/(p × q) on W coincides
with the topological index of (b/q ◦ a/p) × (z/1) on V × Dδ(EY). But taking the
product with the index of z/1 amounts to suspending by the identity map on E+

Y .
So this completes the proof of the commutativity property of the index.

Another, rather more elementary, proof for the special case of finite covers can
be found in [8].
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Let us now revert to the setting of Section 2 in which p : X̃ → X is a fibrewise
manifold and f : X̃ → X is a map. We shall apply Proposition 3.1 to the case in
which Y is equal to X̃, q : Ỹ = X̃ → Y = X̃ and a : X̃ → Y = X̃ are both the
identity on X̃, and b : Ỹ = X̃ → X is the given map f . Then b/q ◦ a/p = f /1 ◦ 1/p
is just f /p. The composition a/p ◦ b/q = 1/p ◦ f /1 is given by the fibrewise
manifold

f ∗X̃ = {(x̃, ỹ) ∈ X̃ × X̃ | f (x̃) = p(ỹ)} → X̃, (x̃, ỹ) 7→ x̃

and map (x̃, ỹ) 7→ ỹ : f ∗X̃ → X̃, and it determines the multivalued map
F̃ : X̃ ⊸ X̃ given by F̃(x̃) = {ỹ ∈ X̃ | f (x̃) = p(ỹ)}.

Now suppose that p : X̃ → X is a finite n-fold cover. The equality
h-L(1/p ◦ f /1) = h-L( f /1 ◦ 1/p) = h-L( f /p), together with Corollary 2.3 ap-
plied to the fraction 1/p ◦ f /1, demonstrates that Schirmer’s fixed-point index of
the n-valued map F̃ constructed by Brown coincides with the fixed-point index
of f /p. Equality of the Nielsen numbers is an immediate consequence.

Proposition 3.2. Suppose that p : X̃ → X is an n-fold covering space and that
f : X̃ → X is a map. Then the Nielsen number as defined by Schirmer, N(F̃), of the
n-valued map F̃ : X̃ ⊸ X̃, F̃(x̃) = p−1( f (x̃)), is equal to the Nielsen number, N( f /p),
of f /p.

4 Projective spaces

We shall apply Proposition 2.2 to compute the fixed-point indices in some exam-
ples involving projective spaces.

First of all, we take X to be the quaternionic projective space HPn = HP(Hn+1)
of 1-dimensional (left) H-subspaces of Hn+1 (n > 1), X̃ to be the sphere S4n+3 =
S(Hn+1) and p : X̃ → X to be the principal Sp(1)-bundle S(Hn+1)→ HP(Hn+1).
The fibrewise tangent bundle τ(p) is trivial with fibre the Lie algebra Ri⊕Rj⊕
Rk of Sp(1) ⊆ H. In coordinates, p(z0, . . . , zn) = [z0, . . . , zn], where zi ∈ H,

∑ |zi|
2 = 1.

We shall look at the case in which f admits a lift to a map f̃ : X̃ → X̃.

Proposition 4.1. Let p : X̃ → X be the principal Sp(1)-bundle S4n+3 → HPn, where
n > 1, and suppose that f : X̃ → X is equal to p ◦ f̃ , where f̃ : S4n+3 → S4n+3 is a map
of degree d. Then the topological Lefschetz index t-L( f /p) in

ω3(S
4n+3) = ω3(∗) = (Z/24Z)ν,

where ν is the standard generator represented by the framed manifold Sp(1) with the left
invariant framing, is equal to (1 + nd)ν.

Proof. Let r, s > 1 be positive integers such that r − s = d. We shall make the
computation using the specific map f given by

f (z0, . . . , zn) = [zr
0z0

s, a1z1, . . . , anzn],
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where ai ∈ R and 1 < a1 < a2 < . . . < an. It is elementary to check that the fixed-
point set is the union of n + 1 fibres Ni, i = 0, . . . , n, over the points xi = [ei],
where e0, . . . , en is the standard basis of Hn+1.

The fixed submanifold N0 is non-degenerate. To calculate the local index
L0 ∈ ω0(N0) we can, therefore, linearize and reduce to consideration of the map,

f ♯0 say,

S(H)×H
n → H

n : (z0, (v1, . . . , vn)) 7→ (a1z1−d
0 v1, . . . , anz1−d

0 vn).

The index is determined by 1− f ♯0 :

S(H)× (Hn − {0})→ H
n − {0}, (z0, (vi)) 7→ ((1− aiz

1−d
0 )vi),

which is homotopic to the map l0 taking (z0, (vi)) to (z1−d
0 vi). Thus, L0 is the

image under the J-homomorphism

J : KO−1(N0)→ ω0(N0)
×

(to the group of units in the stable cohomotopy ring ω0(N0)) of the class deter-
mined by l0. The relevant groups are KO−1(S3) = (Z/2Z) ⊕Z and ω0(S3) =
Z ⊕ (Z/24Z)ν. The class [l0] is equal to (0, n(d − 1)) ∈ KO−1(S3) (with an ap-
propriate choice of signs for the generators) and maps under J to 1 + n(d − 1)ν.
(Care is needed to distinguish the generators ν and −ν.)

A similar, but easier, computation for Li, i > 0, shows that Li = 1 ∈ ω0(Ni).
The composition of the duality isomorphism determined by the left invariant

framing of S3 = Sp(1) and the homomorphism induced by projection to a point
∗:

Z⊕ (Z/24Z)ν = ω0(S3)
∼=
−→ ω3(S

3)→ ω3(∗) = (Z/24Z)ν

maps 1 to ν and ν to ν. Hence the sum of the n + 1 local indices Li maps to
(1 + n(d− 1))ν + nν = (1 + nd)ν ∈ ω3(∗). By Proposition 2.2, this is equal to the
global index in ω3(S

4n+3) = ω3(∗).
(For the degree zero case d = 0, we can also take f to be the constant map at

[e0]. The fixed-point set is a single fibre N0 at x0 and L0 = 1. The single term L0

gives the global index as ν ∈ ω3(∗). This confirms the sign of the generator ν in
the general calculation above.)

In this example, the homotopy fixed-point index contains no more informa-
tion than the topological index. For a map f with S(He0) ⊆ Fix( f /p), the projec-
tion π : h-Fix( f /p) → S(Hn+1) is locally fibre homotopy trivial with fibre Φ =
Ω(HP(Hn+1), x0) and is actually a product S(He0)× Φ over S(He0). The map
Φ → Sp(1) coming from the fibration induces an isomorphism
πi(Φ)→ πi(Sp(1)) for i < 4n+ 2. It follows that ω3(h-Fix( f /p)) = ω3(Sp(1)) =
(Z/24Z) ⊕Z and, because the inclusion S(He0) →֒ S(Hn+1) is null homotopic,
that h-L( f /p) lies in the Z/24Z summand.

Remark 4.2. If d 6= 1, the map f̃ : S(Hn+1) → S(Hn+1) has a fixed point and
thus h-Fix( f /p) is non-empty. If d = 1, but n + 1 is not divisible by 24, the
computation of the index shows that h-Fix( f /p) is non-empty, that is, that there
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exists a point v ∈ S(Hn+1) such that f̃ (v) ∈ Hv. (Note, however, that there may
be a map f : X̃ → X with Fix( f /p) = ∅ that does not admit a lift f̃ . For example,
if n = 1, so that HP4 = S4, the antipodal involution on S4 provides a map f with
no fixed points.) It is, therefore, natural to ask whether, when n + 1 is a multiple
of 24, there is some map f̃ of degree 1 such that f̃ (v) /∈ Hv for all v ∈ S(Hn+1).
Certainly there is no example in which f̃ is of the form f̃ (v) = A(v)/‖A(v)‖
for some non-singular R-linear endomorphism of Hn+1. (For, if Av /∈ Hv for

all non-zero v, we have a family of maps At : S(H) → GL(R4(n+1)), At(z)v =
cos(πt/2)zv + sin(πt/2)Av, 0 6 t 6 1, with A1 constant, but A0 representing a

non-trivial element in π3(GL(R4(n+1))) ∼= Z. See [17].)

There is a similar result for complex projective spaces.

Proposition 4.3. Let p : X̃ → X be the principal U(1)-bundle S2n+1 → CPn, where
n > 1, and suppose that f : X̃ → X is equal to p ◦ f̃ , where f̃ : S2n+1 → S2n+1 is a map
of degree d. Then the topological Lefschetz index t-L( f /p) in

ω1(S
2n+1) = ω1(∗) = (Z/2Z)η,

where η is the Hopf element represented by U(1) with the left invariant framing, is equal
to (1 + nd)η.

In view of Proposition 2.4, these results on quaternionic and complex projec-
tive spaces provide examples of coincidence indices in codimension 3 and 1. The
corresponding problem for real projective spaces is much simpler.

Proposition 4.4. Let p : X̃ → X be the principal O(1)-bundle Sn → RPn, where
n > 1, and suppose that f : X̃ → X is equal to p ◦ f̃ , where f̃ : Sn → Sn is a map of
degree d. Then h-Fix( f /p) is the disjoint union of two components:

h-Fix( f /p) = h-Fix( f̃ ) ⊔ h-Fix(− f̃ )

and the homotopy Lefschetz index h-L( f /p) in

ω0(h-Fix( f /p)) = ω0(h-Fix( f̃ ))⊕ ω0(h-Fix(− f̃ )) = Z⊕Z

is equal to (1 + (−1)nd, 1− d).
The Nielsen number is thus: N( f /p) = 0 if d = 1 and n is odd; N( f /p) = 1 if

either d = 1 and n is even, or d = −1 and n is odd; and otherwise N( f /p) = 2.

Proof. As in the other cases, we could write down an explicit map f ♯ with
Fix( f /p) = Fix( f̃ ) ⊔ Fix(− f̃ ) finite and sum the local indices. But the sums
on the two components must give the classical Lefschetz numbers of f̃ and − f̃ ,
which can be computed as traces in rational cohomology: L( f̃ ) = 1 + (−1)nd,
L(− f̃ ) = 1 + (−1)n((−1)n+1d).

Remark 4.5. In this section we were able to compute a non-trivial stable homo-
topy index in dimension m = 3, but in general the stable homotopy indices are
likely to be difficult to calculate if the dimension m is greater than zero. More
tractable indices can be obtained by taking the Hurewicz image of the stable ho-
motopy index in ordinary homology. In particular, using the Thom isomorphism
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for τ(p), we get indices in mod 2 homology h-LH( f /p) ∈ Hm(h-Fix( f /p); F2)
and t-LH( f /p) ∈ Hm(X̃; F2). There is even a trace formula for t-LH( f /p) in
Hm(X̃; F2):

for a ∈ Hm(X̃; F2), 〈a, t-LH( f /p)〉 = ∑
i

(−1)itr Ai ∈ F2,

where Ai is the composition

Hi(X̃; F2)
a·
−→ Hi+m(X̃; F2)

p!
−→ Hi(X; F2)

f ∗

−→ Hi(X̃; F2)

involving the Umkehr map p! for the fibrewise manifold. (Compare [15, Section
2].)
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