# A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)\*

Nicolás Andruskiewitsch Iván Angiono Fiorela Rossi Bertone

#### **Abstract**

Let  $\mathcal{B}_{\mathfrak{q}}$  be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix  $\mathfrak{q} \in \mathbf{k}^{\theta \times \theta}$ . Let  $\mathcal{L}_{\mathfrak{q}}$  be the Lusztig algebra associated to  $\mathcal{B}_{\mathfrak{q}}$  [AAR]. We present  $\mathcal{L}_{\mathfrak{q}}$  as an extension (as braided Hopf algebras) of  $\mathcal{B}_{\mathfrak{q}}$  by  $\mathfrak{Z}_{\mathfrak{q}}$  where  $\mathfrak{Z}_{\mathfrak{q}}$  is isomorphic to the universal enveloping algebra of a Lie algebra  $\mathfrak{n}_{\mathfrak{q}}$ . We compute the Lie algebra  $\mathfrak{n}_{\mathfrak{q}}$  when  $\theta=2$ .

### 1 Introduction

**1.1** Let **k** be a field, algebraically closed and of characteristic zero. Let  $\theta \in \mathbb{N}$ ,  $\mathbb{I} = \mathbb{I}_{\theta} := \{1, 2, ..., \theta\}$ . Let  $\mathfrak{q} = (q_{ij})_{i,j \in \mathbb{I}}$  be a matrix with entries in  $\mathbf{k}^{\times}$ , V a vector space with a basis  $(x_i)_{i \in \mathbb{I}}$  and  $c^{\mathfrak{q}} \in GL(V \otimes V)$  be given by

$$c^{\mathfrak{q}}(x_i \otimes x_j) = q_{ij}x_j \otimes x_i,$$
  $i, j \in \mathbb{I}.$ 

Then  $(c^{\mathfrak{q}} \otimes \operatorname{id})(\operatorname{id} \otimes c^{\mathfrak{q}})(c^{\mathfrak{q}} \otimes \operatorname{id}) = (\operatorname{id} \otimes c^{\mathfrak{q}})(c^{\mathfrak{q}} \otimes \operatorname{id})(\operatorname{id} \otimes c^{\mathfrak{q}})$ , i.e.  $(V, c^{\mathfrak{q}})$  is a braided vector space and the corresponding Nichols algebra  $\mathcal{B}_{\mathfrak{q}} := \mathcal{B}(V)$  is called of diagonal type. Recall that  $\mathcal{B}_{\mathfrak{q}}$  is the image of the unique map of braided Hopf algebras  $\Omega: T(V) \to T^{c}(V)$  from the free associative algebra of V to the free associative coalgebra of V, such that  $\Omega_{|V} = \operatorname{id}_{V}$ . For unexplained terminology and notation, we refer to [AS].

Received by the editors in March 2016.

Communicated by Y. Zhang.

2010 Mathematics Subject Classification: 17B37, 16T20.

<sup>\*</sup>The work was partially supported by CONICET, Secyt (UNC), the MathAmSud project GR2HOPF

Remarkably, the explicit classification of all  $\mathfrak{q}$  such that dim  $\mathcal{B}_{\mathfrak{q}} < \infty$  is known [H2] (we recall the list when  $\theta = 2$  in Table 1). Also, for every  $\mathfrak{q}$  in the list of [H2], the defining relations are described in [A2, A3].

**1.2** Assume that  $\dim \mathcal{B}_{\mathfrak{q}} < \infty$ . Two infinite dimensional graded braided Hopf algebras  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  and  $\mathcal{L}_{\mathfrak{q}}$  (the Lusztig algebra of V) were introduced and studied in [A3, A5], respectively [AAR]. Indeed,  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  is a pre-Nichols, and  $\mathcal{L}_{\mathfrak{q}}$  a post-Nichols, algebra of V, meaning that  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  is intermediate between T(V) and  $\mathcal{B}_{\mathfrak{q}}$ , while  $\mathcal{L}_{\mathfrak{q}}$  is intermediate between  $\mathcal{B}_{\mathfrak{q}}$  and  $T^c(V)$ . This is summarized in the following commutative diagram:



The algebras  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  and  $\mathcal{L}_{\mathfrak{q}}$  are generalizations of the positive parts of the De Concini-Kac-Procesi quantum group, respectively the Lusztig quantum divided powers algebra. The distinguished pre-Nichols algebra  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  is defined discarding some of the relations in [A3], while  $\mathcal{L}_{\mathfrak{q}}$  is the graded dual of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ .

**1.3** The following notions are discussed in Section 2. Let  $\Delta_+^{\mathfrak{q}}$  be the generalized positive root system of  $\mathcal{B}_{\mathfrak{q}}$  and let  $\mathfrak{D}_{\mathfrak{q}} \subset \Delta_+^{\mathfrak{q}}$  be the set of Cartan roots of  $\mathfrak{q}$ . Let  $x_{\beta}$  be the root vector associated to  $\beta \in \Delta_+^{\mathfrak{q}}$ , let  $N_{\beta} = \operatorname{ord} q_{\beta\beta}$  and let  $Z_{\mathfrak{q}}$  be the subalgebra of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  generated by  $x_{\beta}^{N_{\beta}}$ ,  $\beta \in \mathfrak{D}_{\mathfrak{q}}$ . By [A5, Theorems 4.10, 4.13],  $Z_{\mathfrak{q}}$  is a braided normal Hopf subalgebra of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  and  $Z_{\mathfrak{q}} = {}^{\operatorname{co}\pi}\widetilde{\mathcal{B}}_{\mathfrak{q}}$ . Actually,  $Z_{\mathfrak{q}}$  is a true commutative Hopf algebra provided that

$$q_{\alpha\beta}^{N_{\beta}}=1, \qquad \forall \alpha, \beta \in \mathfrak{O}_{\mathfrak{q}}.$$
 (1)

Let  $\mathfrak{Z}_{\mathfrak{q}}$  be the graded dual of  $Z_{\mathfrak{q}}$ ; under the assumption (1)  $\mathfrak{Z}_{\mathfrak{q}}$  is a cocommutative Hopf algebra, hence it is isomorphic to the enveloping algebra  $\mathcal{U}(\mathfrak{n}_{\mathfrak{q}})$  of the Lie algebra  $\mathfrak{n}_{\mathfrak{q}} := \mathcal{P}(\mathfrak{Z}_{\mathfrak{q}})$ . We show in Section 3 that  $\mathcal{L}_{\mathfrak{q}}$  is an extension (as braided Hopf algebras) of  $\mathcal{B}_{\mathfrak{q}}$  by  $\mathfrak{Z}_{\mathfrak{q}}$ :

$$\mathcal{B}_{\mathfrak{g}} \stackrel{\pi^*}{\hookrightarrow} \mathcal{L}_{\mathfrak{g}} \stackrel{\iota^*}{\twoheadrightarrow} \mathfrak{Z}_{\mathfrak{g}}. \tag{2}$$

The main result of this paper is the determination of the Lie algebra  $\mathfrak{n}_{\mathfrak{q}}$  when  $\theta=2$  and the generalized Dynkin diagram of  $\mathfrak{q}$  is connected.

**Theorem 1.1.** Assume that dim  $\mathcal{B}_{\mathfrak{q}} < \infty$  and  $\theta = 2$ . Then  $\mathfrak{n}_{\mathfrak{q}}$  is either 0 or isomorphic to  $\mathfrak{g}^+$ , where  $\mathfrak{g}$  is a finite-dimensional semisimple Lie algebra listed in the last column of Table 1.

Assume that there exists a Cartan matrix  $\mathbf{a} = (a_{ij})$  of finite type, that becomes symmetric after multiplying with a diagonal  $(d_i)$ , and a root of unit q of odd order (and relatively prime to 3 if  $\mathbf{a}$  is of type  $G_2$ ) such that  $q_{ij} = q^{d_i a_{ij}}$  for all  $i, j \in \mathbb{I}$ . Then (2) encodes the quantum Frobenius homomorphism defined by Lusztig and Theorem 1.1 is a result from [L].

The penultimate column of Table 1 indicates the type of  $\mathfrak q$  as established in [AA]. Thus, we associate Lie algebras in characteristic zero to some contragredient Lie (super)algebras in positive characteristic. In a forthcoming paper we shall compute the Lie algebra  $\mathfrak n_\mathfrak q$  for  $\theta>2$ .

**1.4** The paper is organized as follows. We collect the needed preliminary material in Section 2. Section 3 is devoted to the exactness of (2). The computations of the various  $\mathfrak{n}_{\mathfrak{q}}$  is the matter of Section 4. We denote by  $G_N$  the group of N-th roots of 1, and by  $G'_N$  its subset of primitive roots.

### 2 Preliminaries

## 2.1 The Nichols algebra, the distinguished-pre-Nichols algebra and the Lusztig algebra

Let  $\mathfrak{q}$  be as in the Introduction and let  $(V, c^{\mathfrak{q}})$  be the corresponding braided vector space of diagonal type. We assume from now on that  $\mathcal{B}_{\mathfrak{q}}$  is finite-dimensional. Let  $(\alpha_j)_{j\in\mathbb{I}}$  be the canonical basis of  $\mathbb{Z}^{\theta}$ . Let  $\mathbf{q}: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathbf{k}^{\times}$  be the  $\mathbb{Z}$ -bilinear form associated to the matrix  $\mathfrak{q}$ , i.e.  $\mathbf{q}(\alpha_j, \alpha_k) = q_{jk}$  for all  $j, k \in \mathbb{I}$ . If  $\alpha, \beta \in \mathbb{Z}^{\theta}$ , we set  $q_{\alpha\beta} = \mathbf{q}(\alpha, \beta)$ . Consider the matrix  $(c_{ij}^{\mathfrak{q}})_{i,j\in\mathbb{I}}$ ,  $c_{ij} \in \mathbb{Z}$  defined by  $c_{ii}^{\mathfrak{q}} = 2$ ,

$$c_{ij}^{\mathfrak{q}} := -\min\left\{n \in \mathbb{N}_0 : (n+1)_{q_{ii}} (1 - q_{ii}^n q_{ij} q_{ji}) = 0\right\}, \qquad i \neq j.$$
 (3)

This is well-defined by [R]. Let  $i \in \mathbb{I}$ . We recall the following definitions:

- $\diamond$  The reflection  $s_i^{\mathfrak{q}} \in GL(\mathbb{Z}^{\theta})$ , given by  $s_i^{\mathfrak{q}}(\alpha_j) = \alpha_j c_{ij}^{\mathfrak{q}}\alpha_i, j \in \mathbb{I}$ .
- $\diamond$  The matrix  $\rho_i(\mathfrak{q})$ , given by  $\rho_i(\mathfrak{q})_{jk} = \mathbf{q}(s_i^{\mathfrak{q}}(\alpha_j), s_i^{\mathfrak{q}}(\alpha_k)), j, k \in \mathbb{I}$ .
- $\diamond$  The braided vector space  $\rho_i(V)$  of diagonal type with matrix  $\rho_i(\mathfrak{q})$ .

A basic result is that  $\mathcal{B}_{\mathfrak{q}} \simeq \mathcal{B}_{\rho_i(\mathfrak{q})}$ , at least as graded vector spaces.

The algebras T(V) and  $\mathcal{B}_{\mathfrak{q}}$  are  $\mathbb{Z}^{\theta}$ -graded by  $\deg x_i = \alpha_i, i \in \mathbb{I}$ . Let  $\Delta_+^{\mathfrak{q}}$  be the set of  $\mathbb{Z}^{\theta}$ -degrees of the generators of a PBW-basis of  $\mathcal{B}_{\mathfrak{q}}$ , counted with multiplicities [H1]. The elements of  $\Delta_+^{\mathfrak{q}}$  are called (positive) roots. Let  $\Delta^{\mathfrak{q}} = \Delta_+^{\mathfrak{q}} \cup -\Delta_+^{\mathfrak{q}}$ . Let

$$\mathcal{X} := \{ \rho_{j_1} \dots \rho_{j_N}(\mathfrak{q}) : j_1, \dots, j_N \in \mathbb{I}, N \in \mathbb{N} \}.$$

Then the generalized root system of  $\mathfrak{q}$  is the fibration  $\Delta \to \mathcal{X}$ , where the fiber of  $\rho_{j_1} \dots \rho_{j_N}(\mathfrak{q})$  is  $\Delta^{\rho_{j_1} \dots \rho_{j_N}(\mathfrak{q})}$ . The Weyl groupoid of  $\mathcal{B}_{\mathfrak{q}}$  is a groupoid, denoted  $\mathcal{W}_{\mathfrak{q}}$ ,

| Row | Generalized Dynkin diagrams                            | parameters                                | Type of $\mathcal{B}_{\mathfrak{q}}$ | $\mathfrak{n}_{\mathfrak{q}}\simeq \mathfrak{g}^+$ |
|-----|--------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------------|
| 1   | $q q^{-1} q$                                           | $q \neq 1$                                | Cartan A                             | $A_2$                                              |
| 2   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $q \neq \pm 1$                            | Super A                              | $A_1$                                              |
| 3   | $q  q^{-2}  q^2$                                       | $q \neq \pm 1$                            | Cartan B                             | B <sub>2</sub>                                     |
| 4   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $q \notin \mathbb{G}_4$                   | Super B                              | $A_1 \oplus A_1$                                   |
| 5   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_3 \not\ni q$        | $\mathfrak{br}(2,a)$                 | $A_1 \oplus A_1$                                   |
| 6   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_3'$                 | Standard B                           | 0                                                  |
| 7   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_{12}'$              | $\mathfrak{ufo}(7)$                  | 0                                                  |
|     | $-\zeta^{3}$ $\tau$ $-1$ $-\zeta^{3}$ $\tau^{-1}$ $-1$ |                                           |                                      |                                                    |
| 8   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}'_{12}$              | $\mathfrak{ufo}(8)$                  | $A_1$                                              |
| 9   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_9'$                 | brj(2;3)                             | $A_1 \oplus A_1$                                   |
| 10  | $q  q^{-3}  q^3$                                       | $q \notin \mathbb{G}_2 \cup \mathbb{G}_3$ | Cartan G <sub>2</sub>                | $G_2$                                              |
| 11  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_8'$                 | Standard $G_2$                       | $A_1 \oplus A_1$                                   |
| 12  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_{24}'$              | $\mathfrak{ufo}(9)$                  | $A_1 \oplus A_1$                                   |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |                                           |                                      |                                                    |
| 13  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_5'$                 | brj(2;5)                             | $B_2$                                              |
| 14  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_{20}'$              | ufo(10)                              | $A_1 \oplus A_1$                                   |
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                           |                                      |                                                    |
| 15  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_{15}'$              | ufo(11)                              | $A_1 \oplus A_1$                                   |
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                           |                                      |                                                    |
| 16  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\zeta \in \mathbb{G}_7'$                 | ufo(12)                              | $G_2$                                              |

Table 1: Lie algebras arising from Dynkin diagrams of rank 2.

that acts on this fibration, generalizing the classical Weyl group, see [H1]. We know from *loc. cit.* that  $\mathcal{W}_q$  is finite (and this characterizes finite-dimensional Nichols algebras of diagonal type).

Here is a useful description of  $\Delta_+^{\mathfrak{q}}$ . Let  $w \in \mathcal{W}_{\mathfrak{q}}$  be an element of maximal length. We fix a reduced expression  $w = \sigma_{i_1}^{\mathfrak{q}} \sigma_{i_2} \cdots \sigma_{i_M}$ . For  $1 \leq k \leq M$  set

$$\beta_k = s_{i_1}^{\mathfrak{q}} \cdots s_{i_{k-1}}(\alpha_{i_k}), \tag{4}$$

Then  $\Delta_+^{\mathfrak{q}} = \{\beta_k | 1 \leq k \leq M\}$  [CH, Prop. 2.12]; in particular  $|\Delta_+^{\mathfrak{q}}| = M$ .

The notion of Cartan root is instrumental for the definitions of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  and  $\mathcal{L}_{\mathfrak{q}}$ . First, following [A5] we say that  $i \in \mathbb{I}$  is a *Cartan vertex* of  $\mathfrak{q}$  if

$$q_{ij}q_{ji} = q_{ii}^{c_{ij}^{\mathfrak{q}}}, \qquad \text{for all } j \neq i, \tag{5}$$

Then the set of *Cartan roots* of q is

$$\mathfrak{O}_{\mathfrak{q}} = \{s_{i_1}^{\mathfrak{q}} s_{i_2} \dots s_{i_k}(\alpha_i) \in \Delta_+^{\mathfrak{q}} : i \in \mathbb{I} \text{ is a Cartan vertex of } \rho_{i_k} \dots \rho_{i_2} \rho_{i_1}(\mathfrak{q})\}.$$

Given a positive root  $\beta \in \Delta_+^{\mathfrak{q}}$ , there is an associated root vector  $x_{\beta} \in \mathcal{B}_{\mathfrak{q}}$  defined via the so-called Lusztig isomorphisms [H3]. Set  $N_{\beta} = \operatorname{ord} q_{\beta\beta} \in \mathbb{N}$ ,  $\beta \in \Delta_+^{\mathfrak{q}}$ . Also, for  $\mathbf{h} = (h_1, \dots, h_M) \in \mathbb{N}_0^M$  we write

$$x^{\mathbf{h}} = x_{\beta_M}^{h_M} x_{\beta_{M-1}}^{h_{M-1}} \cdots x_{\beta_1}^{h_1}.$$

Let  $\widetilde{N}_k = \begin{cases} N_{\beta_k} & \text{if } \beta_k \notin \mathcal{O}_{\mathfrak{q}}, \\ \infty & \text{if } \beta_k \in \mathcal{O}_{\mathfrak{q}}. \end{cases}$ . For simplicity, we introduce

$$\mathbf{H} = \{ \mathbf{h} \in \mathbb{N}_0^M : 0 \le h_k < \widetilde{N}_k, \text{ for all } k \in \mathbb{I}_M \}.$$
 (6)

By [A5, Theorem 3.6] the set  $\{x^{\mathbf{h}} \mid \mathbf{h} \in \mathbb{H}\}$  is a basis of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ .

As said in the Introduction, the Lusztig algebra associated to  $\mathcal{B}_{\mathfrak{q}}$  is the braided Hopf algebra  $\mathcal{L}_{\mathfrak{q}}$  which is the graded dual of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ . Thus, it comes equipped with a bilinear form  $\langle \; , \; \rangle : \widetilde{\mathcal{B}}_{\mathfrak{q}} \times \mathcal{L}_{\mathfrak{q}} \to \mathbf{k}$ , which satisfies for all  $x, x' \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ ,  $y, y' \in \mathcal{L}_{\mathfrak{q}}$ 

$$\langle y, xx' \rangle = \langle y^{(2)}, x \rangle \langle y^{(1)}, x' \rangle$$
 and  $\langle yy', x \rangle = \langle y, x^{(2)} \rangle \langle y', x^{(1)} \rangle$ .

If  $\mathbf{h} \in \mathbb{H}$ , then define  $\mathbf{y_h} \in \mathcal{L}_{\mathfrak{q}}$  by  $\langle \mathbf{y_h}, x^{\mathbf{j}} \rangle = \delta_{\mathbf{h}, \mathbf{j}}, \mathbf{j} \in \mathbb{H}$ . Let  $(\mathbf{h}_k)_{k \in \mathbb{I}_M}$  denote the canonical basis of  $\mathbb{Z}^M$ . If  $k \in \mathbb{I}_M$  and  $\beta = \beta_k \in \Delta_+^{\mathfrak{q}}$ , then we denote the element  $\mathbf{y}_{n\mathbf{h}_k}$  by  $y_{\beta}^{(n)}$ . Then the algebra  $\mathcal{L}_{\mathfrak{q}}$  is generated by

$$\{y_{\alpha}: \alpha \in \Pi_{\mathfrak{q}}\} \cup \{y_{\alpha}^{(N_{\alpha})}: \alpha \in \mathfrak{D}_{\mathfrak{q}}, x_{\alpha}^{N_{\alpha}} \in \mathcal{P}(\widetilde{\mathcal{B}}_{\mathfrak{q}})\},$$

by [AAR]. Moreover, by [AAR, 4.6], the following set is a basis of  $\mathcal{L}_{\mathfrak{q}}$ :

$$\{y_{\beta_1}^{(h_1)}\cdots y_{\beta_M}^{(h_M)}|\ (h_1,\ldots,h_M)\in \mathtt{H}\}.$$

### 2.2 Lyndon words, convex order and PBW-basis

For the computations in Section 4 we need some preliminaries on Kharchenko's PBW-basis. Let  $(V, \mathfrak{q})$  be as above and let  $\mathbb{X}$  be the set of words with letters in  $X = \{x_1, \ldots, x_{\theta}\}$  (our fixed basis of V); the empty word is 1 and for  $u \in \mathbb{X}$  we write  $\ell(u)$  the length of u. We can identify  $k\mathbb{X}$  with T(V).

**Definition 2.1.** Consider the lexicographic order in  $\mathbb{X}$ . We say that  $u \in \mathbb{X} - \{1\}$  is a *Lyndon word* if for every decomposition u = vw,  $v, w \in \mathbb{X} - \{1\}$ , then u < w. We denote by L the set of all Lyndon words.

A well-known theorem, due to Lyndon, established that any word  $u \in X$  admits a unique decomposition, named *Lyndon decomposition*, as a non-increasing product of Lyndon words:

$$u = l_1 l_2 \dots l_r, \qquad l_i \in L, l_r < \dots < l_1.$$
 (7)

Also, each  $l_i \in L$  in (7) is called a *Lyndon letter* of u.

Now each  $u \in L - X$  admits at least one decomposition  $u = v_1 v_2$  with  $v_1, v_2 \in L$ . Then the *Shirshov decomposition* of u is the decomposition  $u = u_1 u_2, u_1, u_2 \in L$ , such that  $u_2$  is the smallest end of u between all possible decompositions of this form.

For any braided vector space V, the *braided bracket* of  $x, y \in T(V)$  is

$$[x, y]_c := \text{multiplication } \circ (\text{id} - c) (x \otimes y).$$
 (8)

Using the identification  $T(V) = \mathbf{k} \mathbb{X}$  and the decompositions described above, we can define a **k**-linear endomorphism  $[-]_c$  of T(V) as follows:

$$[u]_c := \begin{cases} u, & \text{if } u = 1 \text{ or } u \in X; \\ [[v]_c, [w]_c]_c, & \text{if } u \in L - X, \ u = vw \text{ its Shirshov decomposition;} \\ [u_1]_c \dots [u_t]_c, & \text{if } u \in \mathbb{X} - L, u = u_1 \dots u_t \text{ its Lyndon decomposition.} \end{cases}$$

We will describe PBW-bases using this endomorphism.

**Definition 2.2.** For  $l \in L$ , the element  $[l]_c$  is the corresponding *hyperletter*. A word written in hyperletters is an *hyperword*; a *monotone hyperword* is an hyperword  $W = [u_1]_c^{k_1} \dots [u_m]_c^{k_m}$  such that  $u_1 > \dots > u_m$ .

Consider now a different order on  $\mathbb{X}$ , called *deg-lex order* [K]: For each pair  $u,v\in\mathbb{X}$ , we have that  $u\succ v$  if  $\ell(u)<\ell(v)$ , or  $\ell(u)=\ell(v)$  and u>v for the lexicographical order. This order is total, the empty word 1 is the maximal element and it is invariant by left and right multiplication.

Let *I* be a Hopf ideal of T(V) and R = T(V)/I. Let  $\pi : T(V) \to R$  be the canonical projection. We set:

$$G_I := \{ u \in \mathbb{X} : u \notin \mathbf{k} \mathbb{X}_{\succ u} + I \}.$$

Thus, if  $u \in G_I$  and u = vw, then  $v, w \in G_I$ . So, each  $u \in G_I$  is a non-increasing product of Lyndon words of  $G_I$ .

Let  $S_I := G_I \cap L$  and let  $h_I : S_I \to \{2,3,\dots\} \cup \{\infty\}$  be defined by:

$$h_I(u) := \min\left\{t \in \mathbb{N} : u^t \in \mathbf{k} \mathbb{X}_{\succ u^t} + I\right\}. \tag{9}$$

**Theorem 2.3.** [K] The following set is a PBW-basis of R = T(V)/I:

$$\{[u_1]_c^{k_1} \dots [u_m]_c^{k_m} : m \in \mathbb{N}_0, u_1 > \dots > u_m, u_i \in S_I, 0 < k_i < h_I(u_i)\}.$$

We refer to this base as *Kharchenko's PBW-basis* of T(V)/I (it depends on the order of X).

**Definition 2.4.** [A2, 2.6] Let  $\Delta_{\mathfrak{q}}^+$  be as above and let < be a total order on  $\Delta_{\mathfrak{q}}^+$ . We say that the order is *convex* if for each  $\alpha$ ,  $\beta \in \Delta_{\mathfrak{q}}^+$  such that  $\alpha < \beta$  and  $\alpha + \beta \in \Delta_{\mathfrak{q}}^+$ , then  $\alpha < \alpha + \beta < \beta$ . The order is called *strongly convex* if for each ordered subset  $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k$  of elements of  $\Delta_{\mathfrak{q}}^+$  such that  $\alpha = \sum_i \alpha_i \in \Delta_{\mathfrak{q}}^+$ , then  $\alpha_1 < \alpha < \alpha_k$ .

**Theorem 2.5.** [A2, 2.11] The following statements are equivalent:

- *The order is convex.*
- *The order is strongly convex.*
- The order arises from a reduced expression of a longest element  $w \in \mathcal{W}_{\mathfrak{q}}$ , cf. (4).

Now, we have two PBW-basis of  $\mathcal{B}_q$  (and correspondingly of  $\widetilde{\mathcal{B}}_q$ ), namely Kharchenko's PBW-basis and the PBW-basis defined from a reduced expression of a longest element of the Weyl groupoid. But both basis are reconciled by [AY, Theorem 4.12], thanks to [A2, 2.14]. Indeed, each generator of Kharchenko's PBW-basis is a multiple scalar of a generator of the secondly mentioned PBW-basis. So, for ease of calculations, in the rest of this work we shall use the Kharchenko generators.

The following proposition is used to compute the hyperword  $[l_{\beta}]_c$  associated to a root  $\beta \in \Delta_{\mathfrak{q}}^+$ :

**Proposition 2.6.** [A2, 2.17] For  $\beta \in \Delta_{\mathfrak{q}}^+$ ,

$$l_{\beta} = \begin{cases} x_{\alpha_i}, & \text{if } \beta = \alpha_i, \, i \in \mathbb{I}; \\ \max\{l_{\delta_1}l_{\delta_2}: \, \delta_1, \delta_2 \in \Delta_{\mathfrak{q}}^+, \delta_1 + \delta_2 = \beta, l_{\delta_1} < l_{\delta_2}\}, & \text{if } \beta \neq \alpha_i, \, i \in \mathbb{I}. \end{cases}$$

We give a list of the hyperwords appearing in the next section:

| Root                    | Hyperword                                             | Notation                           |
|-------------------------|-------------------------------------------------------|------------------------------------|
| $\alpha_i$              | $x_i$                                                 | $x_i$                              |
| $n\alpha_1 + \alpha_2$  | $(\operatorname{ad}_{c} x_{1})^{n} x_{2}$             | $x_{112}$                          |
| $\alpha_1 + 2\alpha_2$  | $[x_{\alpha_1+\alpha_2},x_2]_c$                       | $[x_{12}, x_2]_c$                  |
| $3\alpha_1 + 2\alpha_2$ | $[x_{2\alpha_1+\alpha_2}, x_{\alpha_1+\alpha_2}]_c$   | $[x_{112}, x_{12}]_c$              |
| $4\alpha_1 + 3\alpha_2$ | $[x_{3\alpha_1+2\alpha_2}, x_{\alpha_1+\alpha_2}]_c$  | $[[x_{112}, x_{12}]_c, x_{12}]_c$  |
| $5\alpha_1 + 3\alpha_2$ | $[x_{2\alpha_1+\alpha_2}, x_{3\alpha_1+2\alpha_2}]_c$ | $[x_{112}, [x_{112}, x_{12}]_c]_c$ |

We use an analogous notation for the elements of  $\mathcal{L}_{\mathfrak{q}}$ : for example we write  $y_{112,12}$  when we refer to the element of  $\mathcal{L}_{\mathfrak{q}}$  which corresponds to  $[x_{112}, x_{12}]_c$ .

### 3 Extensions of braided Hopf algebras

We recall the definition of braided Hopf algebra extensions given in [AN]; we refer to [BD, GG] for more general definitions. Below we denote by  $\underline{\Delta}$  the coproduct of a braided Hopf algebra A and by  $A^+$  the kernel of the counit.

First, if  $\pi: C \to B$  is a morphism of Hopf algebras in  ${}^H_H \mathcal{YD}$ , then we set

$$C^{\cos \pi} = \{ c \in C \mid (\mathrm{id} \otimes \pi) \underline{\Delta}(c) = c \otimes 1 \},\$$
$$^{\cos \pi} C = \{ c \in C \mid (\pi \otimes \mathrm{id}) \underline{\Delta}(c) = 1 \otimes c \}.$$

**Definition 3.1.** [AN, §2.5] Let H be a Hopf algebra. A sequence of morphisms of Hopf algebras in  ${}^H_H \mathcal{YD}$ 

$$\mathbf{k} \to A \stackrel{\iota}{\to} C \stackrel{\pi}{\to} B \to \mathbf{k} \tag{10}$$

is an extension of braided Hopf algebras if

- (i)  $\iota$  is injective,
- (ii)  $\pi$  is surjective,
- (iii)  $\ker \pi = C\iota(A^+)$  and
- (iv)  $A = C^{\cos \pi}$ , or equivalently  $A = {}^{\cos \pi}C$ .

For simplicity, we shall write  $A \stackrel{\iota}{\hookrightarrow} C \stackrel{\pi}{\twoheadrightarrow} B$  instead of (10).

This Definition applies in our context: recall that  $\mathcal{B}_{\mathfrak{q}} \simeq \widetilde{\mathcal{B}}_{\mathfrak{q}} / \langle x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}} \rangle$ . Let  $Z_{\mathfrak{q}}$  be the subalgebra of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  generated by  $x_{\beta}^{N_{\beta}}$ ,  $\beta \in \mathfrak{O}_{\mathfrak{q}}$ . Then

- The inclusion  $\iota: Z_{\mathfrak{q}} \to \widetilde{\mathcal{B}}_{\mathfrak{q}}$  is injective and the projection  $\pi: \widetilde{\mathcal{B}}_{\mathfrak{q}} \to \mathcal{B}_{\mathfrak{q}}$  is surjective.
- [A5, Theorem 4.10]  $Z_{\mathfrak{q}}$  is a *normal* Hopf subalgebra of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ ; since  $\ker \pi$  is the two-sided ideal generated by  $\iota(Z_{\mathfrak{q}}^+)$ ,  $\ker \pi = \widetilde{\mathcal{B}}_{\mathfrak{q}}\iota(Z_{\mathfrak{q}}^+)$ .
- $\circ$  [A5, Theorem 4.13]  $Z_{\mathfrak{q}} = {}^{\operatorname{co}\pi}\widetilde{\mathcal{B}}_{\mathfrak{q}}$ .

Hence we have an extension of braided Hopf algebras

$$Z_{\mathfrak{q}} \stackrel{\iota}{\hookrightarrow} \widetilde{\mathcal{B}}_{\mathfrak{q}} \stackrel{\pi}{\twoheadrightarrow} \mathcal{B}_{\mathfrak{q}}.$$
 (11)

The morphisms  $\iota$  and  $\pi$  are graded. Thus, taking graded duals, we obtain a new sequence of morphisms of braided Hopf algebras

$$\mathcal{B}_{\mathfrak{q}} \stackrel{\pi^*}{\hookrightarrow} \mathcal{L}_{\mathfrak{q}} \stackrel{\iota^*}{\twoheadrightarrow} \mathfrak{Z}_{\mathfrak{q}}. \tag{2}$$

**Proposition 3.2.** *The sequence* (2) *is an extension of braided Hopf algebras.* 

*Proof.* The argument of [A, 3.3.1] can be adapted to the present situation, or more generally to extensions of braided Hopf algebras that are graded with finitedimensional homogeneous components. The map  $\pi^*:\mathcal{B}_{\mathfrak{q}}\to\mathcal{L}_{\mathfrak{q}}$  is injective because  $\mathcal{B}_{\mathfrak{q}}\simeq\mathcal{B}_{\mathfrak{q}}^*$ ;  $\iota^*:\mathcal{L}_{\mathfrak{q}}\xrightarrow{\iota^*}\mathfrak{Z}_{\mathfrak{q}}$  is surjective being the transpose of a graded monomorphism between two locally finite graded vector spaces. Now, since  $Z_{\mathfrak{q}} = {}^{\operatorname{co}\pi}\widetilde{\mathcal{B}}_{\mathfrak{q}} = \widetilde{\mathcal{B}}_{\mathfrak{q}}^{\operatorname{co}\pi}$ , we have

$$\ker \iota^* = \mathcal{L}_{\mathfrak{q}} \mathcal{B}_{\mathfrak{q}}^+ = \mathcal{B}_{\mathfrak{q}}^+ \mathcal{L}_{\mathfrak{q}}. \tag{12}$$

Similarly  $\mathcal{L}_{\mathfrak{q}}^{\operatorname{co}\iota^*} = \mathcal{B}_{\mathfrak{q}}^*$  because  $\ker \pi^{\perp} = \mathcal{B}_{\mathfrak{q}}$ .

From now on, we assume the condition (1) on the matrix q mentioned in the Introduction, that is

$$q_{\alpha\beta}^{N_{\beta}}=1, \qquad \forall \alpha, \beta \in \mathfrak{O}_{\mathfrak{q}}.$$

The following result is our basic tool to compute the Lie algebra  $\mathfrak{n}_{\mathfrak{q}}$ .

**Theorem 3.3.** The braided Hopf algebra  $\mathfrak{Z}_{\mathfrak{q}}$  is an usual Hopf algebra, isomorphic to the universal enveloping algebra of the Lie algebra  $\mathfrak{n}_{\mathfrak{q}}=\mathcal{P}(\mathfrak{Z}_{\mathfrak{q}})$ . The elements  $\xi_{\beta}:=$  $\iota^*(y_{\beta}^{(N_{\beta})})$ ,  $\beta \in \mathfrak{O}_{\mathfrak{q}}$ , form a basis of  $\mathfrak{n}_{\mathfrak{q}}$ .

*Proof.* Let  $A_{\mathfrak{q}}$  be the subspace of  $\mathcal{L}_{\mathfrak{q}}$  generated by the ordered monomials  $y_{\beta_{i_1}}^{(r_1N_{\beta_{i_1}})}\dots y_{\beta_{i_k}}^{(r_kN_{\beta_{i_k}})}$  where  $\beta_{i_1}<\dots<\beta_{i_k}$  are all the Cartan roots of  $\mathcal{B}_{\mathfrak{q}}$  and  $r_1,\dots,r_k\in\mathbb{N}_0$ . We claim that the restriction of the multiplication  $\mu:\mathcal{B}_{\mathfrak{q}}\otimes A_{\mathfrak{q}}\to \mathbb{N}_0$  $\mathcal{L}_{\mathfrak{q}}$  is an isomorphism of vector spaces. Indeed,  $\mu$  is surjective by the commuting relations in  $\mathcal{L}_{\mathfrak{q}}$ . Also, the Hilbert series of  $\mathcal{L}_{\mathfrak{q}}$ ,  $\mathcal{B}_{\mathfrak{q}}$  and  $A_{\mathfrak{q}}$  are respectively:

$$\begin{split} \mathcal{H}_{\mathcal{L}_{\mathfrak{q}}} &= \prod_{\beta_{k} \in \mathfrak{D}_{\mathfrak{q}}} \frac{1}{1 - T^{\deg \beta}} \cdot \prod_{\beta_{k} \notin \mathfrak{D}_{\mathfrak{q}}} \frac{1 - T^{N_{\beta} \deg \beta}}{1 - T^{\deg \beta}}; \\ \mathcal{H}_{\mathcal{B}_{\mathfrak{q}}} &= \prod_{\beta_{k} \in \Delta_{\mathfrak{q}}^{+}} \frac{1 - T^{N_{\beta} \deg \beta}}{1 - T^{\deg \beta}}; \\ \mathcal{H}_{A_{\mathfrak{q}}} &= \prod_{\beta_{k} \in \mathfrak{D}_{\mathfrak{q}}} \frac{1}{1 - T^{N_{\beta} \deg \beta}}. \end{split}$$

Since the multiplication is graded and  $\mathcal{H}_{\mathcal{L}_q} = \mathcal{H}_{\mathcal{B}_q} \mathcal{H}_{A_q}$ ,  $\mu$  is injective. The claim follows and we have

$$\mathcal{L}_{\mathfrak{q}} = A_{\mathfrak{q}} \oplus \mathcal{B}_{\mathfrak{q}}^{+} A_{\mathfrak{q}}. \tag{13}$$

We next claim that  $\iota^*:A_{\mathfrak{q}}\to \mathfrak{Z}_{\mathfrak{q}}$  is an isomorphism of vector spaces. Indeed,

by (12),  $\ker \iota^* = \mathcal{B}_{\mathfrak{q}}^+ \mathcal{L}_{\mathfrak{q}} = \mathcal{B}_{\mathfrak{q}}^+ (\mathcal{B}_{\mathfrak{q}} A_{\mathfrak{q}}) = \mathcal{B}_{\mathfrak{q}}^+ A_{\mathfrak{q}}$ . By (13), the claim follows. By (1),  $Z_{\mathfrak{q}}$  is a commutative Hopf algebra, see [A5]; hence  $\mathfrak{Z}_{\mathfrak{q}}$  is a cocommutative Hopf algebra. Now the elements  $\xi_{\beta}:=\iota^*(y_{\beta}^{(N_{\beta})})$ ,  $\beta\in\mathfrak{O}_{\mathfrak{q}}$ , are primitive,

i.e. belong to  $\mathfrak{n}_{\mathfrak{q}} = \mathcal{P}(\mathfrak{Z}_{\mathfrak{q}})$ . The monomials  $\xi_{\beta_{i_1}}^{r_1} \dots \xi_{\beta_{i_k}}^{r_k}$ ,  $\beta_{i_1} < \dots < \beta_{i_k} \in \mathfrak{D}_{\mathfrak{q}}$ ,  $r_1, \dots, r_k \in \mathbb{N}_0$  form a basis of  $\mathfrak{Z}_{\mathfrak{q}}$ , hence

$$\mathfrak{Z}_{\mathfrak{q}} = \mathbf{k} \langle \xi_{\beta} : \beta \in \mathfrak{O}_{\mathfrak{q}} \rangle \subseteq \mathcal{U}(\mathfrak{n}_{\mathfrak{q}}) \subseteq \mathfrak{Z}_{\mathfrak{q}}.$$

We conclude that  $(\xi_{\beta})_{\beta \in \mathfrak{D}_{\mathfrak{q}}}$  is a basis of  $\mathfrak{n}_{\mathfrak{q}}$  and that  $\mathfrak{Z}_{\mathfrak{q}} = \mathcal{U}(\mathfrak{n}_{\mathfrak{q}})$ .

### 4 Proof of Theorem 1.1

In this section we consider all indecomposable matrices  $\mathfrak{q}$  of rank 2 whose associated Nichols algebra  $\mathcal{B}_{\mathfrak{q}}$  is finite-dimensional; these are classified in [H2] and we recall their diagrams in Table 1. For each  $\mathfrak{q}$  we obtain an isomorphism between  $\mathfrak{Z}_{\mathfrak{q}}$  and  $\mathcal{U}(\mathfrak{g}^+)$ , the universal enveloping algebra of the positive part of  $\mathfrak{g}$ . Here  $\mathfrak{g}$  is the semisimple Lie algebra of the last column of Table 1, with Cartan matrix  $A = (a_{ij})_{1 \leq i,j \leq 2}$ . By simplicity we denote  $\mathfrak{g}$  by its type, e.g.  $\mathfrak{g} = A_2$ .

We recall that we assume (1) and that  $\xi_{\beta}=\iota^*(y_{\beta}^{(N_{\beta})})\in\mathfrak{Z}_{\mathfrak{q}}.$  Thus,

$$[\xi_{\alpha}, \xi_{\beta}]_c = \xi_{\alpha}\xi_{\beta} - \xi_{\beta}\xi_{\alpha} = [\xi_{\alpha}, \xi_{\beta}],$$
 for all  $\alpha, \beta \in \mathfrak{O}_{\mathfrak{q}}$ .

The strategy to prove the isomorphism  $\mathfrak{F}:\mathcal{U}(\mathfrak{g}^+)\to\mathfrak{Z}_\mathfrak{q}$  is the following:

- 1. If  $\mathfrak{O}_{\mathfrak{q}} = \emptyset$ , then  $\mathfrak{g}^+ = 0$ . If  $|\mathfrak{O}_{\mathfrak{q}}| = 1$ , then  $\mathfrak{g} = \mathfrak{sl}_2$ , i.e. of type  $A_1$ .
- 2. If  $|\mathfrak{D}_{\mathfrak{q}}|=2$ , then  $\mathfrak{g}$  is of type  $A_1\oplus A_1$ . Indeed, let  $\mathfrak{D}_{\mathfrak{q}}=\{\alpha,\beta\}$ . As  $\mathfrak{Z}_{\mathfrak{q}}$  is  $\mathbb{N}_0^{\theta}$ -graded,  $[\xi_{\alpha},\xi_{\beta}]\in\mathfrak{n}_{\mathfrak{q}}$  has degree  $N_{\alpha}\alpha+N_{\beta}\beta$ . Thus  $[\xi_{\alpha},\xi_{\beta}]=0$ .
- 3. Now assume that  $|\mathfrak{O}_{\mathfrak{q}}|>$  2. We recall that  $\mathfrak{Z}_{\mathfrak{q}}$  is generated by

$$\{\xi_{\beta}|x_{\beta}^{N_{\beta}} \text{ is a primitive element of } \widetilde{\mathcal{B}}_{\mathfrak{q}}\}.$$

We compute the coproduct of all  $x_{\beta}^{N_{\beta}}$  in  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ ,  $\beta \in \mathfrak{O}_{\mathfrak{q}}$ , using that  $\underline{\Delta}$  is a graded map and  $Z_{\mathfrak{q}}$  is a Hopf subalgebra of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ . In all cases we get two primitive elements  $x_{\beta_1}^{N_{\beta_1}}$  and  $x_{\beta_2}^{N_{\beta_2}}$ , thus  $\mathfrak{Z}_{\mathfrak{q}}$  is generated by  $\xi_{\beta_1}$  and  $\xi_{\beta_2}$ .

4. Using the coproduct again, we check that

$$(ad \, \xi_{\beta_i})^{1-a_{ij}} \xi_{\beta_j} = 0, \qquad 1 \le i \ne j \le 2.$$
 (14)

To prove (14), it is enough to observe that  $\mathfrak{n}_{\mathfrak{q}}$  has a trivial component of degree  $N_{\beta_i}(1-a_{ij})\beta_i+N_{\beta_j}\beta_j$ . Now (14) implies that there exists a surjective map of Hopf algebras  $\mathfrak{F}:\mathcal{U}(\mathfrak{g}^+) \twoheadrightarrow \mathfrak{Z}_{\mathfrak{q}}$  such that  $e_i \mapsto \xi_{\beta_i}$ .

5. To prove that  $\mathfrak{F}$  is an isomorphism, it suffices to see that the restriction  $\mathfrak{g}^+ \stackrel{*}{\to} \mathfrak{n}_{\mathfrak{q}}$  is an isomorphism; but in each case we see that \* is surjective, and  $\dim \mathfrak{g}^+ = \dim \mathfrak{n}_{\mathfrak{q}} = |\mathfrak{O}_{\mathfrak{q}}|$ .

We refer to [A1, AAY, A4] for the presentation, root system and Cartan roots of braidings of standard, super and unidentified type respectively.

**Row 1.** Let  $q \in \mathbb{G}'_N$ ,  $N \geq 2$ . The diagram  $q^{-1} q^{-1}$  corresponds to a braiding of Cartan type  $A_2$  whose set of positive roots is  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, \alpha_1 + \alpha_2, \alpha_2\}$ . In this case  $\mathfrak{O}_{\mathfrak{q}} = \Delta_{\mathfrak{q}}^+$  and  $N_{\beta} = N$  for all  $\beta \in \mathfrak{O}_{\mathfrak{q}}$ . By hypothesis,  $q_{12}^N = q_{21}^N = 1$ . The elements  $x_1, x_2 \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are primitive and

$$\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - q^{-1})x_1 \otimes x_2.$$

Then the coproducts of the elements  $x_1^N, x_{12}^N, x_2^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are:

$$\underline{\Delta}(x_1^N) = x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^N) = x_2^N \otimes 1 + 1 \otimes x_2^N; \underline{\Delta}(x_{12}^N) = x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + (1 - q^{-1})^N q_{21}^{\frac{N(N-1)}{2}} x_1^N \otimes x_2^N.$$

As  $[\xi_2, \xi_{12}]$ ,  $[\xi_1, \xi_{12}] \in \mathfrak{n}_{\mathfrak{q}}$  have degree  $N\alpha_1 + 2N\alpha_2$ , respectively  $2N\alpha_1 + N\alpha_2$ , and the components of these degrees of  $\mathfrak{n}_{\mathfrak{q}}$  are trivial, we have

$$[\xi_2, \xi_{12}] = [\xi_1, \xi_{12}] = 0.$$

Again by degree considerations, there exists  $c \in \mathbf{k}$  such that  $[\xi_2, \xi_1] = c\xi_{12}$ . By the duality between  $\mathfrak{Z}_{\mathfrak{q}}$  and  $Z_{\mathfrak{q}}$  we have that

$$[\xi_2, \xi_1] = (1 - q^{-1})^N q_{21}^{\frac{N(N-1)}{2}} \xi_{12}.$$

Then there exists a morphism of algebras  $\mathfrak{F}:\mathcal{U}(A_2^+)\to\mathfrak{Z}_\mathfrak{q}$  given by

$$e_1 \mapsto \xi_1, \qquad e_2 \mapsto \xi_2.$$

This morphism takes a basis of  $A_2^+$  to a basis of  $\mathfrak{n}_{\mathfrak{q}}$ , so  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(A_2^+)$ .

**Row 2.** Let  $q \in G'_N$ ,  $N \ge 3$ . These diagrams correspond to braidings of super type A with positive roots  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, \alpha_1 + \alpha_2, \alpha_2\}$ .

The first diagram is  $0 - \frac{q^{-1} - 1}{2}$ . In this case the unique Cartan root is  $\alpha_1$  with  $N_{\alpha_1} = N$ . The element  $x_1^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  is primitive and  $\mathfrak{Z}_{\mathfrak{q}}$  is generated by  $\mathfrak{Z}_1$ . Hence  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(A_1^+)$ .

The second diagram gives a similar situation, since  $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1 + \alpha_2\}$ .

**Row 3.** Let  $q \in \mathbb{G}'_N$ ,  $N \geq 3$ . The diagram  $q^{-2} q^{-2}$  corresponds to a braiding of Cartan type  $B_2$  with  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$ . In this case  $\mathfrak{O}_{\mathfrak{q}} = \Delta_{\mathfrak{q}}^+$ . The coproducts of the generators of  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  are:

$$\underline{\Delta}(x_1) = x_1 \otimes 1 + 1 \otimes x_1; \qquad \underline{\Delta}(x_2) = x_2 \otimes 1 + 1 \otimes x_2; 
\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - q^{-2}) x_1 \otimes x_2; 
\underline{\Delta}(x_{112}) = x_{112} \otimes 1 + 1 \otimes x_{112} + (1 - q^{-1})(1 - q^{-2}) x_1^2 \otimes x_2 
+ q(1 - q^{-2}) x_1 \otimes x_{12}.$$

We have two different cases depending on the parity of N.

1. If *N* is odd, then  $N_{\beta} = N$  for all  $\beta \in \Delta_{\mathfrak{q}}^+$ . In this case,

$$\underline{\Delta}(x_1^N) = x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^N) = x_2^N \otimes 1 + 1 \otimes x_2^N; 
\underline{\Delta}(x_{12}^N) = x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + (1 - q^{-2})^N x_1^N \otimes x_2^N; 
\underline{\Delta}(x_{112}^N) = x_{112}^N \otimes 1 + 1 \otimes x_{112}^N + (1 - q^{-1})^N (1 - q^{-2})^N x_1^{2N} \otimes x_2^N + C x_1^N \otimes x_{12}^N,$$

for some  $C \in \mathbf{k}$ . Hence, in  $\mathfrak{Z}_{\mathfrak{q}}$  we have the relations

$$\begin{split} [\xi_{1}, \xi_{2}] &= (1 - q^{-2})^{N} \xi_{12}; \\ [\xi_{12}, \xi_{1}] &= C \xi_{112}; \\ [\xi_{1}, \xi_{2}]_{c} &= (1 - q^{-1})^{N} (1 - q^{-2})^{N} \xi_{112} + (1 - q^{-2})^{N} \xi_{1} \xi_{12}; \\ [\xi_{1}, \xi_{112}] &= [\xi_{2}, \xi_{12}] = 0. \end{split}$$

Thus there exists an algebra map  $\mathfrak{F}:\mathcal{U}(B_2^+)\to\mathfrak{Z}_\mathfrak{q}$  given by  $e_1\mapsto\xi_1$ ,  $e_2\mapsto\xi_2$ . Moreover,  $\mathfrak{F}$  is an isomorphism, and so  $\mathfrak{Z}_\mathfrak{q}\simeq\mathcal{U}(B_2^+)$ . Using the relations of  $\mathcal{U}(B_2^+)$  we check that  $C=2(1-q^{-1})^N(1-q^{-2})^N$ .

(2) If N=2M>2, then  $N_{\alpha_1}=N_{\alpha_1+\alpha_2}=N$  and  $N_{2\alpha_1+\alpha_2}=N_{\alpha_2}=M$ . In this case we have

$$\begin{split} \underline{\Delta}(x_1^N) = & x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^M) = x_2^M \otimes 1 + 1 \otimes x_2^M; \\ \underline{\Delta}(x_{12}^N) = & x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + (1 - q^{-2})^N q_{21}^{M(N-1)} x_1^N \otimes x_2^{2M} \\ & + (1 - q^{-2})^M q_{21}^{M^2} x_{112}^M \otimes x_2^M; \\ \underline{\Delta}(x_{112}^M) = & x_{112}^M \otimes 1 + 1 \otimes x_{112}^M + (1 - q^{-1})^M (1 - q^{-2})^M q_{21}^{M(M-1)} x_1^N \otimes x_2^M. \end{split}$$

Hence, the following relations hold in  $\mathfrak{Z}_{\mathfrak{q}}$ :

$$\begin{split} [\xi_2, \xi_1] &= (1 - q^{-1})^M (1 - q^{-2})^M q_{21}^{M(M-1)} \xi_{112}; \\ [\xi_{112}, \xi_2] &= (1 - q^{-2})^M q_{21}^{M^2} \xi_{12}; \\ [\xi_1, \xi_{112}] &= [\xi_2, \xi_{12}] = 0. \end{split}$$

Thus  $\mathfrak{F}: \mathcal{U}(C_2^+) \to \mathfrak{F}_q$ ,  $e_1 \mapsto \xi_1$ ,  $e_2 \mapsto \xi_2$ , is an isomorphism of algebras. (Of course  $C_2 \simeq B_2$  but in higher rank we will get different root systems depending on the parity of N).

**Row 4.** Let  $q \in \mathbb{G}'_N$ ,  $N \neq 2,4$ . These diagrams correspond to braidings of super type B with  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$ .

If the diagram is  $Q = Q^{-2} - Q^{-1}$  then the Cartan roots are  $\alpha_1$  and  $\alpha_1 + \alpha_2$ , with  $N_{\alpha_1} = N$ ,  $N_{\alpha_1 + \alpha_2} = M$ ; here, M = N if N is odd and  $M = \frac{N}{2}$  if N is even. The elements  $x_1^N, x_{12}^M \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are primitive in  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ . Thus, in  $\mathfrak{Z}_{\mathfrak{q}}$ ,  $[\xi_{12}, \xi_1] = 0$  and  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ .

If we consider the diagram  $\bigcirc^{-q^{-1}} \bigcirc^{q^2}$  then  $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1, \alpha_1 + \alpha_2\}$ ,  $N_{\alpha_1} = M$  and  $N_{\alpha_1 + \alpha_2} = N$ . The elements  $x_1^M, x_{12}^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are primitive, so  $[\xi_{12}, \xi_1] = 0$  and  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ .

**Row 5.** Let  $q \in \mathbb{G}'_N$ ,  $N \neq 3$ ,  $\zeta \in \mathbb{G}'_3$ . The diagram  $\zeta = q^{-1} = q^{-1}$  corresponds to a braiding of standard type  $B_2$ , so  $\Delta_q^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$ . The other diagram  $\zeta = q\zeta^{-1} = \zeta q^{-1}$  is obtained by changing the parameter  $q \leftrightarrow \zeta q^{-1}$ .

The Cartan roots are  $2\alpha_1 + \alpha_2$  and  $\alpha_2$ , with  $N_{2\alpha_1 + \alpha_2} = M := \operatorname{ord}(\zeta q^{-1})$  and  $N_{\alpha_2} = N$ . The elements  $x_{112}^M$ ,  $x_2^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are primitive. Thus, in  $\mathfrak{Z}_{\mathfrak{q}}$ , we have  $[\xi_{112}, \xi_2] = 0$ . Hence,  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ .

**Row 6.** Let  $\zeta \in \mathbb{G}_3'$ . The diagrams  $\begin{array}{c} \zeta & -\zeta & -1 \\ \bigcirc & -\zeta & -1 \end{array}$  and  $\begin{array}{c} \zeta^{-1} & -\zeta^{-1} - 1 \\ \bigcirc & -\zeta & -1 \end{array}$  correspond to braidings of standard type B, thus  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$ . In both cases  $\mathfrak{O}_{\mathfrak{q}}$  is empty so the corresponding Lie algebras are trivial.

**Row 7.** Let  $\zeta \in \mathbb{G}'_{12}$ . The diagrams of this row correspond to braidings of type  $\mathfrak{ufo}(7)$ . In all cases  $\mathfrak{O}_{\mathfrak{q}} = \emptyset$  and the associated Lie algebras are trivial.

**Row 8.** Let  $\zeta \in \mathbb{G}'_{12}$ . The diagrams of this row correspond to braidings of type  $\mathfrak{ufo}(8)$ . For  $\begin{array}{c} -\zeta^2 & \zeta & -\zeta^2 \\ \hline \bigcirc & \end{array}$ ,  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_2\}$ . In this case  $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1 + \alpha_2\}$ ,  $N_{\alpha_1 + \alpha_2} = 12$ . Hence  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(A_1^+)$ . The same result holds for the other braidings in this row.

$$\Delta_{\mathfrak{q}}^{+} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}.$$

In this case  $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1, \alpha_1 + \alpha_2\}$  and  $N_{\alpha_1} = N_{\alpha_1 + \alpha_2} = 18$ . Thus  $[\xi_{12}, \xi_1] = 0$ , so  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ .

If  $\mathfrak{q}$  has diagram  $\bigcirc$   $\bigcirc$   $\bigcirc$   $\bigcirc$   $\bigcirc$   $\bigcirc$   $\bigcirc$   $\bigcirc$   $\bigcirc$  the set of positive roots are, respectively,

$$\{\alpha_1, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, 4\alpha_1 + 3\alpha_2, \alpha_1 + \alpha_2, \alpha_2\},$$
  
 $\{\alpha_1, 4\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\};$ 

the Cartan roots are, respectively,  $\alpha_1 + \alpha_2$ ,  $2\alpha_1 + \alpha_2$  and  $\alpha_1$ ,  $2\alpha_1 + \alpha_2$ . Hence, in both cases,  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ .

**Row 10.** Let  $q \in \mathbb{G}'_N$ ,  $N \geq 4$ . The diagram  $q^{q^{-3}} \circ q^{3}$  corresponds to a braiding of Cartan type  $G_2$ , so  $\mathfrak{O}_{\mathfrak{q}} = \Delta_{\mathfrak{q}}^+ = \{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_2\}$ . The coproducts of the PBW-generators are:

$$\underline{\Delta}(x_1) = x_1 \otimes 1 + 1 \otimes x_1; \qquad \underline{\Delta}(x_2) = x_2 \otimes 1 + 1 \otimes x_2; 
\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - q^{-3}) x_1 \otimes x_2; 
\underline{\Delta}(x_{112}) = x_{112} \otimes 1 + 1 \otimes x_{112} + (1 + q)(1 - q^{-2}) x_1 \otimes x_{12} 
+ (1 - q^{-2})(1 - q^{-3}) x_1^2 \otimes x_2; 
\underline{\Delta}(x_{1112}) = x_{1112} \otimes 1 + 1 \otimes x_{1112} + q^2(1 - q^{-3}) x_1 \otimes x_{112}$$

$$+ (q^{2} - 1)(1 - q^{-3}) x_{1}^{2} \otimes x_{12} + (1 - q^{-3})(1 - q^{-2})(1 - q^{-1}) x_{1}^{3} \otimes x_{2};$$

$$\underline{\Delta}([x_{112}, x_{12}]_{c}) = [x_{112}, x_{12}]_{c} \otimes 1 + 1 \otimes [x_{112}, x_{12}]_{c} + (q - q^{-1}) x_{112} \otimes x_{12}$$

$$+ (1 - q^{-3})(1 + q)(1 - q^{-1} + q) x_{112}x_{1} \otimes x_{2}$$

$$- qq_{21}(1 - q^{-3})(1 + q - q^{2}) x_{1112} \otimes x_{2} + q^{2}q_{21}(1 - q^{-3}) x_{1} \otimes [x_{112}, x_{2}]_{c}$$

$$+ (1 - q^{-3})^{2}(q^{2} - 1) x_{1}^{2} \otimes x_{2}x_{12}$$

$$+ q_{21}(1 - q^{-3})^{2}(1 - q^{-2})(1 - q^{-1}) x_{1}^{3} \otimes x_{2}^{2}.$$

We have two cases.

1. If 3 does not divide N, then  $N_{\beta} = N$  for all  $\beta \in \Delta_{\mathfrak{q}}^+$ . Thus, in  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ ,

$$\underline{\Delta}(x_{1}^{N}) = x_{1}^{N} \otimes 1 + 1 \otimes x_{1}^{N}; \qquad \underline{\Delta}(x_{2}^{N}) = x_{2}^{N} \otimes 1 + 1 \otimes x_{2}^{N};$$

$$\underline{\Delta}(x_{12}^{N}) = x_{12}^{N} \otimes 1 + 1 \otimes x_{12}^{N} + a_{1} x_{1}^{N} \otimes x_{2}^{N};$$

$$\underline{\Delta}(x_{112}^{N}) = x_{112}^{N} \otimes 1 + 1 \otimes x_{112}^{N} + a_{2} x_{1}^{N} \otimes x_{12}^{N} + a_{3} x_{1}^{2N} \otimes x_{2}^{N};$$

$$\underline{\Delta}(x_{1112}^{N}) = x_{1112}^{N} \otimes 1 + 1 \otimes x_{1112}^{N} + a_{4} x_{1}^{N} \otimes x_{12}^{N} + a_{5} x_{1}^{2N} \otimes x_{12}^{N} + a_{6} x_{1}^{3N} \otimes x_{2}^{N};$$

$$\underline{\Delta}(x_{1112}^{N}) = x_{1112}^{N} \otimes x_{12}^{N} \otimes 1 + 1 \otimes x_{1112}^{N} \otimes x_{12}^{N} + a_{5} x_{12}^{2N} \otimes x_{12}^{N} + a_{6} x_{112}^{3N} \otimes x_{2}^{N};$$

$$\underline{\Delta}(x_{1112}^{N}) = x_{1112}^{N} \otimes x_{12}^{N} \otimes 1 + 1 \otimes x_{112}^{N} \otimes x_{12}^{N} \otimes x_{12}^{N} + a_{7} x_{112}^{N} \otimes x_{12}^{N} \otimes x_{12}^{N} + a_{8} x_{1112}^{N} \otimes x_{2}^{N} + a_{9} x_{1}^{N} \otimes x_{12}^{2N} + a_{10} x_{1}^{2N} \otimes x_{2}^{N} x_{12}^{N} + a_{11} x_{112}^{N} x_{1}^{N} \otimes x_{2}^{N} + a_{12} x_{1}^{3N} \otimes x_{2}^{2N};$$

for some  $a_i \in \mathbf{k}$ . Since

$$a_{1} = (1 - q^{-3})^{N} q_{21}^{\frac{N(N-1)}{2}} \neq 0,$$

$$a_{3} = (1 - q^{-2})^{N} (1 - q^{-3})^{N} \neq 0,$$

$$a_{6} = (1 - q^{-1})^{N} (1 - q^{-2})^{N} (1 - q^{-3})^{N} q_{21}^{\frac{3N(N-1)}{2}} \neq 0,$$

$$a_{12} = (1 - q^{-1})^{N} (1 - q^{-2})^{N} (1 - q^{-3})^{2N} \neq 0,$$

the elements  $x_{12}^N$ ,  $x_{112}^N$ ,  $x_{1112}^N$  and  $[x_{112},x_{12}]_c^N$  are not primitive. Hence  $\mathfrak{Z}_{\mathfrak{q}}$  is generated by  $\mathfrak{Z}_1$  and  $\mathfrak{Z}_2$ ; also

$$[\xi_2, \xi_1] = a_1 \, \xi_{12};$$
  $[\xi_{12}, \xi_1] = a_2 \, \xi_{112};$   $[\xi_{112}, \xi_1] = a_4 \, \xi_{1112};$   $[\xi_1, \xi_{1112}] = [\xi_2, \xi_{12}] = 0.$ 

Thus, we have  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$ .

(2) If N=3M, then  $N_{\alpha_1}=N_{\alpha_1+\alpha_2}=N_{2\alpha_1+\alpha_2}=N$  and  $N_{3\alpha_1+\alpha_2}=N_{3\alpha_1+2\alpha_2}=N_{\alpha_2}=M$ . In this case we have

$$\underline{\Delta}(x_1^N) = x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^M) = x_2^M \otimes 1 + 1 \otimes x_2^M; \underline{\Delta}(x_{12}^N) = x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + b_1 [x_{112}, x_{12}]_c^M \otimes x_2^M$$

$$+ b_2 x_{1112}^M \otimes x_2^{2M} + (1 - q^{-3})^N q_{21}^{\frac{N(N-1)}{2}} x_1^N \otimes x_2^{3M};$$

$$\underline{\Delta}(x_{112}^N) = x_{112}^N \otimes 1 + 1 \otimes x_{112}^N + b_3 x_1^N \otimes x_{12}^N + b_4 x_{1112}^M \otimes [x_{112}, x_{12}]_c^M$$

$$+ (1 - q^{-2})^N (1 - q^{-3})^N x_1^{2N} \otimes x_2^{3M} + b_5 x_{1112}^{2M} \otimes x_2^M$$

$$+ b_6 x_{1112}^M x_1^N \otimes x_2^{2M} + b_7 x_1^N \otimes x_2^M [x_{112}, x_{12}]_c^M;$$

$$\underline{\Delta}(x_{1112}^M) = x_{1112}^M \otimes 1 + 1 \otimes x_{1112}^M + b_8 x_1^N \otimes x_2^M;$$

$$\underline{\Delta}([x_{112}, x_{12}]_c^M) = [x_{112}, x_{12}]_c^M \otimes 1 + 1 \otimes [x_{112}, x_{12}]_c^M$$

$$+ b_9 x_1^N \otimes x_2^{2M} + b_{10} x_{1112}^M \otimes x_2^M;$$

for some  $b_i \in \mathbf{k}$ . We compute some of them explicitly:

$$b_8 = (1 - q^{-3})^M (1 - q^{-2})^M (1 - q^{-1})^M q_{21}^{\frac{N(M-1)}{2}},$$
  

$$b_9 = (1 - q^{-3})^{2M} (1 - q^{-2})^M (1 - q^{-1})^M q_{21}^M.$$

As these scalars are not zero, the elements  $x_{12}^N$ ,  $x_{112}^N$ ,  $x_{1112}^M$  and  $[x_{112}, x_{12}]_c^M$  are not primitive. Thus  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$ .

**Row 11.** Let  $\zeta \in \mathbb{G}_8'$ . The diagrams of this row correspond to braidings of standard type  $G_2$ , so  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 3\alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$ .

If  $\mathfrak{q}$  has diagram  $\overset{\zeta^2}{\circ}\overset{\zeta^{-1}}{\circ}$ , then the Cartan roots are  $2\alpha_1+\alpha_2$  and  $\alpha_2$  with  $N_{2\alpha_1+\alpha_2}=N_{\alpha_2}=8$ . The elements  $x_{112}^8$ ,  $x_2^8\in\widetilde{\mathcal{B}}_{\mathfrak{q}}$  are primitive and  $[\xi_2,\xi_{112}]=0$  in  $\mathfrak{Z}_{\mathfrak{q}}$ . Hence  $\mathfrak{Z}_{\mathfrak{q}}\simeq\mathcal{U}((A_1\oplus A_1)^+)$ . An analogous result holds for the other diagrams of the row.

**Row 12.** Let  $\zeta \in \mathbb{G}'_{24}$ . This row corresponds to type  $\mathfrak{ufo}(9)$ . If  $\mathfrak{q}$  has diagram

$$\Delta_{\mathfrak{q}}^{+} = \{\alpha_{1}, 3\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, 4\alpha_{1} + 3\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}$$

and  $\mathfrak{D}_{\mathfrak{q}} = \{\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2\}$ . Here,  $N_{\alpha_1 + \alpha_2} = N_{3\alpha_1 + \alpha_2} = 24$ , and  $x_{12}^{24}, x_{1112}^{24} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are primitive. In  $\mathfrak{Z}_{\mathfrak{q}}$  we have the relation  $[\xi_{12}, \xi_{1112}] = 0$ ; thus  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ .

For the other diagrams,  $\overset{\zeta^6}{\bigcirc}$   $\overset{\zeta^{-1}}{\bigcirc}$ ,  $\overset{\zeta^8}{\bigcirc}$   $\overset{\zeta^5}{\bigcirc}$  and  $\overset{\zeta}{\bigcirc}$   $\overset{\zeta^{19}}{\bigcirc}$ , the sets of positive roots are, respectively,

$$\begin{aligned} & \{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, 5\alpha_1 + 2\alpha_2, 5\alpha_1 + 3\alpha_2, \alpha_2\}, \\ & \{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, 4\alpha_1 + 3\alpha_2, 5\alpha_1 + 3\alpha_2, 5\alpha_1 + 4\alpha_2, \alpha_2\}, \\ & \{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 4\alpha_1 + \alpha_2, 5\alpha_1 + \alpha_2, 5\alpha_1 + 2\alpha_2, \alpha_2\}. \end{aligned}$$

The Cartan roots are, respectively,  $2\alpha_1 + \alpha_2$ ,  $\alpha_2$ ;  $\alpha_1 + \alpha_2$ ,  $5\alpha_1 + 3\alpha_2$ ;  $\alpha_1$ ,  $5\alpha_1 + 2\alpha_2$ . Hence, in all cases,  $3_q \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ .

**Row 13.** Let  $\zeta \in G_5'$ . The braidings in this row are associated to the Lie superalgebra  $\mathfrak{brj}(2;5)$  [A5, §5.2]. If  $\mathfrak{q}$  has diagram  $\zeta \subset \zeta^2 \subset \Gamma$ , then  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 3\alpha_1 + \beta_1, \beta_2, \beta_3\}$ 

 $\alpha_2$ ,  $2\alpha_1 + \alpha_2$ ,  $5\alpha_1 + 3\alpha_2$ ,  $3\alpha_1 + 2\alpha_2$ ,  $4\alpha_1 + 3\alpha_2$ ,  $\alpha_1 + \alpha_2$ ,  $\alpha_2$ . In this case the Cartan roots are  $\alpha_1$ ,  $\alpha_1 + \alpha_2$ ,  $2\alpha_1 + \alpha_2$  and  $3\alpha_1 + \alpha_2$ , with  $N_{\alpha_1} = N_{3\alpha_1 + 2\alpha_2} = 5$  and  $N_{\alpha_1 + \alpha_2} = N_{2\alpha_1 + \alpha_2} = 10$ . In  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ ,

$$\underline{\Delta}(x_{1}) = x_{1} \otimes 1 + 1 \otimes x_{1};$$

$$\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - \zeta^{2}) x_{1} \otimes x_{2};$$

$$\underline{\Delta}(x_{112}) = x_{112} \otimes 1 + 1 \otimes x_{112} + (1 + \zeta)(1 - \zeta^{3}) x_{1} \otimes x_{12}$$

$$+ (1 - \zeta^{2})(1 - \zeta^{3}) x_{1}^{2} \otimes x_{2};$$

$$\underline{\Delta}([x_{112}, x_{12}]_{c}) = [x_{112}, x_{12}]_{c} \otimes 1 + 1 \otimes [x_{112}, x_{12}]_{c}$$

$$- \zeta^{3}(1 - \zeta^{3})(1 + \zeta)^{2} x_{1} \otimes x_{12}^{2} - \zeta q_{21} x_{1} x_{112} \otimes x_{2}$$

$$+ (1 + q_{21} + \zeta^{3} q_{21}) x_{112} x_{1} \otimes x_{2} + \zeta(1 - \zeta^{2}) x_{1} x_{12} x_{1} \otimes x_{2}$$

$$+ (1 - \zeta^{2})(1 - \zeta^{3})^{2} x_{1}^{2} \otimes x_{2} x_{12}.$$

Hence the coproducts of  $x_1^5, x_{12}^{10}, x_{112}^{10}, [x_{112}, x_{12}]_c^5 \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are:

$$\underline{\Delta}(x_1^5) = x_1^5 \otimes 1 + 1 \otimes x_1^5; \qquad \underline{\Delta}(x_{12}^{10}) = x_{12}^{10} \otimes 1 + 1 \otimes x_{12}^{10}; 
\underline{\Delta}(x_{112}^{10}) = x_{112}^{10} \otimes 1 + 1 \otimes x_{112}^{10} + a_1 x_1^{10} \otimes x_{12}^{10} + a_2 x_1^5 \otimes [x_{112}, x_{12}]_c^5; 
\underline{\Delta}([x_{112}, x_{12}]_c^5) = [x_{112}, x_{12}]_c^5 \otimes 1 + 1 \otimes [x_{112}, x_{12}]_c^5 + a_3 x_1^5 \otimes x_{12}^{10}.$$

for some  $a_i \in \mathbf{k}$ . Thus, the following relations hold in  $\mathfrak{Z}_{\mathfrak{q}}$ 

$$[\xi_{12}, \xi_1] = a_3 \, \xi_{112,12}; \quad [\xi_{112,12}, \xi_1] = a_2 \, \xi_{112}; \quad [\xi_1, \xi_{112,12}] = [\xi_{12}, \xi_{112}] = 0.$$

Since

$$a_1 = -(1 - \zeta^3)^5 (1 + \zeta)^5 (1 + 62\zeta - 15\zeta^2 - 87\zeta^3 + 70\zeta^4) \neq 0;$$
  
$$a_3 = -(1 - \zeta^3)^5 (1 + \zeta)^8 (4 - 8\zeta - 19\zeta^2 - 3\zeta^3 - 50\zeta^4) \neq 0,$$

the elements  $x_{112}^{10}$ ,  $[x_{112}, x_{12}]_c^5$  are not primitive, so  $\xi_1$ ,  $\xi_{12}$  generate  $\mathfrak{Z}_{\mathfrak{q}}$ . Hence,  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(B_2^+)$ .

If q has diagram 
$$\begin{array}{ccc} -\zeta^3 & \zeta^3 & -1 \\ \hline & & \\ \hline & & \\ \hline \end{array}$$
, then

$$\Delta_{\mathfrak{q}}^{+} = \{\alpha_{1}, 4\alpha_{1} + \alpha_{2}, 3\alpha_{1} + \alpha_{2}, 5\alpha_{1} + 2\alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\},\$$

$$\mathfrak{O}_{\mathfrak{q}} = \{\alpha_{1}, 3\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}\},\$$

with 
$$N_{\alpha_1}=N_{\alpha_1+\alpha_2}=10$$
,  $N_{3\alpha_1+\alpha_2}=N_{\alpha_1+\alpha_2}=5$ . In  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ 

$$\underline{\Delta}(x_1) = x_1 \otimes 1 + 1 \otimes x_1;$$

$$\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - \zeta^3) x_1 \otimes x_2;$$

$$\underline{\Delta}(x_{112}) = x_{112} \otimes 1 + 1 \otimes x_{112} + (1+\zeta)(1-\zeta^3) x_1 \otimes x_{12} + (1+\zeta^2)(1-\zeta^3) x_1^2 \otimes x_2;$$

$$\underline{\Delta}(x_{1112}) = x_{1112} \otimes 1 + 1 \otimes x_{1112} + (1 + \zeta - \zeta^3)(1 - \zeta^4) x_1 \otimes x_{112} + (1 + \zeta)(1 + \zeta - \zeta^3)(1 - \zeta^4) x_1^2 \otimes x_{12} + (1 + \zeta)(1 - \zeta^3)(1 - \zeta^4) x_1^3 \otimes x_2.$$

Hence the coproducts of  $x_1^{10}$ ,  $x_{12}^{5}$ ,  $x_{112}^{10}$ ,  $x_{1112}^{5}$ ,  $\in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are:

$$\underline{\Delta}(x_{1}^{10}) = x_{1}^{10} \otimes 1 + 1 \otimes x_{1}^{10}; \qquad \underline{\Delta}(x_{12}^{5}) = x_{12}^{5} \otimes 1 + 1 \otimes x_{12}^{5}; 
\underline{\Delta}(x_{112}^{10}) = x_{112}^{10} \otimes 1 + 1 \otimes x_{112}^{10} - (1+\zeta)^{5} (1-\zeta^{3})^{5} x_{1112}^{5} \otimes x_{12}^{5} 
+ (1+\zeta)^{10} (1-\zeta^{3})^{10} x_{1}^{10} \otimes x_{12}^{10}; 
\underline{\Delta}(x_{1112}^{5}) = x_{1112}^{5} \otimes 1 + 1 \otimes x_{1112}^{5} + (1+\zeta)^{10} (1-\zeta^{3})^{5} x_{1}^{10} \otimes x_{12}^{5}.$$

Thus, the generators of  $\mathfrak{Z}_{\mathfrak{q}}$  are  $\xi_1$  and  $\xi_{12}$  and they satisfy the following relations

$$\begin{split} [\xi_{12}, \xi_1] &= (1+\zeta)^{10} (1-\zeta^3)^5 \xi_{1112}, \\ [\xi_{1112}, \xi_{12}] &= -(1+\zeta)^5 (1-\zeta^3)^5 \xi_{112}, \\ [\xi_1, \xi_{1112}] &= [\xi_{12}, \xi_{112}] = 0. \end{split}$$

Hence  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(C_2^+)$ .

**Row 14.** Let  $\zeta \in \mathbb{G}'_{20}$ . This row corresponds to type  $\mathfrak{ufo}(10)$ . If  $\mathfrak{q}$  has diagram

 $\zeta_{\mathfrak{q}}^{\mathfrak{r}_{0}} = \{\alpha_{1}, 3\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, 5\alpha_{1} + 3\alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, 4\alpha_{1} + 3\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\}.$  The Cartan roots are  $\alpha_{1}$  and  $3\alpha_{1} + 2\alpha_{2}$  with  $N_{\alpha_{1}} = N_{3\alpha_{1} + 2\alpha_{2}} = 20$ . The elements  $x_{1}^{20}$ ,  $[x_{112}, x_{12}]_{c}^{20} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$  are primitive; thus  $[\xi_{12}, \xi_{112,12}] = 0$  in  $\mathfrak{Z}_{\mathfrak{q}}$  and  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_{1} \oplus A_{1})^{+})$ . The same holds when the diagram of  $\mathfrak{q}$  is another one in this row:  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_{1} \oplus A_{1})^{+})$ .

**Row 15.** Let  $\zeta \in \mathbb{G}'_{15}$ . This row corresponds to type  $\mathfrak{ufo}(11)$ . If  $\mathfrak{q}$  has diagram 0, then  $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 3\alpha_1 + \alpha_2, 5\alpha_1 + 2\alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_2\}$ . The Cartan roots are  $\alpha_1$  and  $3\alpha_1 + 2\alpha_2$  with  $N_{\alpha_1} = N_{3\alpha_1 + 2\alpha_2} = 30$ . In  $\mathfrak{Z}_{\mathfrak{q}}$  we have  $[\xi_{12}, \xi_{112,12}] = 0$ , thus  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$ . The same result holds if we consider the other diagrams of this row.

**Row 16.** Let  $\zeta \in \mathbb{G}_7'$ . This row corresponds to type  $\mathfrak{ufo}(12)$ . If  $\mathfrak{q}$  has diagram  $0 - \zeta^5 - \zeta^3 = 0$ , then

$$\Delta_{\mathfrak{q}}^{+} = \{\alpha_{1}, 5\alpha_{1} + \alpha_{2}, 4\alpha_{1} + \alpha_{2}, 7\alpha_{1} + 2\alpha_{2}, 3\alpha_{1} + \alpha_{2}, 8\alpha_{1} + 3\alpha_{2}, 5\alpha_{1} + 2\alpha_{2}, 7\alpha_{1} + 3\alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\}.$$

Also,  $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1, 4\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 5\alpha_1 + 2\alpha_2, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2\}$  with  $N_{\beta} = 14$  for all  $\beta \in \mathfrak{O}_{\mathfrak{q}}$ . In  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$  we have

$$\underline{\Delta}(x_{1}) = x_{1} \otimes 1 + 1 \otimes x_{1};$$

$$\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 + \zeta^{3}) x_{1} \otimes x_{2};$$

$$\underline{\Delta}(x_{112}) = x_{112} \otimes 1 + 1 \otimes x_{112} + (1 - \zeta)(1 - \zeta^{5}) x_{1} \otimes x_{12}$$

$$+ (1 - \zeta)(1 + \zeta^{3}) x_{1}^{2} \otimes x_{2};$$

$$\underline{\Delta}(x_{1112}) = x_{1112} \otimes 1 + 1 \otimes x_{1112} + (1 + \zeta^{3} - \zeta^{5})(1 + \zeta^{6}) x_{1} \otimes x_{112}$$

$$+ \zeta(\zeta^{3} - 1) x_{1}^{2} \otimes x_{12} + \zeta^{6}(1 - \zeta^{2})(1 + \zeta^{3}) x_{1}^{3} \otimes x_{2};$$

$$\begin{split} &\underline{\Delta}(x_{11112}) = x_{11112} \otimes 1 + 1 \otimes x_{11112} - \zeta(1-\zeta)(1-\zeta^2) \ x_1 \otimes x_{1112} \\ &+ (-2 + 2\zeta^2 - \zeta^4 + \zeta^5) \ x_1^2 \otimes x_{112} - (1-\zeta)(1-\zeta^2)^2 \ x_1^3 \otimes x_{12} \\ &+ \zeta^2 (1-\zeta)(1-\zeta^2) \ x_1^4 \otimes x_2; \\ &\underline{\Delta}([x_{1112}, x_{112}]_c) = [x_{1112}, x_{112}]_c \otimes 1 + 1 \otimes [x_{1112}, x_{112}]_c \\ &- \frac{(1-\zeta^5)}{(1+\zeta)} (1-\zeta^3 + 2\zeta^4) \ x_1 \otimes x_{112}^2 \\ &- q_{21}(1-\zeta)(1-\zeta^3) \ x_1^2 \otimes [x_{112}, x_{12}]_c \\ &- (1-\zeta)^2 (4 + 4\zeta + \zeta^2 - 2\zeta^3 - 3\zeta^4) \ x_1^2 \otimes x_{12} x_{112} \\ &+ q_{21}(1-\zeta^2)^2 \zeta^4 (1-2\zeta-3\zeta^4 - 2\zeta^5 + \zeta^6) \ x_1^3 \otimes x_{12}^2 \\ &+ (1-\zeta)^2 (1+\zeta^3)^2 (1+\zeta^6) \ x_1^3 \otimes x_2 x_{112} \\ &- \zeta (1-\zeta)(1-\zeta^2) \ x_{1112} \otimes x_{112} \\ &- q_{21}\zeta^6 (1-\zeta)^2 (1-\zeta^2) (1+2\zeta) \ x_1^4 \otimes x_2 x_{12} \\ &+ q_{21}^2 \zeta^2 (1-\zeta)^2 (1-\zeta^2) (1+\zeta^3) \ x_1^5 \otimes x_2^2 \\ &- q_{12}^2 (1+\zeta^3) (1-\zeta) (1-\zeta^4 + \zeta^6) \ x_{111112} \otimes x_2 \\ &+ \zeta q_{21} (1+\zeta^3) (1-\zeta) (1-\zeta^2) (1+\zeta-\zeta^2) \ x_{11112} x_1 \otimes x_2 \\ &- \zeta (1-\zeta)^2 (1+\zeta^3) (1-\zeta) (1-\zeta^2-\zeta^2-\zeta^3) \ x_{1112} x_1^2 \otimes x_2 \\ &+ (1-\zeta)(1+\zeta^2+\zeta^3-\zeta^4-\zeta^5) \ x_{1112} x_1 \otimes x_{12} \\ &+ \zeta q_{21} (1-\zeta)^2 (2+\zeta-\zeta^3) \ x_{11112} \otimes x_{12}. \end{split}$$

Hence

$$\begin{split} &\underline{\Delta}(x_{1}^{14}) = x_{1}^{14} \otimes 1 + 1 \otimes x_{1}^{14}; \qquad \underline{\Delta}(x_{12}^{14}) = x_{12}^{14} \otimes 1 + 1 \otimes x_{12}^{14}; \\ &\underline{\Delta}(x_{112}^{14}) = x_{112}^{14} \otimes 1 + 1 \otimes x_{112}^{14} + a_{1} x_{1}^{14} \otimes x_{12}^{14}; \\ &\underline{\Delta}(x_{1112}^{14}) = x_{1112}^{14} \otimes 1 + 1 \otimes x_{1112}^{14} + a_{2} x_{1}^{14} \otimes x_{112}^{14} + a_{3} x_{1}^{28} \otimes x_{12}^{14}; \\ &\underline{\Delta}(x_{11112}^{14}) = x_{11112}^{14} \otimes 1 + 1 \otimes x_{11112}^{14} + a_{4} x_{1}^{14} \otimes x_{1112}^{14} \\ &+ a_{5} x_{1}^{28} \otimes x_{112}^{14} + a_{6} x_{1}^{42} \otimes x_{12}^{14}; \\ &\underline{\Delta}([x_{1112}, x_{112}]_{c}^{14}) = [x_{1112}, x_{112}]_{c}^{14} \otimes 1 + 1 \otimes [x_{1112}, x_{112}]_{c}^{14} + a_{7} x_{1112}^{14} \otimes x_{12}^{14} \\ &+ a_{8} x_{11112}^{14} \otimes x_{12}^{14} + a_{9} x_{1}^{42} \otimes x_{12}^{28} + a_{10} x_{1}^{14} \otimes x_{112}^{28} \\ &+ a_{11} x_{1}^{28} \otimes x_{12}^{14} x_{112}^{14} + a_{12} x_{1112}^{14} \otimes x_{12}^{14}; \end{split}$$

with  $a_i \in \mathbf{k}$ . For instance,

$$a_1 = q_{21}^7(-2352\zeta^5 + 2548\zeta^4 + 2548\zeta^3 - 2352\zeta^2 + 4067) \neq 0,$$

because  $\zeta \in \mathbb{G}'_7$ . Also,

$$a_3 = 5860813\zeta^5 + 974589\zeta^4 - 3164658\zeta^3 + 3609109\zeta^2 + 5243917\zeta - 1667869 \neq 0;$$
  
 $a_6 = q_{21}^7 (10074385052942\zeta^5 + 31910289509889\zeta^4 + 12118010152752\zeta^3 - 909500144560\zeta^2 + 24680570802531\zeta + 26319432020966) \neq 0;$ 

$$a_9 = 5736482678185949424\zeta^5 + 10808606486393112796\zeta^4$$
 
$$+ 2814368183725984844\zeta^3 + 1300044629337708464\zeta^2$$
 
$$+ 9968706251262033856\zeta + 7625687982247823061 \neq 0.$$

Then  $x_{112}^{14}$ ,  $x_{1112}^{14}$ ,  $x_{11112}^{14}$  and  $[x_{1112}, x_{112}]_c^{14}$  are not primitive elements in  $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ . Thus,  $\xi_1$  and  $\xi_{12}$  generates  $\mathfrak{Z}_{\mathfrak{q}}$ .

Also, in  $\mathfrak{Z}_{\mathfrak{q}}$  we have

$$[\xi_{12}, \xi_{1}] = a_{1} \xi_{112};$$
  $[\xi_{1}, \xi_{112}] = a_{2} \xi_{1112};$   $[\xi_{1}, \xi_{1112}] = a_{4} \xi_{11112};$   $[\xi_{1}, \xi_{11112}] = [\xi_{12}, \xi_{112}] = 0.$ 

So,  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$ .

$$\begin{split} [\xi_{12},\xi_1] &= b_1 \, \xi_{112}; & [\xi_{12},\xi_{112}] &= b_2 \, \xi_{112,12}; \\ [\xi_{12},\xi_{112,12}] &= b_3 \, \xi_{(112,12),12}; & [\xi_1,\xi_{112}] &= [\xi_{12},\xi_{(112,12),12}] &= 0, \end{split}$$

where  $b_1, b_2, b_3 \in \mathbf{k}^{\times}$ . Hence, we also have  $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$ .

*Remark* 4.1. The results of this paper are part of the thesis of one of the authors [RB], where missing details of the computations can be found.

### References

- [A] N. Andruskiewitsch, *Notes on extensions of Hopf algebras*. Canad. J. Math. **48** (1996), 3–42.
- [AA] Andruskiewitsch, N; Angiono, I., Generalized root systems, contragredient Lie superalgebras and Nichols algebras, in preparation.
- [AAR] Andruskiewitsch, N., Angiono, I., Rossi Bertone, F. *The divided powers algebra of a finite-dimensional Nichols algebra of diagonal type*, Math. Res. Lett., to appear.
- [AAY] N. Andruskiewitsch, I. Angiono, H. Yamane. *On pointed Hopf superalge-bras*, Contemp. Math. **544** (2011), 123–140.
- [AN] N. Andruskiewitsch, S. Natale. *Braided Hopf algebras arising from matched pairs of groups*, J. Pure Appl. Alg. **182** (2003), 119–149.
- [AS] N. Andruskiewitsch, H.-J. Schneider. *Pointed Hopf algebras*, New directions in Hopf algebras, MSRI series, Cambridge Univ. Press; 1–68 (2002).
- [A1] I. Angiono. *On Nichols algebras with standard braiding*. Algebra and Number Theory, Vol. 3 (2009), 35–106.
- [A2] I. Angiono. A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. J. Eur. Math. Soc. 17 (2015), 2643–2671.

- [A3] ——— On Nichols algebras of diagonal type. J. Reine Angew. Math. **683** (2013), 189–251.
- [A4] ——— Nichols algebras of unidentified diagonal type, Comm. Alg **41** (2013), 4667–4693.
- [A5] ——— *Distinguished pre-Nichols algebras*, Transform. Groups **21** (2016), 1–33.
- [AY] I. Angiono, H. Yamane. *The R-matrix of quantum doubles of Nichols algebras of diagonal type*. J. Math. Phys. **56**, 021702 (2015) 1-19.
- [BD] Y. Bespalov, B. Drabant. Cross Product Bialgebras Part II, J. Algebra 240 (2001), 445–504.
- [CH] M. Cuntz, I. Heckenberger. Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213 (2009), 1112–1128.
- [GG] J. Guccione, J. Guccione. *Theory of braided Hopf crossed products*, J. Algebra **261** (2003), 54–101.
- [H1] I. Heckenberger. *The Weyl groupoid of a Nichols algebra of diagonal type*. Invent. Math. **164** (2006), 175–188.
- [H2] —— Classification of arithmetic root systems. Adv. Math. **220** (2009), 59-124.
- [H3] —— Lusztig isomorphisms for Drinfel'd doubles of bosonizations of Nichols algebras of diagonal type. J. Alg. **323** (2010), 2130–2180.
- [K] V. Kharchenko, *A quantum analogue of the Poincaré-Birkhoff-Witt theorem*. Algebra and Logic **38** (1999), 259–276.
- [L] G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata 35 (1990), 89–113.
- [RB] F. Rossi Bertone. *Álgebras cuánticas de potencias divididas*. Thesis doctoral FaMAF, Universidad Nacional de Córdoba, available at www.famaf.unc.edu.ar/~rossib/.
- [R] M. Rosso. Quantum groups and quantum shuffles. Inv. Math. 133 (1998), 399–416.

FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, República Argentina. email: (andrus—angiono—rossib)@mate.uncor.edu