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Abstract

Hölder’s inequality, since its appearance in 1888, has played a funda-
mental role in Mathematical Analysis and may be considered a milestone in
Mathematics. It may seem strange that, nowadays, it keeps resurfacing and
bringing new insights to the mathematical community. In this survey we
show how a variant of Hölder’s inequality (although well-known in PDEs)
was essentially overlooked in Functional/Complex Analysis and has had a
crucial (and in some sense unexpected) influence in very recent advances in
different fields of Mathematics. Some of these recent advances have been
appearing since 2012 and include the theory of Dirichlet series, the famous
Bohr radius problem, certain classical inequalities (such as Bohnenblust–
Hille or Hardy–Littlewood), and Mathematical Physics.

1 Introduction

When Leonard James Rogers (1862-1933) and Otto Hölder (1859-1937) discov-
ered, independently, the famous inequality that (nowadays) holds Hölder’s name
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(1889, [44]), they could have never imagined that, at that precise moment, they
had just started a “revolution” in Functional Analysis (we refer to [47] for a
detailed and historical exposition). This tool is a fundamental inequality between
integrals and an indispensable tool for the study of, among others, Lp spaces. Let
us recall the classical Lp version of this inequality.

Theorem 1.1 (Hölder’s inequality, 1889). Let (Ω, Σ, µ) be a measure space and let
p, q ∈ [1, ∞] with 1/p + 1/q = 1 (Hölder’s conjugates). Then, for all measurable real
or complex valued functions f and g on Ω,

∫
| f g|dµ ≤

(∫
| f |pdµ

)1/p (∫
|g|qdµ

)1/q

.

If one has p, q ∈ (1, ∞), f ∈ Lp(µ), and g ∈ Lq(µ), then this inequality
becomes an identity if and only if | f |p and |g|q are linearly dependent in L1(µ).
When one has p = q = 2 we recover a form of the Cauchy–Schwarz inequal-
ity (or Cauchy–Bunyakovsky–Schwarz inequality). Also, Hölder’s inequality is
used to prove Minkowski’s inequality (the triangle inequality for Lp spaces) and
to establish that Lq(µ) is the dual space of Lp(µ) for p ∈ [1, ∞). Of course, we are
all familiar with these classical applications of Hölder’s inequality.

As it happens to almost every important result in mathematics, several
extensions and generalizations of it have appeared along the time. In the case
of Hölder’s inequality, this is not different. One of the extensions is the vari-
ant of Hölder’s inequality for mixed Lp spaces, which appeared in 1961, in the
seminal work of A. Benedek and R. Panzone [11]. Later in the 1980’s, R. Blei
and J. Fournier re-introduced the inequality for several applications on Lorentz
spaces and also on PDEs (see [2, 13, 39]). Mixed Lp spaces may be seen as a pure
exercise of abstraction of the original notion of Lp spaces, but as a matter of fact
we shall show that the theory developed in [11] plays a crucial role in applica-
tions to quite different frameworks; it is intriguing that, although widely known
(the paper [11] has more than 100 citations, mainly related to PDEs; we refer, for
instance to [2, 24, 39]) it was overlooked in important fields of mathematics. This
“gap” began to be filled in 2012-2013, when Hölder’s inequality for mixed Lp

spaces was used as an interpolation-type result and we shall show that different
fields of Mathematics and even of Physics were positively influenced.

This expository paper is arranged as follows. Section 2 presents some moti-
vation to illustrate the subject of this article. Section 3 is devoted to the afore-
mentioned variant of Hölder’s inequality (Hölder’s inequality for mixed sums),
providing a short proof. This result was only written in a proper and organized
fashion in 1961 ([11]) but, as it will be left clear along this paper, at least in the
topics gathered here (Functional Analysis, Complex Analysis and Quantum In-
formation Theory) it was surely not been taken advantage of before 2012. Our
approach is quite different from the one employed in [11] and we shall follow the
lines of [10]. Section 4 will recall some useful inequalities that we shall need and
Section 5 focuses on recent applications of Hölder’s inequality for mixed sums
in Functional Analysis and Quantum Information Theory, culminating with the
solution of a classical problem from Complex Analysis: the Bohr radius prob-
lem. Applications to the improvement of the constants of the Hardy–Littlewood
inequality and separately summing operators are also given.
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2 Motivation: some interpolative puzzles

As a motivation to the subject treated here, let us suppose that we have the
following two inequalities at hand, for certain complex scalar matrix (aij)

N
i,j=1:

N

∑
i=1

(
N

∑
j=1

∣∣aij

∣∣2
) 1

2

≤ C and
N

∑
j=1

(
N

∑
i=1

∣∣aij

∣∣2
) 1

2

≤ C (2.1)

for some constant C > 0 and all positive integers N.
How can one find an optimal exponent r and a constant C1 > 0 such that

(
N

∑
i,j=1

∣∣aij

∣∣r
) 1

r

≤ C1

for all positive integers N? Moreover, how can one obtain a good (small) constant
C1?

This question (at least concerning the exponent r can be solved in no less than
two ways: interpolation and Hölder’s inequality).

First note that, by using a consequence of Minkowski’s inequality (see [40]),
we know that




N

∑
i=1

(
N

∑
j=1

∣∣aij

∣∣
)2



1
2

≤
N

∑
j=1

(
N

∑
i=1

∣∣aij

∣∣2
) 1

2

≤ C. (2.2)

If we use Hölder’s inequality twice, one can proceed as follows:

N

∑
i,j=1

∣∣aij

∣∣ 4
3 =

N

∑
i=1

(
N

∑
j=1

∣∣aij

∣∣ 2
3
∣∣aij

∣∣ 2
3

)

≤
N

∑
i=1



(

N

∑
j=1

∣∣aij

∣∣2
) 1

3
(

N

∑
j=1

∣∣aij

∣∣
) 2

3




≤




N

∑
i=1

(
N

∑
j=1

∣∣aij

∣∣2
) 1

2




2
3



N

∑
i=1

(
N

∑
j=1

∣∣aij

∣∣
)2



1
3

=




N

∑
i=1

(
N

∑
j=1

∣∣aij

∣∣2
) 1

2




2
3






N

∑
i=1

(
N

∑
j=1

∣∣aij

∣∣
)2



1
2




2
3

≤ C
4
3 .

On the other hand, by means of complex interpolation (see [12]) the solution
is shorter; essentially we have two mixed inequalities with exponents (1, 2) in
equation (2.1) and (2, 1) in equation (2.2). By interpolating these exponents with
θ1 = θ2 = 1/2 we obtain an exponent (4/3, 4/3) with constant C. The optimality
of the exponent 4/3 can be proved using the Kahane–Salem–Zygmund inequality
(Theorem 5.1).
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The use of Hölder’s inequality as above becomes a very arduous work as it
increases the number of indexes in the sums. The reader can test the case of three
sums using Hölder’s inequality. More precisely, as a simple illustration suppose
that

N

∑
σ(i)=1




N

∑
σ(j)=1

N

∑
σ(k)=1

∣∣aijk

∣∣2



1
2

≤ C

for all bijections σ : {i, j, k} → {i, j, k} and all N. How can we find an optimal
exponent r and a constant C1 such that

(
N

∑
i,j,k=1

∣∣aijk

∣∣r
) 1

r

≤ C1

for every N?
The search for good constants dominating the respective inequalities is

important for applications (see Section 5) and has an extra ingredient when we
are using the interpolative approach: the main point is that different interpola-
tions may result in the same exponent, but the constants involved differ. Thus,
we must investigate what exponents we shall use to interpolate. More precisely,
as we will see in Section 5, the Bohnenblust–Hille inequality for 3-linear forms
asserts that there is a constant C3 ≥ 1 such that, for all N and all 3–linear forms
T : ℓN

∞ × ℓN
∞ × ℓN

∞ → K,

(
N

∑
i1,i2,i3=1

∣∣∣T(ei1 , ei2 , ei3)
∣∣∣

3
2

) 2
3

≤ C3 ‖T‖ ,

here, as usual, K stands for the fields of real or complex numbers, ej denotes the
canonical vector which entries are 1 at j-th position and 0 otherwise, and ‖T‖
denotes the sup norm.

However, the exponent 3/2 can be obtained by a “multiple” interpolation of
exponents of inequalities of the form




N

∑
i1=1




N

∑
i2=1

(
N

∑
i3=1

∣∣∣T(ei1 , ei2, ei3)
∣∣∣
q3

) q2
q3




q1
q2




1
q1

≤ C ‖T‖ ,

with
(q1, q2, q3) = (1, 2, 2), (2, 1, 2) and (2, 2, 1)

or

(q1, q2, q3) =

(
4

3
,

4

3
, 2

)
,

(
4

3
, 2,

4

3

)
and

(
2,

4

3
,

4

3

)

and the last procedure provides quite better constants. This is a simple illustra-
tion of the core of the new advances that lead to the results presented in this
survey paper.
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3 Hölder’s inequality revisited

Essentially, the simplest version of Hölder’s inequality asserts that if 1/p+ 1/q =
1 and

(
aj

)
∈ ℓp,

(
bj

)
∈ ℓq then

(
ajbj

)
∈ ℓ1. In this section we present a variation

of this result, which may have been seen as a variant of the following general
Hölder’s inequality presented in the classical work [11] on mixed normed Lp

spaces. We shall now work with Lp(N) = ℓp, since it is the case we are inter-
ested in. Let us recall some useful multi-index notation: for a positive integer m
and ∅ 6= D ⊂ N, we denote the set of multi-indices i = (i1, . . . , im), with each
ik ∈ D, by

M(m, D) := {i = (i1, . . . , im) ∈ N
m; ik ∈ D, k = 1, . . . , m} = Dm.

We also denote M(m, n) := M(m, {1, 2, . . . , n}). For p = (p1, . . . , pm) ∈ [1, ∞]m ,
and a Banach space X, let us consider the space

ℓp(X) := ℓp1
(ℓp2(. . . (ℓpm(X)) . . . )).

Namely, if p1, . . . , pm < ∞, a vector matrix (xi)i∈M(m,N) ∈ ℓp(X) if, and only if,




∞

∑
i1=1

(
∞

∑
i2=1

(. . . (
∞

∑
im−1=1

(
∞

∑
im=1

‖xi‖pm

X )
pm−1

pm )
pm−2
pm−1 . . . )

p2
p3

) p1
p2




1
p1

< ∞.

When X = K, we just write ℓp instead of ℓp(K). Also, we deal with the coor-
dinate product of two scalar matrices a = (ai)i∈M(m,n) and b = (bi)i∈M(m,n),

i.e.,
ab := (aibi)i∈M(m,n) .

The following result seems to be first observed by A. Benedek and R. Panzone
(see [2, 3, 11]):

Theorem 3.1 (Hölder’s inequality for mixed ℓp spaces). Let m, n, N be positive in-
tegers, and r, q(1), . . . , q(N) ∈ (0, ∞]m be such that

1

rj
=

1

qj(1)
+ · · ·+ 1

qj(N)
, j ∈ {1, 2, . . . , m},

and let ak :=
(

ak
i

)
i∈M(m,n) , k = 1, . . . , N, be scalar matrices. Then

∥∥∥∥∥
N

∏
k=1

ak

∥∥∥∥∥
r

≤
N

∏
k=1

‖ak‖q(k) .

Recall that, if r, q(1), . . . , q(N) ∈ (0, ∞)m, the previous inequality means the
following:




n

∑
i1=1

(
. . . (

n

∑
im=1

|a1
i · a2

i · . . . · aN
i |rm)

rm−1
rm . . .

) r1
r2




1
r1

≤
N

∏
k=1







n

∑
i1=1

(
. . . (

n

∑
im=1

|ak
i |qm(k))

qm−1(k)

qm(k) . . .

) q1(k)
q2(k)




1
q1(k)


 .
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Using the above result we are able to recover the interpolative inequality from
[4–6, 10] (Theorem 3.2 below), that we can also, in some sense, call Hölder’s in-
equality for multiple exponents. We shall illustrate along the paper several ap-
plications (in different fields) of this result. Just before that, for a positive real
number θ, let us define aθ :=

(
aθ

i

)
i∈M(m,n)

. It is straightforward to see that

∥∥∥aθ
∥∥∥

q/θ
= ‖a‖θ

q ,

where q/θ := (q1/θ, . . . , qm/θ).

Theorem 3.2 (Hölder’s inequality for multiple exponents -interpolative approach).

Let m, n, N be positive integers and q, q(1), . . . , q(N) ∈ [1, ∞)m be such that
(

1
q1

, . . . ,

1
qm

)
belongs to the convex hull of

(
1

q1(k)
, . . . , 1

qm(k)

)
, k = 1, . . . , N. Then for all scalar

matrix a = (ai)i∈M(m,n),

‖a‖q ≤
N

∏
k=1

‖a‖θk

q(k)
,

i.e.,




n

∑
i1=1

(
. . . (

n

∑
im=1

|ai|qm)
qm−1

qm . . .

) q1
q2




1
q1

≤
N

∏
k=1







n

∑
i1=1

(
. . . (

n

∑
im=1

|ai|qm(k))
qm−1(k)

qm(k) . . .

) q1(k)
q2(k)




1
q1(k)




θk

,

where θk are the coordinates of
(

1
q1(k)

, . . . , 1
qm(k)

)
on the convex hull.

Proof. For j = 1, . . . , m we have

1

qj
=

θ1

qj(1)
+ . . . +

θN

qj(N)
=

1

qj(1)/θ1
+ . . . +

1

qj(N)/θN
.

Since
∥∥aθk

∥∥
q(k)/θk

= ‖a‖θk

q(k)
, by the Hölder inequality for mixed ℓp spaces we

conclude that

‖a‖q =
∥∥∥aθ1+···+θN

∥∥∥
q
=

∥∥∥∥∥
N

∏
k=1

aθk

∥∥∥∥∥
q

≤
N

∏
k=1

∥∥∥aθk

∥∥∥
q(k)/θk

=
N

∏
k=1

‖a‖θk

q(k)
.

For the sake of completeness of this article, we would also like to present the
following proof, which is based on interpolation.

Proof. (Interpolative Approach) We shall follow the lines of [4, Proposition 2.1].
We shall proceed by induction on N and we also employ the fact that, for any
Banach space X and θ ∈ [0, 1],

ℓr(X) =
[
ℓp(X), ℓq(X)

]
θ

,



Hölder’s inequality: some recent and unexpected applications 205

with 1
ri
= θ

pi
+ 1−θ

qi
, for i = 1, . . . , m (see [12]). If

1

qi
=

θ1

qi(1)
+ · · ·+ θN

qi(N)
,

with ∑
N
k=1 θk = 1 and each θk ∈ [0, 1], then we also have

1

qi
=

θ1

qi(1)
+

1 − θ1

pi
,

setting
1

pi
=

α2

qi(2)
+ · · ·+ αN

qi(N)
, and αj =

θj

1 − θ1
,

for i = 1, . . . , m and j = 2, . . . , N. So αj ∈ [0, 1] and ∑
N
j=2 αj = 1. Therefore, by the

induction hypothesis, we conclude that

‖a‖q ≤ ‖a‖θ1

q(1)
· ‖a‖1−θ1

p ≤ ‖a‖θ1

q(1)
·
[

N

∏
j=2

‖a‖αj

q(j)

]1−θ1

=
N

∏
k=1

‖a‖θk

q(k)
.

Combining the previous result with Minkowski’s inequality we have a very
useful inequality (see [10, Remark 2.2]):

Corollary 3.3. Let m, n be positive integers, 1 ≤ k ≤ m and 1 ≤ s ≤ q. Then for all
scalar matrix (ai)i∈M(m,n),


 ∑

i∈M(m,n)

|ai|ρ



1
ρ

≤ ∏
S∈Pk(m)


∑

iS


∑

i
Ŝ

|ai|q



s
q




1
s · 1

(mk )

,

where
ρ :=

msq

kq + (m − k)s

and Pk (m) stands for the set of subsets S ⊆ {1, . . . , m} with card(S)= k.

The above corollary shows that Blei’s inequality (see Corollary 3.4 below) is
just a very particular case of a huge family of similar inequalities. For our pur-
poses, the crucial point is that the use of Blei’s inequality is far from being a good
option to obtain good estimates for the constants of the Bohnenblust–Hille and
related inequalities. Just to illustrate the strength of Theorem 3.2 and Corollary
3.3, we present here quite a simple proof (see [10]) of Blei’s inequality.

Corollary 3.4 (Blei’s inequality - approach by Defant, Popa, and Schwarting, [30]).
Let A and B be two finite non-void index sets. Let (aij)(i,j)∈A×B be a scalar matrix with

positive entries, and denote its columns by αj = (aij)i∈A and its rows by βi = (aij)j∈B.
Then, for q, s1, s2 ≥ 1 with q > max(s1, s2) we have


 ∑

(i,j)∈A×B

a
w(s1 ,s2)
ij




1
w(s1,s2)

≤
(

∑
i∈A

‖βi‖s1
q

) f (s1,s2)
s1

(

∑
j∈B

∥∥αj

∥∥s2

q

) f (s2,s1)
s2

,
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with

w : [1, q)2 → [0, ∞), w(x, y) :=
q2(x + y)− 2qxy

q2 − xy
,

f : [1, q)2 → [0, ∞), f (x, y) :=
q2x − qxy

q2(x + y)− 2qxy
.

Proof. Let us consider the exponents

(q, s2) , (s1, q)

and
(θ1, θ2) = ( f (s2, s1), f (s1, s2)) .

Note that (w (s1, s2) , w (s1, s2)) is obtained by interpolating (q, s2) and (s1, q) with
θ1, θ2, respectively. Then, from Theorem 3.2, we have


 ∑

(i,j)∈A×B

a
w(s1,s2)
ij




1
w(s1,s2)

≤
(

∑
i∈A

‖βi‖s1
q

) f (s1,s2)
s1

(

∑
i∈A

‖βi‖q
s2

) f (s2,s1)
q

.

Now, since q > s2 we just need to use Proposition 4.6 to change the order of the
last sum.

We invite the interested reader to compare the above proof with the proof pre-
sented in [30, pages 226-227], in which the classical Hölder’s inequality is needed
several times.

4 Some useful inequalities

The main recent advances presented here are direct or indirect consequence of the
improvements obtained in the polynomial and multilinear Bohnenblust–Hille in-
equalities, which were obtained by using the theory of mixed Lp spaces, more
specifically the variant of Hölder’s inequality (Theorem 3.2). Three other impor-
tant ingredients are also need: the Khinchine inequality (and its version for multi-
ple sums), Kahane–Salem–Zygmund’s inequality in its polynomial and multilin-
ear versions and a variant of Minkowski’s inequality. Before that, let us provide
a brief account on polynomials and multilinear operators, that shall be needed in
the remaining sections of this survey.

Polynomials in Banach spaces (at least for complex scalars) are of fundamental
importance in the theory of Infinite Dimensional Holomorphy (see [35, 50]). In
general the theory of polynomials and multilinear operators between normed
spaces has its importance in different areas of Mathematics, from Number Theory,
or Dirichlet series, to Functional Analysis.

In this section we recall the concepts of polynomials and multilinear operators
between Banach spaces and some results that many authors would call “folk-
lore”, and that will be needed here. Let E, E1, . . . , Em, and F be Banach spaces.
A m-linear operator T : E1 × · · · × Em → F is a map that is linear in each co-
ordinate separately. When E1 = · · · = Em = E we say that T is symmetric if
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T(xσ(1), . . . , xσ(m)) = T(x1, . . . , xm) for all bijections σ : {1, . . . , m} → {1, . . . , m}.
A m-homogeneous polynomial is a map P : E → F such that

P(x) = T(x, . . . , x)

for some m-linear operator T : E × · · · × E → F. Continuity is defined in the
obvious fashion. The spaces of continuous m-homogeneous polynomials from E
to F are represented by P (mE; F) and the space of continuous multilinear oper-
ators from E1 × · · · × Em to F is denoted by L (E1, . . . , Em; F). Both vector spaces
are Banach spaces when endowed with the sup norm in the unit ball BE or in the
product of the the unit balls BE1

× · · · × BEm .
The following characterizations of continuous polynomials are elementary

(analogous results hold for multilinear operators):

Proposition 4.1. Let P ∈ P (mE; F). The following assertions are equivalent:

(i) P ∈ P (mE; F);

(ii) P is continuous at zero;

(iii) There is a constant M > 0 such that ‖P (x)‖ ≤ M ‖x‖m, for all x ∈ E.

The Polarization Formula relates polynomials and symmetric multilinear
operators in a very useful way. Its proof is a kind of consequence of the Leib-
niz formula and some combinatorial tricks (see [35, 50]).

Theorem 4.2 (Polarization Formula). If T ∈ L(mE; F) is symmetric then

T(x1, . . . , xm) =
1

m!2m ∑
ε i=±1

ε1 · · · εmT(x0 + ε1x1 + · · ·+ εmxm)
m,

for all x0, x1, x2, . . . , xm ∈ E.

The following result is an immediate consequence of the Polarization
Formula:

Corollary 4.3. For each m-homogeneous polynomial there is a unique m-linear operator
associated to it. In other words, if P is a m-homogeneous polynomial, then there exists
only one symmetric m-linear operator T (sometimes called polar of P) such that

P(x) = T(x, . . . , x)

for all x.

In general, if T is the symmetric m-linear operator associated to a m-homogeneous
polynomial P we have

‖P‖ ≤ mm

m!
‖T‖ , (4.1)

where ‖P‖ = sup‖z‖=1 |P(z)|. The constant mm

m! is usually called polarization con-
stant.
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If P is a homogeneous polynomial of degree m on K
n given by

P(x1, . . . , xn) = ∑
|α|=m

aαxα,

and L is the polar of P, then

L(eα1
1 , . . . , eαn

n ) =
aα

(m
α)

, (4.2)

where {e1, . . . , en} is the canonical basis of Kn and e
αk
k stands for ek repeated αk

times, the αj’s are non negative integers with |α| := ∑
n
j=1 αj = m, and xα =

xα1
1 · · · xαn

n for α = (α1, ..., αn).

4.1 Khinchine’s inequality

The Khinchine inequality in its modern presentation has its origins in [56]. Let
(εi)i≥1 be a sequence of independent Rademacher variables. For any p ∈ (0, ∞),
there exists a constant AR,p such that, given any sequence (ai) of real numbers
with finite support,

(
∞

∑
i=1

|ai |2
)1/2

≤ A−1
R,p

(∫

[0,1]m

∣∣∣∣∣
∞

∑
i=1

aiεi(ω)

∣∣∣∣∣

p

dω

)1/p

.

For complex scalars it is more useful (since it gives better constants) to use the
following version of Khinchine’s inequality (called Khinchine’s inequality with
Steinhaus variables): for any p ∈ (0, ∞), there exists a constant AC,p such that, for
any sequence (ai) of complex numbers with finite support

(
∞

∑
i=1

|ai|2
)1/2

≤ A−1
C,p

(∫

T∞

∣∣∣∣∣
∞

∑
i=1

aizi

∣∣∣∣∣

p

dz

)1/p

,

with T∞ denoting the infinite polycircle, i.e.,

T
∞ =

{
z = (zi)i∈N

∈ C
N : |zi| = 1 for all i ∈ N

}
,

and dz denoting the standard Lebesgue probability measure on T∞. The best
constants AR,p and AC,p were obtained by Haagerup and König, respectively (see
[41] and [46]). More precisely,

• AR,p = 1√
2

(
Γ
(

1+p
2

)

√
π

)1/p

if 1.8474 ≈ p0 ≤ p < 2;

• AR,p = 2
1
2− 1

p if 0 < p < p0;

• AC,p = Γ
(

p+2
2

)1/p
if p ∈ [1, 2];
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• AK,p = 1 if p ≥ 2 and K = R or C.

The (apparently) strange value p0 ≈ 1.8474 is, to be precise, the unique number
p0 ∈ (1, 2) with

Γ

(
p0 + 1

2

)
=

√
π

2
.

The notation AK,p will be kept along this paper.
Using Fubini’s theorem and Minkowski’s inequality (see, for instance,

[30, Lemma 2.2] for the real case and [51, Theorem 2.2] for the complex case),
these inequalities have a multilinear version: for any n, m ≥ 1, for any family
(ai)i∈Nm of real (resp. complex) numbers with finite support,

(

∑
i∈Nm

|ai|2
)1/2

≤ A−m
R,p

(∫

[0,1]m

∣∣∣∣∣ ∑
i∈Nm

aiε
(1)
i1
(ω1) . . . ε

(m)
im

(ωm)

∣∣∣∣∣

p

dω1 · · · dωm

)1/p

where (ε
(1)
i ), . . . , (ε

(m)
i ) are sequences of independent Rademacher variables (resp.

(

∑
i∈Nm

|ai|2
)1/2

≤ A−m
C,p

(∫

(T∞)m

∣∣∣∣∣ ∑
i∈Nm

aiz
(1)
i1

. . . z
(m)
im

∣∣∣∣∣

p

dz(1) . . . dz(m)

)1/p

,

in the complex case).

4.2 Kahane–Salem–Zygmund’s inequality: suitable random polynomials

The essence of the Kahane–Salem–Zygmund inequalities, as we describe below,
probably appeared for the first time in [45], but our approach follows the lines of
Boas’ paper [15]. Paraphrasing Boas, the Kahane–Salem–Zygmund inequalities
use probabilistic methods to construct a homogeneous polynomial (or multilinear
operator) with a relatively small supremum norm but relatively large majorant
function. Both the multilinear and polynomial versions are needed for our goals.

Theorem 4.4 (Kahane–Salem–Zygmund’s inequality - Multilinear version, [15]).
Let m, n be positive integers. There exists a m-linear map Tm,n : ℓn

∞ × · · · × ℓ
n
∞ → K of

the form

Tm,n(z
(1), . . . , z(m)) =

n

∑
i1,...,im=1

±z
(1)
i1

. . . z
(m)
im

such that

‖Tm,n‖ ≤
√

32 log (6m)× n
m+1

2 ×
√

m!.

The original version of the Kahane–Salem–Zygmund inequality appears in
the framework of complex scalars but it is simple to verify that the same result
(with the same constants) holds for real scalars. The following result is corol-
lary of the previous, now for polynomials, and it will also be important for our
purpose.
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Theorem 4.5 (Kahane–Salem–Zygmund’s inequality - Polynomial version, [15]).
Let m, n be positive integers. Then there exists a m-homogeneous polynomial P : ℓn

∞ →
K of the form

Pm,n(z) = ∑
|α|=d

±
(

m

α

)
zα

such that

‖Pm,n‖ ≤
√

32 log (6m)× n
m+1

2 ×
√

m!.

4.3 A corollary to Minkowski’s inequality

Minkowski’s inequality is a very well-known result that helps to prove that Lp

spaces are Banach spaces: it is the triangle inequality for Lp spaces. We need a
somewhat well known result, which is a corollary of one of the many versions of
Minkowski’s inequality, whose proof can be found, for instance, in [40].

Proposition 4.6 (Corollary to Minkowski’s inequality). For any 0 < p ≤ q < ∞

and for any matrix of complex numbers (cij)
∞
i,j=1,




∞

∑
i=1

(
∞

∑
j=1

|cij|p
)q/p




1/q

≤




∞

∑
j=1

(
∞

∑
i=1

|cij|q
)p/q




1/p

.

5 Recent “unexpected” applications to classical problems

5.1 The Bohnenblust–Hille inequality with subpolynomial constants

The Riemann hypothesis certainly motivated and inspired many prestigious math-
ematicians from the 20th century to study Dirichlet sums in a more extensive
fashion (for instance, Bourgain, Enflo, or Montgomery [20, 37, 49]). In the first
decades of the 20th century Harald Bohr was immersed in the study of Dirich-
let series (see [17–19]). One of his main interests was to determine the width of
the maximal strips on which a Dirichlet series can converge absolutely but non
uniformly. More precisely, for a Dirichlet series D(s) := ∑n ann−s, where an are
complex coefficients and s is a complex variable, Bohr defined

σa(D) := inf {r ∈ R : D(s) converges absolutely for Re(s) > r} ,

σu(D) =: inf {r ∈ R : D(s) converges uniformly in Re (s) > r + ε for every ε > 0} ,

and
T := sup {σa(D)− σu(D) : D is a Dirichlet series} .

Bohr’s question was: What is the value of T?
The Bohnenblust–Hille inequality, proved in 1931 by H.F. Bohnenblust and E.

Hille, is a crucial tool to answer Bohr’s problem: the precise value of T is 1/2.
When dealing with the Bohnenblust–Hille inequality it is elucidative to start

with proving Littlewood’s 4/3 inequality, a predecessor of the Bohnenblust–Hille
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inequality. Littlewood’s 4/3 inequality was proved in 1930 to solve a problem
posed by P.J. Daniell. It is worth noticing how Holder’s inequality plays a funda-
mental role in the argument used in the proof. We include (for the sake of com-
pleteness) a proof of the optimality of the power 4/3 using the Kahane–Salem–
Zygmund inequality.

Theorem 5.1 (Littlewood’s 4/3 inequality). There is a constant LK ≥ 1 such that

(
N

∑
i,j=1

∣∣U(ei, ej)
∣∣ 4

3

) 3
4

≤ LK ‖U‖ (5.1)

for every bilinear form U : ℓN
∞ × ℓN

∞ → K and every positive integer N. Moreover, the
power 4/3 is optimal.

Proof. Note that

N

∑
i,j=1

∣∣U(ei, ej)
∣∣ 4

3 ≤




N

∑
i=1

(
N

∑
j=1

∣∣U(ei, ej)
∣∣2
) 1

2




2
3






N

∑
i=1

(
N

∑
j=1

∣∣U(ei, ej)
∣∣
)2



1
2




2
3

is a particular case of the procedure from Section 2. Now we just need to estimate
the two factors above. From the Khinchine inequality we have

N

∑
i=1

(
N

∑
j=1

∣∣U(ei, ej)
∣∣2
) 1

2

≤
√

2
N

∑
i=1

1∫

0

∣∣∣∣∣
N

∑
j=1

rj(t)U(ei , ej)

∣∣∣∣∣ dt

=
√

2

1∫

0

N

∑
i=1

∣∣∣∣∣U(ei,
N

∑
j=1

rj(t)ej)

∣∣∣∣∣ dt

≤
√

2 sup
t∈[0,1]

N

∑
i=1

∣∣∣∣∣U(ei,
N

∑
j=1

rj(t)ej)

∣∣∣∣∣

≤
√

2 ‖U‖ .

By symmetry, the same is true if we swap i and j. From Minkowski’s inequality
we have




N

∑
i=1

(
N

∑
j=1

∣∣U(ei, ej)
∣∣
)2



1
2

≤
N

∑
j=1

(
N

∑
i=1

∣∣U(ei, ej)
∣∣2
) 1

2

≤
√

2 ‖U‖

and combining all of these inequalities we obtain

LK =
√

2.
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In order to prove the optimality of the exponent 4/3 we can use the Kahane–
Salem–Zygmund inequality. Let T2,N : ℓN

∞ × ℓN
∞ → C be the bilinear form satisfy-

ing the multilinear Kahane–Salem–Zygmund inequality (Theorem 4.4). Then, if
(5.1) holds for an exponent q > 0, we have

(
N

∑
i,j=1

∣∣T2,N(ei, ej)
∣∣q
) 1

q

≤
√

2CN
3
2

and thus

N
2
q ≤

√
2CN

3
2 .

Next, letting N → ∞ we conclude that q ≥ 4
3 .

The natural generalization of Littlewood’s 4/3 inequality is the Bohnenblust–
Hille inequality. This inequality essentially says that for m > 2 the exponent 4

3

can be replaced by 2m
m+1 , and this exponent is optimal. More precisely, it asserts

that, for any m ≥ 2, there exists a constant CK,m ≥ 1 such that, for all N and all
m-linear forms T : ℓN

∞ × · · · × ℓN
∞ → K,

(
N

∑
i1,...,im=1

∣∣∣T(ei1 , . . . , eim
)
∣∣∣

2m
m+1

)m+1
2m

≤ CK,m ‖T‖ . (5.2)

This result was overlooked and, sometimes, rediscovered during the last 80
years. Different approaches led to different values of the constants CK,m. Let
us denote the optimal constants satisfying equation (5.2) above by Bmult

K,m . As a

matter of fact, controlling the growth of the constants Bmult
K,m is crucial for some

applications, as it is being left clear along the paper (Sections 5.2 and 5.3 deal
with Quantum information theory and the Bohr radius problem, respectively).

Now we show how a suitable use of Hölder’s inequality (Theorem 3.2) pro-
vides a very simple proof of the Bohnenblust–Hille inequality, with (so far!) the
best known constants.

With the ingredients of Section 4 we can easily obtain an inductive formula
for Bmult

K,m . We present a sketch of the proof (more details can be found in [10]; we
also refer to the survey [33] which provides a careful and a deep analysis of the
Bohnenblust–Hille inequality).

Theorem 5.2 (Bohnenblust–Hille inequality). For any positive integer m, there exists
a constant Bmult

K,m ≥ 1 such that, for all m-linear forms L : ℓN
∞ × · · · × ℓN

∞ → K and all
N, (

N

∑
i1,...,im=1

∣∣∣L(ei1 , . . . , eim
)
∣∣∣

2m
m+1

)m+1
2m

≤ Bmult
K,m ‖L‖ , (5.3)

with Bmult
K,1 = 1 and Bmult

K,m ≤ A−1
K, 2k

k+1

Bmult
K,k , for any 1 ≤ k ≤ m − 1.

Proof. We present a simple proof for the case k = m − 1, which is the most im-
portant, since it provides better constants (and the proof for other values of k is
similar). The proof for R is essentially the same as the proof for C, so we present
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only the proof for the complex case. Let n ≥ 1 and let L = ∑i∈Nm aiz
(1)
i1

. . . z
(m)
im

be

an m-linear form on ℓN
∞ × · · · × ℓN

∞.
From the Khinchine inequality we have


∑

iS


∑

iŜ

|ai|2



1
2× 2m−2

m




m
2m−2

≤ A−1
C, 2m−2

m

Bmult
C,m−1‖L‖

for all S ⊂ {1, ..., m} with card (S) = m − 1.
From the “Minkowski inequality” (Proposition 4.6) we can obtain analogous

estimates if we take the 2 in the last position and move it backwards making
it take every position from the last to the first; in other words, considering the
following exponents:

(
2m − 2

m
, . . . , 2,

2m − 2

m

)
, . . . ,

(
2,

2m − 2

m
, . . . ,

2m − 2

m

)

and the same constant. Using the Hölder inequality for multiple exponents we
reach the result.

Using the values of the constants AK,p we conclude that

Bmult
C,m ≤

m

∏
j=2

Γ

(
2 − 1

j

) j
2−2j

. (5.4)

For real scalars and m ≥ 14,

Bmult
R,m ≤ 2

446381
55440 −m

2

m

∏
j=14




Γ
(

3
2 − 1

j

)

√
π




j
2−2j

(5.5)

and

Bmult
R,m ≤

m

∏
j=2

2
1

2j−2 =
(√

2
)∑

m−1
j=1 1/j

.

for 2 ≤ m ≤ 13.
However, a first look at (5.4) and (5.5) gives a priori no clues on their behavior.

The following consequences of Theorem 5.2 taken from [10] are worthed to be
emphasized:

• There exists κ1 > 0 such that, for any m ≥ 1,

Bmult
C,m ≤ κ1m

1−γ
2 < κ1m0.211392.

• There exists κ2 > 0 such that, for any m ≥ 1,

Bmult
R,m ≤ κ2m

2−log 2−γ
2 < κ2m0.36482.
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It is interesting to recall that some old estimates Bmult
K,m can be easily recovered

just by choosing different (q1, . . . , qm) when using Hölder’s inequality (or using
Theorem 5.2 directly). For instance,

• Davie ([26], 1973).

Bmult
K,m ≤

(√
2
)m−1

.

Using the Khinchine inequality, we have




n

∑
i1=1

(
. . . (

n

∑
im=1

|ai|qm)
qm−1

qm . . .

) q1
q2




1
q1

≤
(√

2
)m−1

‖L‖

for
(q1, . . . , qm) = (1, 2, . . . , 2)

Using the “Minkowski inequality” (Proposition 4.6) we obtain the same
estimate for

(q1, . . . , qm) = (2, 1, . . . , 2) , . . . , (q1, . . . , qm) = (2, . . . , 2, 1)

with the same constant. Now, using Theorem 3.2, we conclude the proof
with

Bmult
K,m ≤

(√
2
)m−1

.

• Pellegrino and Seoane-Sepúlveda ([53], 2012).

Bmult
K,m ≤ A

−m
2

K, 2m
m+2

Bmult
K, m

2
for m even, and

Bmult
K,m ≤

(
A

−m+1
2

K, 2m−2
m+1

Bmult
K, m−1

2

)m−1
2m
(

A
−m−1

2

K, 2m+2
m+3

Bmult
K, m+1

2

)m+1
2m

for m odd.

When m is even and k = m/2, we use Khinchine inequality to obtain estimates
for the inequalities with exponent

(q1, . . . , qm) =

(
2m

m + 2
, . . . ,

2m

m + 2
, 2, . . . , 2

)

and using the Minkowski inequality the same estimate is obtained for

(q1, . . . , qm) =

(
2, . . . , 2,

2m

m + 2
, . . . ,

2m

m + 2

)
.

Using Proposition 5.2 we obtain

Bmult
K,m ≤ A−m/2

K, 2m
m+2

Bmult
K,m/2.

The case m odd is somewhat similar, although it needs a little trick. It is worth
mentioning that these estimates from [53] can be somewhat derived from abstract
results appearing in [30].
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The Bohnenblust–Hille inequality (multilinear and polynomial) still have
interesting versions in the setting of Lorentz spaces. Recall that, given 1 ≤ p < ∞

and 1 ≤ q ≤ ∞, the Lorentz space ℓp,q(I) (ℓp,q for short) on a nonempty set I
consists of all scalar sequences x = (xi)i∈I for which the expression

‖x‖ℓp,q
=

{(
∑k∈J x

∗q
k (kq/p − (k − 1)q/p)q

)1/q
if q < ∞,

supk∈J k1/px∗k if q = ∞,

is finite. Here, for a given x = (xi)i∈I ∈ ℓ∞(I), we denote by x∗ = (x∗j )j∈J the

non-increasing rearrangement of x defined by

x∗j = inf{λ > 0; card({i ∈ I; |xi| > λ}) ≤ j}, j ∈ J,

where J = {1, . . . , n} whenever card(I) = n, and J = N whenever I is infinite.
As mentioned in [39], Littlewood’s 4/3 inequality for Lorentz spaces can be

deduced from a unpublished work of G. Pisier. Using Hölder’s inequality for
mixed ℓp spaces, J. Fournier [39] (see also [13]) was able to provide a more general
result: Bohnenblust–Hille’s multilinear inequality for Lorentz spaces. On this
environment, the result reads as follows: for every positive integer m, there is a
constant C ≥ 1 such that, for every n and every matrix a = (ai)i∈M(m,n), we have

‖(ai)i∈M(m,n)‖ℓ 2m
m+1 ,1

≤ C‖a‖.

Very interesting multilinear and polynomial Bohnenblust–Hille-type inequalities
in Lorentz spaces with subpolynomial and subexponential constants were ob-
tained by A. Defant and M. Mastylo in [29].

5.2 Quantum Information Theory

Here we shall briefly describe a result by Montanaro [48, Theorem 5] which pro-
vided an application for the optimal Bohnenblust–Hille constants for real scalars
within the field of Quantum Physics. This presentation is based on Schwarting’s
Ph.D. dissertation [55, Section 2.2.5]. For a more detailed information we refer the
interested reader to the Ph.D. dissertation of Briët [21, Chapter 1], which provides
a clear introduction to the whole topic of nonlocal games.

A classical nonlocal game is a pair G = (A, π) consisting on a function (called
predicate) A : A× B × S × T → {±1}, where A,B,S and T are finite sets, and
a probability distribution π : S × T → [0, 1]. The game involves three parties:
a person called the referee and two players (usually called Alice and Bob). When
the game starts, the referee picks a question (s, t) ∈ S × T according to the prob-
ability distribution π and, then, sends it to Alice and Bob, who must reply in-
dependently (they are not allowed to communicate between each other once the
game has begun) by providing an answer a ∈ A and b ∈ B each one. The play-
ers win the game if A(a, b, s, t) = 1, and lose otherwise. The players’ goal is to
maximize their chance of winning. A XOR game is a nonlocal game in which the
answer sets A,B are {±1} and the predicate A depends only on the exclusive-OR
(XOR) of the answers given by the players and the value of a Boolean function
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S × T → {±1}, which from the predicate may be seen as a matrix with entries
on {±1}. A game with m-players is described similarly in the following fashion.

An m-player XOR (exclusive OR) game is a pair G = (π, A) consisting of a
matrix A = (ai)i∈M(m,n), for which each entry ai ∈ {±1}, and a probability distri-

bution π : M(m, n) → [0, 1]. The game consists on the referee picking an m-tuple
i = (i1, . . . , im) ∈ M(m, n) according to the probability distribution π and send-
ing each question ik to the player k, which, by means of a classical strategy, must re-
ply upon this question with a (deterministic) answer map yk : {1, . . . , n} → {±1}.
The players win if and only if the product of their answers equals the correspond-
ing entry in the matrix A, that is if

y1(i1) · · · ym(im) = ai.

Concerning the complexity of a XOR game, one defines the bias β(G) to be the
greatest difference between the chance of winning and the chance of loosing the
game for the optimal classical strategy. Therefore, the classical bias of an m-player
XOR game is given by

β(G) = max
y1,...,ym∈{±1}n

∣∣∣∣∣∣ ∑
i∈M(m,n)

π(i)aiy1(i1) · · · ym(im)

∣∣∣∣∣∣
.

If we define the m-linear map T : ℓn
∞ × · · · × ℓn

∞ → R by T(ei1 , . . . , eim
) := aiπ(i),

then the bias will be
β(G) = ‖T‖.

A natural problem is to find the game for which the classical bias is mini-
mized. It is known that there exists an m-player XOR game G for which

β(G) ≤ n−m−1
2

(see [38]). Using the Bohnenblust–Hille inequality it is straightforward to obtain
lower bounds for the classical bias of an m-player XOR games (see [48, Theorem
5]).

Theorem 5.3. [48, Theorem 5] For every m-player XOR game G = (π, A),

β(G) ≥ 1

κm
0.36482 n

1−m
2 ,

where κ > 0 is an universal constant.

Proof. Define the m-linear form T : ℓn
∞ ×· · ·× ℓn

∞ → R by T(ei1 , . . . , eim) := aiπ(i).
Then,

∑
i∈M(m,n)

∣∣T(ei1 , . . . , eim
)
∣∣ = ∑

i∈M(m,n)

π(i) = 1.

Applying Hölder’s inequality and the Bohnenblust–Hille, we conclude that

∑
i∈M(m,n)

∣∣T(ei1 , . . . , eim
)
∣∣ ≤


 ∑

i∈M(m,n)

∣∣T(ei1 , . . . , eim
)
∣∣ 2m

m+1




m+1
2m

 ∑

i∈M(m,n)

1




m−1
2m

≤Bmult
R,m n

m−1
2 ‖T‖ = Bmult

R,m n
m−1

2 β(G).
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Using the best known estimates for the multilinear Bohnenblust–Hille inequal-
ity we conclude that

β(G) ≥ 1

κm
2−log 2−γ

2 n
m−1

2

>
1

κm0.36482
n

1−m
2 .

This result, according to Montanaro (see [48, p.4]), implies a very particular
case of a conjecture of Aaronson and Ambainis (see [1]). Also, recent advances
on the real polynomial Bohnenblust–Hille inequality (see, e.g., [22,36]), combined
with the CHSH inequality (due to Clauser, Horne, Shimony, and Holt in the late
1960’s), can be employed in the proof of Bell’s theorem, which states that certain
consequences of entanglement in quantum mechanics cannot be reproduced by
local hidden variable theories. We refer the interested reader to the seminal paper,
[25], in which more information regarding this CHSH inequality can be found.

5.3 Power series and the Bohr radius problem

The following question was addressed by H. Bohr in 1914:

How large can the sum of the moduli of the terms of a convergent power series
be?

The answer was given by the following theorem, which was independently
obtained by Bohr, Riesz, Schur, and Wiener:

Theorem 5.4. Suppose that a power series ∑
∞
k=0 ckzk converges for z in the unit disk,

and
∣∣∑∞

k=0 ckzk
∣∣ < 1 when |z| < 1. Then ∑

∞
k=0

∣∣ckzk
∣∣ < 1 when |z| < 1/3. Moreover,

the radius 1/3 is the best possible.

Following Boas and Khavinson [14], the Bohr radius Kn of the n-dimensional
polydisk is the largest positive number r such that all polynomials ∑α aαzα on Cn

satisfy

sup
z∈rDn

∑
α

|aαzα| ≤ sup
z∈Dn

∣∣∣∣∣∑α

aαzα

∣∣∣∣∣ .

The Bohr radius K1 was estimated by H. Bohr, M. Riesz, I. Schur and F. Wiener,
and it was shown that K1 = 1/3 (Theorem 5.4). For n ≥ 2, exact values of Kn are
unknown. In [14], it was proved that

1

3

√
1

n
≤ Kn ≤ 2

√
log n

n
. (5.6)

The paper by Boas and Khavinson, [14], motivated many other works, con-
necting the asymptotic behavior of Kn to various problems in Functional Analysis
(geometry of Banach spaces, unconditional basis constant of spaces of polynomi-
als, etc.); we refer to [31] for a panorama of the subject. Hence there was a big
motivation in recent years in determining the behavior of Kn for large values of
n.
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In [27], the left hand side inequality of (5.6) was improved to

Kn ≥ c
√

log n/(n log log n).

In [28], using the hypercontractivity of the polynomial Bohnenblust–Hille in-
equality, the authors showed that

Kn = bn

√
log n

n
with

1√
2
+ o(1) ≤ bn ≤ 2. (5.7)

In this section we sketch how the Hölder inequality for mixed sums played a
fundamental role in the final answer to the solution, given in [10], to the Bohr
radius problem:

lim
n→∞

Kn√
log n

n

= 1.

The solution has several ingredients, including the polynomial Bohnenblust–
Hille inequality. Using (4.1), Bohnenblust and Hille were also able to have a poly-
nomial version of this inequality: for any m ≥ 1, there exists a constant Dm ≥ 1
such that, for any complex m-homogeneous polynomial P(z) = ∑|α|=m aαzα on
c0, 

 ∑
|α|=m

|aα|
2m

m+1




m+1
2m

≤ Dm‖P‖,

with

Dm =
(√

2
)m−1 m

m
2 (m + 1)

m+1
2

2m (m!)
m+1
2m

.

In fact, it is not difficult to use polarization and obtain the polynomial Bohnen-
blust–Hille inequality by using the multilinear Bohnenblust–Hille inequality, but
with bad constants (the following approach can be essentially found in
[32, Lemma 5]). In fact, if L is the polar of P, from (4.2) we have

∑
|α|=m

|aα|
2m

m+1 = ∑
|α|=m

((
m

α

) ∣∣L(eα1
1 , . . . , eαn

n )
∣∣
) 2m

m+1

= ∑
|α|=m

(
m

α

) 2m
m+1 ∣∣L(eα1

1 , . . . , eαn
n )
∣∣ 2m

m+1 .

However, for every choice of α, the term

∣∣L(eα1
1 , . . . , eαn

n )
∣∣ 2m

m+1

is repeated (m
α) times in the sum

n

∑
i1,...,im=1

∣∣L(ei1 , . . . , eim
)
∣∣ 2m

m+1 .
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Thus

∑
|α|=m

(
m

α

) 2m
m+1 ∣∣L(eα1

1 , . . . , eαn
n )
∣∣ 2m

m+1 =
n

∑
i1,...,im=1

(
m

α

) 2m
m+1 1

(m
α)

∣∣L(ei1 , . . . , eim
)
∣∣ 2m

m+1

and, since (
m

α

)
≤ m!

we have

∑
|α|=m

(
m

α

) 2m
m+1 ∣∣L(eα1

1 , . . . , eαn
n )
∣∣ 2m

m+1 ≤ (m!)
m−1
m+1

n

∑
i1,...,im=1

∣∣L(ei1 , . . . , eim
)
∣∣ 2m

m+1 .

We thus have


 ∑

|α|=m

|aα|
2m

m+1




m+1
2m

≤
(
(m!)

m−1
m+1

n

∑
i1,...,im=1

∣∣L(ei1 , . . . , eim
)
∣∣ 2m

m+1

)m+1
2m

= (m!)
m−1
2m

(
n

∑
i1,...,im=1

∣∣L(ei1 , . . . , eim
)
∣∣ 2m

m+1

)m+1
2m

≤ (m!)
m−1
2m Bmult

R,m ‖L‖ .

On the other hand, since ‖L‖ ≤ mm

m! ‖P‖ we obtain


 ∑

|α|=m

|aα|
2m

m+1




m+1
2m

≤ Bmult
R,m (m!)

m−1
2m

mm

m!
‖P‖

= Bmult
R,m

mm

(m!)
m+1
2m

‖P‖ .

Let us denote the best constant Dm in this inequality by B
pol
C,m. In [28] it was

proved that in fact these estimates could be essentially improved to
(√

2
)m−1

.

However using the variant of Hölder’s inequality for mixed ℓp spaces, together
with some results from Complex Analysis (see [10] for details) and with the sub-
polynomial estimates of the multilinear Bohnenblust–Hille inequality (Section 5),
one of the main results of [10] shows that we can go much further:

Theorem 5.5. For any ε > 0, there exists κ > 0 such that, for any m ≥ 1,

B
pol
C,m ≤ κ(1 + ε)m.

As we mentioned above, in [28], using the hypercontractivity of the polyno-
mial Bohnenblust–Hille inequality, the authors showed that

Kn = bn

√
log n

n
with

1√
2
+ o(1) ≤ bn ≤ 2. (5.8)
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However, although (5.8) is quite precise, there was still uncertainty in the behav-
ior of the number bn. By combining classical tools of Complex Analysis (Harris’
inequality [43]), Bayart’s inequality [9], Wiener’s inequality [10, Lemma 6.1], and
the Kahane–Salem–Zygmund inequality (Theorem 4.5) together with Theorem
5.5 the authors, in [10], were finally able to provide the final solution to the Bohr
radius problem:

Theorem 5.6. The asymptotic growth of the n−dimensional Bohr radius is

√
log n

n . In

other words,

lim
n→∞

Kn√
log n

n

= 1.

The crucial step to complete the proof was the improvement of the estimates
of the polynomial Bohnenblust–Hille inequality that was only achieved by means
of the Hölder inequality for mixed sums.

5.4 Hardy–Littlewood’s inequality constants

Although Hölder’s inequality for mixed ℓp spaces dates back to the 1960’s, its
full importance in the subjects mentioned throughout this paper was just very
recently realized. New consequences are still appearing (see, for instance [6–8,
23]). The last applications of the Hölder inequality for mixed ℓp spaces presented
here concern the Hardy–Littlewood inequality and the theory of multiple sum-
ming multilinear operators. As in the case of the Bohnenblust–Hille inequality
(Section 5) the Hölder inequality for multiple exponents allows a significant im-
provement in the constants of the Hardy–Littlewood inequality.

Given an integer m ≥ 2, the Hardy–Littlewood inequality (see [4, 42, 54])
asserts that for 2m ≤ p ≤ ∞ there exists a constant CK

m,p ≥ 1 such that, for all
continuous m–linear forms T : ℓn

p × · · · × ℓn
p → K and all positive integers n,

(
n

∑
j1,...,jm=1

∣∣T(ej1 , . . . , ejm)
∣∣ 2mp

mp+p−2m

)mp+p−2m
2mp

≤ CK
m,p ‖T‖ . (5.9)

Using the generalized Kahane–Salem–Zygmund inequality (see [4]) one can

easily verify that the exponents
2mp

mp+p−2m are optimal. When p = ∞, using that
2mp

mp+p−2m = 2m
m+1 , we recover the classical Bohnenblust–Hille inequality (see The-

orem 5.2 and [16]).
From [10] we know that Bmult

K,m has a subpolynomial growth. On the other
hand, the best known upper bounds for the constants in (5.9) were, until just

recently,
(√

2
)m−1

(see [4, 5, 34]). However, a suitable use of Theorem 3.2 shows

that
(√

2
)m−1

can be improved (see [8]) to

CR
m,p ≤

(√
2
) 2m(m−1)

p
(

Bmult
R,m

) p−2m
p
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for real scalars and to

CC
m,p ≤

(
2√
π

) 2m(m−1)
p (

Bmult
C,m

) p−2m
p

for complex scalars. These estimates are substantially better than
(√

2
)m−1

be-

cause Bmult
K,m has a subpolynomial growth. In particular, if p > m2 we conclude

that CK
m,p has a subpolynomial growth.

5.5 Separately summing operators

Hölder’s inequality is also used to generalize recent results on the theory of mul-
tiple summing multilinear operators. In [30], and for m-linear operators on q-
cotype Banach spaces, the authors introduced the notion separately (r, 1)-summing,
with 1 ≤ r ≤ q < ∞, which means that, for any (m − 1)-coordinates fixed, the
resulting linear operator is (r, 1)-summing. Using separately summing maps, the

authors concluded that the initial operator is multiple
(

qrm
q+(m−1)r

, 1
)

-summing.

In [6] it is presented the concept of n-separability summing, which stands for the
m-linear operators that are multiple summing in n-coordinates, when there are
m − n other coordinates fixed. Using suitable interpolation, the authors provide
N-separability from n-separability summing, with n < N ≤ m. This result gen-
eralizes the previous one and provides more efficient exponents in some special
cases. Moreover, it is also useful to provide estimates for the constants of some
variation of Bohnenblust–Hille inequalities introduced in [51, Appendix A] and
[52].

Acknowledgement. The authors thank the anonymous referees for important sug-
gestions that helped to improve the final version of this survey.
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[38] J. Ford and A. Gál, Hadamard tensors and lower bounds on multiparty communi-
cation complexity, Automata, languages and programming, Lecture Notes in
Comput. Sci., vol. 3580, Springer, Berlin, 2005, pp. 1163–1175.

[39] J. J. F. Fournier, Mixed norms and rearrangements: Sobolev’s inequality and
Littlewood’s inequality, Ann. Mat. Pura Appl. (4) 148 (1987), 51–76, DOI
10.1007/BF01774283. MR932758 (89e:46037)

[40] D. J. H. Garling, Inequalities: a journey into linear analysis, Cambridge Univer-
sity Press, Cambridge, 2007.

[41] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70
(1981), no. 3, 231–283 (1982).

[42] G. Hardy and J. E. Littlewood, Bilinear forms bounded in space [p, q], Quart. J.
Math. 5 (1934), 241–254.

[43] L. A. Harris, Bounds on the derivatives of holomorphic functions of vectors, Anal-
yse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst.
Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), Hermann, Paris,
1975, pp. 145–163. Actualités Aci. Indust., No. 1367.
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