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Abstract

We extend the Gromov geometric definition of CAT(0) spaces to the case
where the comparison triangles are not in the Euclidean plane but belong to
a general Banach space. In particular, we study the case where the Banach
space is ℓp, for p > 2.

1 introduction

A metric space X is said to be a CAT(0) space (the term is due to M. Gromov-see,
e.g., [2], page 159) if it is geodesically connected, and if every geodesic
triangle in X is at least as ”thin” as its comparison triangle in the Euclidean plane.
It is well known that any complete, simply connected Riemannian manifold
having nonpositive sectional curvature is a CAT(0) space. Other examples in-
clude the classical hyperbolic spaces, Euclidean buildings (see [3]), the complex
Hilbert ball with a hyperbolic metric (see [10]), and many others. (On the other
hand, if a Banach space is a CAT(κ) space for some κ ∈ R, then it is necessarily a
Hilbert space and CAT(0).) For a thorough discussion of these spaces and of the
fundamental role they play in geometry, see Bridson and Haefliger [2]. Burago et
al. [5] present a somewhat more elementary treatment, and Gromov [12] a deeper
study.
The recent uptick in interest in CAT(0) spaces is due to Kirk’s fixed point results
[14] discovered in CAT(0) spaces. Since then many people working in metric
fixed point theory discovered some interesting results following Kirk’s work. For
us, CAT(0) spaces are simply a nonlinear version of the Hilbert Banach spaces.
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In fact, it is easy to check that most of the metric fixed results obtained in CAT(0)
are almost identical to the ones discovered in Hilbert spaces. This fact motivated
our curiosity to investigate if it is possible to build CAT(0) spaces which can be
seen as a nonlinear version of spaces like ℓp for example. In this work, we extend
Gromov’s definition and assume that the comparison triangle is in a more general
Banach space other than the Euclidean plane. To the best of our knowledge, it is
the first time such generalization has been offered. We obtained some interesting
results when the Banach space is the classical sequence space ℓp, with p > 2.

2 Basic Definitions and Properties

Let (X, d) be a metric space. A continuous mapping from the interval [0, 1] to
X is called a path. A path γ : [0, 1] → X is called a geodesic if d(γ(s), γ(t)) =
|s − t|d(γ(0), γ(1)), for every s, t ∈ [0, 1]. We will say that (X, d) is a geodesic
space if every two points x, y ∈ X are connected by a geodesic, i.e., there exists
a geodesic γ : [0, 1] → X such that γ(0) = x and γ(1) = y. In this case, we
denote such geodesic by [x, y]. Note that in general such geodesic is not uniquely
determined by its endpoints. For a point z ∈ [x, y], we will use the notation
z = (1 − t)x ⊕ ty, where t = d(x, z)/d(x, y) assuming x 6= y. The metric space
(X, d) is called uniquely geodesic if every two points of X are connected by a unique
geodesic. In this case [x, y] will denote the unique geodesic connecting x and y in
X.
The most fundamental examples of geodesic spaces are normed vector spaces,
complete Riemannian manifolds, and polyhedral complexes of piecewise
constant curvature. In the last two cases the existence of geodesic paths is not
so obvious; determining when such spaces are uniquely geodesic is also a non-
trivial matter. The case of normed vector spaces is much easier [2].
For a real number κ ∈ R, let M2

κ denote the unique simply connected surface
(real 2-dimensional Riemannian manifold) with constant curvature κ. Denote Dκ

the diameter of Mκ, which is +∞ if κ ≤ 0 and π/
√

κ for κ > 0. Recall that
M2

0 = R
2. A geodesic triangle ∆ (x1, x2, x3) in a geodesic metric space (X, d) con-

sists of three points x1, x2, x3 in X (the vertices of ∆) and a geodesic segment be-
tween each pair of vertices (the edges of ∆). A comparison triangle for a geodesic
triangle ∆ (x1, x2, x3) in X is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in M2

κ such
that d

(

x̄i, x̄j

)

= d
(

xi, xj

)

for i, j ∈ {1, 2, 3}. A point x ∈ [x1, x2] is called a com-
parison point for x ∈ [x1, x2] if d(x1, x) = d(x1, x).

Definition 2.1. [2] Let X be a metric space and let κ be a real number. Let ∆ be
a geodesic triangle in X and ∆ ⊂ M2

κ be a comparison triangle for ∆. Then, ∆ is
said to satisfy the CAT(κ) inequality if for all x, y ∈ ∆ and all comparison points
x, y ∈ ∆,

d(x, y) ≤ d(x, y).

If κ ≤ 0, then X is called a CAT(κ) space if X is a geodesic space all of whose
geodesic triangles satisfy the CAT(κ) inequality. If κ > 0, then X is called a
CAT(κ) space if all geodesic triangles in X of perimeter less than twice the diam-
eter Dκ of M2

κ satisfy the CAT(κ) inequality.
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Complete CAT (0) spaces are often called Hadamard spaces (see [14]). Let (X, d) be

a CAT (0) space. Let x, y1, y2 be in X, and
y1 ⊕ y2

2
is the midpoint of the segment

[y1, y2], then the CAT (0) inequality implies:

d2

(

x,
y1 ⊕ y2

2

)

≤ 1

2
d2 (x, y1) +

1

2
d2 (x, y2)−

1

4
d2 (y1, y2) .

This inequality is the (CN) inequality of Bruhat and Tits [4].

Strictly convex Banach spaces are obviously uniquely geodesic. As for a normed
vector space to be a CAT(κ) space, for some κ ∈ R, we have the following result:

Theorem 2.1. ( [2], Proposition 1.14.) If a normed real vector space (X, ‖.‖) is CAT(κ),
for some κ ∈ R, then it is a pre-Hilbert space.

3 Generalized CAT(0) spaces

In the definition of a CAT(0) metric space, the comparison triangle is a subset
of the Euclidean vector space R

2. One may wonder what structure and proper-
ties one may get if we allow the comparison triangles to belong to some vector
normed space E.

Definition 3.1. Let (X, d) be a geodesic metric space and (E, ‖.‖) be a normed
vector space. X is said to be a generalized CAT(0) space if for any geodesic
triangle ∆ in X, there exists a comparison triangle ∆ in E such that the comparison
axiom is satisfied, i.e., for all x, y ∈ ∆ and all comparison points x, y ∈ ∆, we have

d(x, y) ≤ ‖x − y‖.

It is obvious to see that the normed vector space (E, ‖.‖) is itself a generalized
CAT(0) space according to Definition 3.1. But according to Theorem 2.1 E is a
CAT(κ), for some κ ∈ R, if and only if (E, ‖.‖) is a pre-Hilbert space. In other
words, our definition gives a new class of CAT(0) metric spaces provided (E, ‖.‖)
is not a pre-Hilbert vector space. As an example, we take E = ℓp, for p > 2.

Definition 3.2. Let (X, d) be a geodesic metric space. X is said to be a CATp(0)
space, for p > 2, if for any geodesic triangle ∆ in X, there exists a comparison
triangle ∆ in ℓp such that the comparison axiom is satisfied, i.e., for all x, y ∈ ∆

and all comparison points x, y ∈ ∆, we have

d(x, y) ≤ ‖x − y‖.

It is obvious that ℓp, for p > 2, is a CATp(0) space. We suspect that a nonlinear
example will be given by the open unit ball of ℓp endowed with the Kobayashi
distance [15]. Next we discuss some of the properties of CATp(0) metric spaces.

Theorem 3.1. Let (X, d) be a CATp(0) metric space, with p ≥ 2. Then for any x, y1, y2

in X, we have

dp

(

x,
y1 ⊕ y2

2

)

≤ 1

2
dp(x, y1) +

1

2
dp(x, y2)−

1

2p dp(y1, y2), (3.1)

which we will call the (CNp) inequality.
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Proof. Let x, y1, y2 be in X and ∆ be the associated geodesic triangle in X. Since
X is a CATp(0) space, there exists a comparison geodesic triangle ∆ in ℓp, with
p ≥ 2. The associated comparison points in ℓp will be denoted by x, y1 and y2.
The comparison axiom implies:

d

(

x,
y1 ⊕ y2

2

)

≤
∥

∥

∥

∥

x − y1 + y2

2

∥

∥

∥

∥

,

which implies

d

(

x,
y1 ⊕ y2

2

)p

≤
∥

∥

∥

∥

x − y1 + y2

2

∥

∥

∥

∥

p

.

Recall what is known as the Clarkson’s inequality [8] in ℓp:

‖x + y‖p + ‖x − y‖p ≤ 2p−1
(

‖x‖p + ‖y‖p
)

, (3.2)

for any x, y in lp, for p ≥ 2. Applying this inequality for a =
x − y1

2
and

b =
x − y2

2
, yields:

∥

∥

∥

∥

x − y1

2
+

x − y2

2

∥

∥

∥

∥

p

+

∥

∥

∥

∥

x − y1

2
− x − y2

2

∥

∥

∥

∥

p

≤ 2p−1

(
∥

∥

∥

∥

x − y1

2

∥

∥

∥

∥

p

+

∥

∥

∥

∥

x − y2

2

∥

∥

∥

∥

p)

.

Or,
∥

∥

∥

∥

x − y1 + y2

2

∥

∥

∥

∥

p

≤ 1

2
‖x − y1‖p +

1

2
‖x − y2‖p − 1

2p ‖y1 − y2‖p.

Hence,

dp

(

x,
y1 ⊕ y2

2

)

≤ 1

2
‖x − y1‖p +

1

2
‖x − y2‖p − 1

2p ‖y1 − y2‖p.

Since ‖x̄ − ȳj‖ = d
(

x, yj

)

, for j ∈ {1, 2}, we get

dp

(

x,
y1 ⊕ y2

2

)

≤ 1

2
dp(x, y1) +

1

2
dp(x, y2)−

1

2p dp(y1, y2).

Note that the (CNp) inequality coincides with the classical (CN) inequality if
p = 2. One of the implications of the (CN) inequality is the uniform convexity of
the distance of a CAT(0) space. Next we discuss the case of uniform convexity of
the CATp(0) metric spaces.

Definition 3.3. Let (X, d) be a uniquely geodesic metric space. We say that X is
uniformly convex (in short, UC) if and only if

δ(r, ε) = inf
{

1 − 1

r
d
(1

2
x ⊕ 1

2
y, a
)

; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε
}

> 0,

for any a ∈ X, for every r > 0, and for each ε > 0.
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The definition of uniform convexity finds its origin in Banach spaces [8]. To the
best of our knowledge, the first attempt to generalize this concept to metric spaces
was done in [11], also see [10, 16, 20]. A direct consequence of the (CNp) inequal-
ity is the following result:

Theorem 3.2. Any CATp(0) metric space, with p ≥ 2, is uniformly convex. Moreover
we have

δ(r, ε) ≥ 1 −
(

1 − εp

2p

)1/p

,

for every r > 0 and for each ε > 0.

The Banach spaces ℓp, p > 1, are not only uniformly convex but they have a
geometric property known as p-uniform convexity (see [1] p. 310). Theorem 3.2
implies that CATp(0) metric spaces enjoy the p-uniform convexity as well.
Next we discuss the behavior of type functions in CATp(0) metric spaces. It is
worth mentioning that these functions are very useful when one needs to prove
the existence of fixed points of mappings. A subset C of a CATp(0) metric space
(X, d) is said to be convex whenever [x, y] ⊂ C, for any x, y ∈ C. Recall that
τ : X → R+ is called a type if there exists a bounded sequence {xn} in X such
that

τ(x) = lim sup
n→∞

d(x, xn).

Theorem 3.3. Let (X, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be any
nonempty, closed, convex and bounded subset of X. Let τ be a type defined on C. Then
any minimizing sequence of τ is convergent. Its limit z is the unique minimum of τ and
satisfies

τp(z) +
1

2p−1
dp(z, x) ≤ τp(x), (3.3)

for any x ∈ C.

Proof. Let {xn} be a sequence in C such that τ(x) = lim sup
n→∞

d(xn, x). Denote

τ0 = inf{τ(x); x ∈ C}. Let {yk} be a minimizing sequence of τ. Since C is
bounded, there exists R > 0 such that d(x, y) ≤ R for any x, y ∈ C. Since (X, d) is
a CATp(0) metric space, Theorem 3.1 implies

dp

(

xn,
ym ⊕ yk

2

)

≤ 1

2
dp(xn, ym) +

1

2
dp(xn, yk)−

1

2p dp(ym, yk),

for any n, m, k ∈ N. If we let n goes to infinity, we get

τp
(1

2
ym ⊕ 1

2
yk

)

≤ 1

2
τp(yk) +

1

2
τp(ym)−

1

2p dp(ym, yk),

which implies

τ
p
0 ≤ 1

2
τp(yk) +

1

2
τp(ym)−

1

2p dp(ym, yk),

or
1

2p dp(ym, yk) ≤
1

2
τp(yk) +

1

2
τp(ym)− τ

p
0 ,
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for any k, m ≥ 1. Since {yn} is a minimizing sequence of τ, we conclude that

lim
k,m→∞

d(ym, yk) = 0,

i.e., the sequence {yn} is a Cauchy sequence. Since X is complete, {yn} converges
to some point z ∈ C. Since τ is continuous, we get τ0 = τ(z). Next we show the
inequality (3.3). Let x ∈ C. The (CNp) inequality implies

dp
(1

2
x ⊕ 1

2
z, xn

)

≤ 1

2
dp(x, xn) +

1

2
dp(z, xn)−

1

2p dp(x, z),

for any n. Hence

lim sup
n→∞

dp
(1

2
x ⊕ 1

2
z, xn

)

≤ 1

2
lim sup

n→∞

dp(x, xn) +
1

2
lim sup

n→∞

dp(z, xn)−
1

2p dp(x, z).

The definition of z implies that

lim sup
n→∞

dp(z, xn) ≤ lim sup
n→∞

dp
(1

2
x ⊕ 1

2
z, xn

)

.

Hence
1

2
lim sup

n→∞

dp(z, xn) ≤
1

2
lim sup

n→∞

dp(x, xn)−
1

2p dp(x, z),

which implies the desired inequality.

Note that the inequality (3.3) is similar to the Opial condition for Banach spaces
[19].

4 Application: a fixed point theorem

In this Section we discuss the existence of fixed points of uniformly Lipschitzian
mappings defined on a CATp(0) metric space.

Definition 4.1. Let (X, d) be a metric space. Let C be a nonempty subset of X. A
mapping T : C → C is said to be Lipschitzian if there exists a non-negative number
k such that d(T(x), T(y)) ≤ k d(x, y) for all x and y in C. The smallest such k is
called Lipschitz constant and will be denoted by Lip(T). The mapping T is called
uniformly Lipschitzian if sup

n≥1

Lip(Tn) < ∞. A point x ∈ C is said to be a fixed point

of T whenever T(x) = x. The set of fixed points of T will be denoted by Fix(T).

It is well-known that if a map is uniformly Lipschitzian, then one may find an
equivalent distance for which the mapping is nonexpansive (see [10, pp. 34–38]).
Indeed, let T : C → C be uniformly Lipschitzian. Denote

ρ(x, y) = sup{d(Tn(x), Tn(y)), n = 0, 1, · · · }

for all x, y ∈ C, one can obtain a metric ρ on C which is equivalent to the metric
d and relative to which T is nonexpansive. In this context, the following question
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naturally arises: if a set C has the fixed point property (fpp) for nonexpansive
mappings with respect to the metric d, then does C also have (fpp) for map-
pings which are nonexpansive relative to an equivalent metric? This is known
as the stability of (fpp). The first result in this direction is due to Goebel and Kirk
[9]. Motivated by such questions, we investigate the fixed point property of uni-
formly Lipschitzian mappings in CATP(0), for p ≥ 2.
Let (X, d) be a CATp(0), p ≥ 2. Define the normal structure coefficient N(X) (see
[7]) by :

N(X) = inf
diam(C)

R(C)
,

where the infimum is taken over all C bounded convex nonempty subset of X not
reduced to one point. Recall that diam(C) = sup{d(x, y); x, y ∈ C} is the diame-

ter of C, and R(C) = inf
{

sup
y∈C

d(x, y); x ∈ C
}

is the Chebyshev radius of C. Note

that since X satisfies the property (R) (see [13]), then for any C bounded convex
closed nonempty subset of X, there exists x ∈ C such that R(C) = sup

y∈C

d(x, y). It

is easy to check that N(X) ≤ 2. Using the (CNp) inequality, we can show that

N(X) ≥
(

1 − 1

2p

)−1/p

> 1.

The main result of this section is similar to [21, Theorem 3].

Theorem 4.1. Let (X, d) be complete CATp(0), p ≥ 2, metric space. Let C be a
nonempty, closed, convex and bounded subset of X. Let T : C → C be uniformly
Lipschitzian with

λ(T) = sup
n≥1

Lip(Tn) <

(

1 +
√

1 + 8(N(X)/2)p

2

)1/p

.

Then T has a fixed point.

Proof. Fix x0 ∈ C. Using an induction argument, we will construct a sequence
{xm} in C such that xm+1 is the point z found in Theorem 3.3 associated with the
sequence {Tn(xm)}, for any m ≥ 0. For any m ≥ 0, denote

rm = lim sup
n→∞

d(xm+1, Tn(xm)) and Rm = sup
n≥1

d(xm, Tn(xm)).

Set C∗ = conv({Tn(xm); n ≥ 1}. From the properties of CATp(0) metric spaces,
there exists z ∈ C∗ such that R(C∗) = sup

x∈C∗
d(x, z). In particular, we have

sup
n≥n0

d(z, Tn(xm)) ≤
1

N(X)
diam(C∗) =

1

N(X)
diam({Tn(xm); n ≥ 1}),

for any n0 ≥ 1. Since rm ≤ lim sup
n→∞

d(z, Tn(xm)) and

diam({Tn(xm); n ≥ 1}) ≤ λ(T) sup
n≥1

d(xm, Tn(xm)),
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we get

rm ≤ λ(T)

N(X)
Rm, m = 1, · · · .

This result is similar to Theorem 1 of [17]. Using Theorem 3.3, we get

r
p
m +

1

2p dp(xm+1, Ts(xm+1)) ≤
1

2
r

p
m +

1

2
lim sup

n→∞

dp(Ts(xm+1), Tn(xm)),

which implies that

r
p
m +

1

2p dp(xm+1, Ts(xm+1)) ≤
1

2
r

p
m +

λ(T)p

2
lim sup

n→∞

dp(xm+1, Tn−s(xm)),

or

r
p
m +

1

2p dp(xm+1, Ts(xm+1)) ≤
1

2
r

p
m +

λ(T)p

2
r

p
m.

Hence

1

2p R
p
m+1 =

1

2p sup
s≥1

dp(xm+1, Ts(xm+1)) ≤
λ(T)p − 1

2
r

p
m ≤ (λ(T)p − 1)

2

λ(T)p

N(X)p R
p
m,

which implies that Rm+1 ≤ A Rm, for any m ≥ 1, where

A =

(

(λ(T)p − 1)λ(T)p

2(N(X)/2)p

)1/p

.

Our assumption on λ(T) leads to A < 1. Since Rm ≤ Am−1 R1, for any m ≥ 1, we
conclude that ∑

m≥1

Rm is convergent. Since d(xm, xm+1) ≤ rm + Rm ≤ 2Rm, for any

m ≥ 1, the series ∑ d(xm, xm+1) is also convergent, and therefore {xm} is Cauchy.
Since X is complete, {xm} converges to some point z ∈ C. Since

d(z, T(z)) ≤ d(z, xm) + d(xm, T(xm)) + d(T(xm), T(z)),

we get d(z, T(z)) ≤ (1 + Lip(T))d(z, xm) + Rm, for any m ≥ 1. If we let m → ∞,
then we get d(z, T(z)) = 0, i.e., T(z) = z.

As a corollary, we obtain the following result:

Theorem 4.2. Let (X, d) be complete CATp(0), p ≥ 2, metric space. Let C be a
nonempty, closed, convex and bounded subset of X. Let T : C → C be a nonexpan-
sive mapping. Then T has a fixed point.
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