Vanishing theorems of the basic harmonic forms
on a complete foliated Riemannian manifold
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Abstract

A well-known result by M. Min-Oo et al. states that there are no nontriv-
ial basic harmonic 7 (0 < r < g = codimF)-forms on a compact foliated
Riemannian manifold (M, F). We extend this result to a complete foliated
Riemannian manifold.

1 Introduction

Let (M, g, F) be a foliated Riemannian manifold with a foliation F and a bundle-
like metric ¢ with respect to F. A foliated Riemannian manifold is a Riemannian
manifold with a Riemannian foliation, i.e., a foliation on a smooth manifold such
that the normal bundle is endowed with a metric whose Lie derivative is zero
along leaf directions (see [11]). A Riemannian metric on M is bundle-like if the
leaves of the foliation F are locally equidistant, that is, the metric ¢ on M induces
a holonomy invariant transverse metric on the normal bundle Q = TM/TF,
where T F is the tangent bundle of /. Every Riemannian foliation admits bundle-
like metrics. Many researchers have studied basic forms and the basic Laplacian
on foliated Riemannian manifolds. Basic forms are locally forms on the space
of leaves; that is, forms ¢ satisfying i(X)¢ = i(X)d¢ = 0 for all X € TF.
Basic forms are preserved by the exterior derivative and are used to define basic
de-Rham cohomology groups Hj(F). The basic Laplacian A for a given bundle-
like metric is a version of the Laplace operator that preserves the basic forms.
It is well-known [5,12] that on a closed oriented manifold M with a transversally
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oriented Riemannian foliation F, Hy(F) = Hp(F), where Hi(F) = kerAg is
finite dimensional. And so xp(F) = Y.1_,(—1)" dim H%(F), where x5(F) is the
basic Euler characteristic [2]. In 1991, M. Min-Oo et al. [8] proved that on a closed
foliated Riemannian manifold M, if the transversal curvature operator of F is
positive definite, then H;(F) =0 (0 < r < g), that is, any basic harmonic r-form
is trivial.

In this paper, we study the basic r-forms on a complete foliated Riemannian
manifold.

Main Theorem. Let (M, g, F) be a complete foliated Riemannian manifold and all
leaves be compact. Assume that the mean curvature form is bounded and coclosed.

(1) If the transversal Ricci curvature of JF is positive-definite, then any L2-basic harmonic
1-forms ¢ with ¢ € Sp are trivial.

(2) If the curvature endomorphism of F is positive-definite, then any L?-basic harmonic
r-forms ¢ with ¢ € Sp are trivial.

Here Sp is the Sobolev space of basic forms whose derivative belong to L2V (F).

Note that in 1980, H. Kitahara [7] proved that under the same condition of the
transversal Ricci curvature, there are no nontrivial basic Ap-harmonic 1-forms
with finite global norms. Here Ar is a different operator to the basic Laplacian
Ag. If F is minimal, then At = Ag.

2 Preliminaries

Let (M, g, F) be a (p + q)-dimensional complete foliated Riemannian manifold
with a foliation F of codimension g and a bundle-like metric g with respect to
F. Let TM be the tangent bundle of M, TF its integrable subbundle given by
F,and Q = TM/TF the corresponding normal bundle of /. Then we have an
exact sequence of vector bundles

00— TF — TMé’Q 0, 2.1)

where 71 : TM — Q is a projection and ¢ : Q — TF* is a bundle map satisfying
moo = id. Let gg be the holonomy invariant metric on Q induced by g, ie.,
8(X)go = 0 for any vector field X € TF, where 0(X) is the transverse Lie deriva-
tive [4]. Let R9 and Ric® be the transversal curvature tensor and transversal Ricci
operator of F with respect to the transversal Levi-Civita connection V€ = V in
Q [12], respectively. A differential form ¢ € Q' (M) is basic if i(X)¢ = 0 and
i(X)d¢ = 0 for all X € TF. In a distinguished chart (xq,- -, xp;y1,- -+ ,y4) of F,
a basic r-form ¢ is expressed by

(P = Z (Pal"'ardyal ASERRA dyarf

m<---<ay

where the functions ¢;;...,, are independent of x. Let O} (F) be the set of all basic
r-forms on M. Then (' (M) = Qf(F) & QF(F)* [1]. Now, we recall the star
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operator % : QO (F) — QF ' (F) given by [5,10]

*p= (P (9 AxF), V9 € Qp(F), (22)

where xr is the characteristic form of F and * is the Hodge star operator
associated to g. For any basic forms ¢,y € Qf(F), it is well-known [10] that
¢ A Fp = 1 A %¢ and ¥2¢ = (—1)"7=")¢. The operator dp is the restriction of d to
the basic forms, i.e., dg = d|QE(}—). Letdr = dg — kgA and 67 = (—1)70F D545,
where «p is the basic part of the mean curvature form « of F [1]. Note that xp is
closed, i.e., dkg = 0[9,12]. The operator 85 : Q% (F) — Q1 (F) is defined by

Spp = (—1)1 D 3drzg = or¢ +i(xk5) 0, (2.3)

where (-)* is the go-dual vector field of (-). Generally, &5 is not a restriction of
0 on Qf(F), ie., dp # 5|er3(}-), where ¢ is the formal adjoint of d. But dpw =
0¢ for any basic 1-form ¢. Let Ap = dpdp + dpdp be a basic Laplacian. Then
AM]Q%(J-E) = Ag [5], where AM is the Laplacian on M. Let {E;}(a = 1,---,q) be

a local orthonormal basic frame of Q and 6% a gp-dual 1-form to E;. We define

ViV : Q(F) = QF(F) by
ViVe=-Y Vi p + VK% , (2.4)
a
where V%{,Y = VxVy — VVZ}\(/IY for any X,Y € TM and VM is the Levi-Civita

connection with respect to g. Then the generalized Weitzenbock type formula on
QO (F) is given by [3]

Apd = ViVup + F() + A ¢ (2.5)
for any ¢ € Op(F), where F = Y1, | 0* N i(Ey)RQ(Ey, E,) and

Ayp =0(Y)p — Vy. (2.6)

In particular, for a 1-form ¢, F(¢)! = Ric?(¢?) and Ays = —Vi)(Y). Let
O3 ,(F) be the space of basic forms with compact supports.
Let v be the transversal volume form, i.e., *v = xr. The pointwise inner
product (-, -) on Q% (F) is given by
(P p)yv=pAxp (2.7)

for any basic forms ¢, € Qp(F). And the global inner product < -,- > on
Q}(F) is defined by

<o p>= [ (0¥ @3)

for any ¢, i € Qf(F), one of which has compact support, where pup = v A x r is
the volume form with respect to g. It is well-known [3] that < V{Vu¢p,p >=
< Vu@, Vutp > forany ¢, € O (F) and

<K dB(P,(P > =< ¢, 53([] > (2.9)
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forany ¢ € Qf (F), ¢ € ngl(]: ). The basic form ¢ is said to be L?-basic form
if ¢ has finite global norm, i.e., [|§|*> < co. Let H},(F) be the space of L*-basic
harmonic forms, i.e.,

B2(F) ={¢ € LPOR(F) | dpgp = 6p¢p = 0}. (2.10)

Generally, the space H},(F) can have infinite dimension. And if the dimension
of Hp,(F) is finite, then it depends on the bundle-like metric. Trivially, if M is
compact, then Hp,(F) = Hp(F). So we study the vanishing properties of the
L?-basic harmonic spaces on a complete foliated Riemannian manifold.

Remark 2.1. (1) The operator é7 is the formal adjoint of dp with respect to the
global norm (-, -), which is given by

(¢, ) = /M<4>, PYv Adxy A~ Aday. 2.11)

Let At = dgdér + drdp be a Laplacian. If the foliation is minimal, then é1 = Jp.
So AB = AT-

(2) In 1980, H. Kitahara [7] proved that if the transversal Ricci curvature is
nonnegative and positive at some point, then there are no nontrivial L2-basic
Ar-harmonic 1-forms.

3 Vanishing theorem

Let (M, g, F) be a complete foliated Riemannian manifold with a foliation F of
codimension ¢ and a bundle-like metric ¢ with respect to F. Assume that all
leaves of F are compact. Now, we consider a smooth function y on R satisfying

(i) 0<u(t) <lonR, (i) u(t)=1fort <1, (iii) u(t) =0 fort > 2.

Let xo be a point in M. For each point y € M, we denote by p(y) the distance
between leaves through xy and y. For any real number / > 0, we define a Lips-
chitz continuous function w; on M by

wi(y) = ule(y)/1).

Trivially, wj is a basic function. Let B(I) = {y € M|p(y) < I} for I > 0. Then w;,
satisfies the following properties:

0<w(y)<1 foranyye M
supp w; C B(21)

wi(y) =1 for any y € B(l)
liml_m w) = 1
|dpw;| < % almost everywhere on M,

where C is a positive constant independent of / [13]. Hence w;y has compact
support for any basic form ¢ € QO (F) and w;yp — ¢ (strongly) when [ — oo.
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Lemma 3.1. [6] For any ¢ € Qf(F), there exists a number A depending only on p,
such that

AZ
HdBwl N (PH%(ZI) < ql—zu()b”%i(ﬂ)’

||dBwl A *(PH%E(ZI) < qlz ||(P||%§(21)’
AZ
|dpw; ®<P||%;(7_l) < ql—2||¢||%3(21)'

where || 9|13 =< ¢, ¢ >pan=[p)(¢ ) 1im-
Proposition 3.2. For any L2-basic form , if Agpp = 0, then dgip = 0 and 6z = 0.
Proof. Let ¢ be a L?-basic form. Then we have
< Ay, Wi >pon=< dpip, dp(wiP) >pa) + < 0py, p(wi) >py - (3.1)
By a direct calculation, we have

dp(w?Y) = widpy + 2widpw; A P, (3.2)
OB (wlztp) = a)12531p + (—1)”7(r+1)+1>T<(2w1dBw1 A >T<1.P) (3.3)

From (3.1), (3.2) and (3.3), if Apy = 0, then

lordp |32y + llrdeill3an
= —2 < wydpp, dgw; A gy +2(—1)T0) < widpy, F(dpwy A FP) Spo -
Hence by the the Schwartz’s inequality and Lemma 3.1, we have
lodp I3 ) + 01095

B
< erl|widpyl|3 ) + e2llwidpp |3 + 71||1P||%(21)

for some positive real numbers €1, €; and B;. Therefore, we have

B
||wldB¢’||%3(21) + ||WI5B¢’||%3(21) < TZ||¢||%3(21)

for some positive real number B,. Since  is the L?-basic form, letting I — oo,
d Blp = (SBlP =0. u

Remark 3.3. In 1979, H. Kitahara [6] proved the corresponding result with the
Laplacian A7. Namely, on a complete foliated manifold, if Ar¢ = 0, then

dpp = d7¢ = 0.

Now we prove the vanishing theorem of the L?-basic harmonic form on a
complete foliated Riemannian manifold. First of all, we prepare some lemmas.
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Lemma 3.4. Let (M, g, F) be a complete foliated Riemannian manifold whose leaves are
compact. Suppose that xp is bounded and coclosed. Then for any L2-basic harmonic form

P,
limsup < A ; ¢, wi¢ >pn= 0. (3.4)
B

[—o00

Proof. Let ¢ be a L?-basic harmonic form. Since 6(X)¢ = dpi(X)¢, from (2.6)
we have

K A, wip >pon=< dpi (i}, wi¢ Spo) — < Vid,wip >0y (35)
B B
Since dp¢ = 0, from (3.3) and Lemma 3.1, we have
| < dpi(k})p, wip Spoy | = 2| < wyi(ich)p, %(dpwy A 39) >py |

. 1 -

< eslwri(cy)l o) + s A 29l
) B

< €3||w11(7<%)¢||%;(21) + Z_;”‘P“zB(zl)

for some positive real numbers €3 and B;. By using ]i(K%)ch + |kp A @]? =
x5 |2|$|?, we have

. B
| < dni(i)p, w39 i) | < e max(xal)|wigldoy + 219130 G

On the other hand, since égxp = 0, by a direct calculation, we have

1
< VK%@CU?‘P >pn = 5 < dp(|wip|?), x5 >pr) — < Wi, K (W) >

= — < wig, Kh(w)p Sp(a) -

Hence by the Schwartz inequality, we have

| < VK%(P, 602247 >>B(21) | = | < w¢, Kﬁg(wl)‘l’ 2>B(21) |

B
< eallwillf ar) + 7 max(Ix?) 9115 (37)

for a positive real numbers €4 and Bs. From (3.6) and (3.7), by letting I — oo, we
have

imsup | < (00, > | < e max(sa ) o
—00
limsup | < VK%QD,CU%(P >pon | < eal|gp]*.

|— o0

Since €3 and €4 are arbitrary positive numbers, we have

limsup | < dBi(K%)(P, Wi >y | =0, (3.8)
[—00

limsup | < V :¢,wip >p | = 0. (3.9)
[—o00 B

Hence from (3.5), (3.8) and (3.9), the proof is completed. [ |
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Theorem 3.5. Let (M, g, F) be as in Lemma 3.4. Suppose that kg is bounded and
coclosed. If the curvature endomorphism F of F is positive-definite, then any L?- basic
harmonic r-forms ¢ with ¢ € Sp are trivial, i.e., Hy ,(F) = {0}.

Proof. Let ¢ be a L2-basic harmonic r-form. From (2.5) and Proposition 3.2, we
have

(ViVit, wig) + (F(¢9), wi¢) + (A ¢, wi¢) =0. (3.10)
On the other hand, a direct calculation gives
< ViVt 0 >pop) =< Vud, 2w0idpw; @ ¢ >peory +wiVadlgoy- (3:11)
From Lemma 3.1, we have
| < Vg, 2widpw; @ ¢ >p) | < esllwrVudl[F o + %H‘l’”%(zz)

for some positive constants €5 and Bs. Hence by letting | — oo, we have

limsup < Vi, 2wdpw; @ ¢ >po) < e[| Vo>,

[— o0

Since €5 is arbitrary and ¢ € Sp (i.e., ||Vu¢|* < o), we have

limsup < V¢, 2widpw; @ ¢ >p2n)= 0. (3.12)

|—o00

Hence from (3.11), (3.12) and Lemma 3.4, we have

IVi¢||* + limsup < F(¢), wi ¢ >pn =0, (3.13)

[—o0

which complete the proof. m

Since F(¢#) = Ric9(¢?) for any basic 1-form ¢, we have the following corol-
lary.

Corollary 3.6. Let (M, g, F) be as in Lemma 3.4. Suppose that kg is bounded and
coclosed. If the transversal Ricci curvature Ric® is positive-definite, then any L2-basic
harmonic 1-forms ¢ with ¢ € Sp are trivial, H%%,z(}_ ) = {0}.
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