A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)*

Nicolás Andruskiewitsch Iván Angiono
Fiorela Rossi Bertone

Abstract

Let $\mathcal{B}_{\mathfrak{q}}$ be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix $\mathfrak{q} \in \mathbf{k}^{\theta \times \theta}$. Let $\mathcal{L}_{\mathfrak{q}}$ be the Lusztig algebra associated to $\mathcal{B}_{\mathfrak{q}}$ [AAR]. We present $\mathcal{L}_{\mathfrak{q}}$ as an extension (as braided Hopf algebras) of $\mathcal{B}_{\mathfrak{q}}$ by $\mathfrak{Z}_{\mathfrak{q}}$ where $\mathfrak{Z}_{\mathfrak{q}}$ is isomorphic to the universal enveloping algebra of a Lie algebra $\mathfrak{n}_{\mathfrak{q}}$. We compute the Lie algebra $\mathfrak{n}_{\mathfrak{q}}$ when $\theta=2$.

1 Introduction

1.1 Let \mathbf{k} be a field, algebraically closed and of characteristic zero. Let $\theta \in \mathbb{N}$, $\mathbb{I}=\mathbb{I}_{\theta}:=\{1,2, \ldots, \theta\}$. Let $\mathfrak{q}=\left(q_{i j}\right)_{i, j \in \mathbb{I}}$ be a matrix with entries in \mathbf{k}^{\times}, V a vector space with a basis $\left(x_{i}\right)_{i \in \mathbb{I}}$ and $c^{\mathfrak{q}} \in G L(V \otimes V)$ be given by

$$
c^{\mathfrak{q}}\left(x_{i} \otimes x_{j}\right)=q_{i j} x_{j} \otimes x_{i}, \quad i, j \in \mathbb{I} .
$$

Then $\left(c^{\mathfrak{q}} \otimes \mathrm{id}\right)\left(\mathrm{id} \otimes c^{\mathfrak{q}}\right)\left(c^{\mathfrak{q}} \otimes \mathrm{id}\right)=\left(\mathrm{id} \otimes c^{\mathfrak{q}}\right)\left(c^{\mathfrak{q}} \otimes \mathrm{id}\right)\left(\mathrm{id} \otimes c^{\mathfrak{q}}\right)$, i.e. $\left(V, c^{\mathfrak{q}}\right)$ is a braided vector space and the corresponding Nichols algebra $\mathcal{B}_{\mathfrak{q}}:=\mathcal{B}(V)$ is called of diagonal type. Recall that $\mathcal{B}_{\mathfrak{q}}$ is the image of the unique map of braided Hopf algebras $\Omega: T(V) \rightarrow T^{c}(V)$ from the free associative algebra of V to the free associative coalgebra of V, such that $\Omega_{\mid V}=\mathrm{id}_{V}$. For unexplained terminology and notation, we refer to [AS].

[^0]Remarkably, the explicit classification of all \mathfrak{q} such that $\operatorname{dim} \mathcal{B}_{\mathfrak{q}}<\infty$ is known [H2] (we recall the list when $\theta=2$ in Table 1). Also, for every \mathfrak{q} in the list of [H2], the defining relations are described in [A2, A3].
1.2 Assume that $\operatorname{dim} \mathcal{B}_{\mathfrak{q}}<\infty$. Two infinite dimensional graded braided Hopf algebras $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and $\mathcal{L}_{\mathfrak{q}}$ (the Lusztig algebra of V) were introduced and studied in [A3, A5], respectively [AAR]. Indeed, $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ is a pre-Nichols, and $\mathcal{L}_{\mathfrak{q}}$ a post-Nichols, algebra of V, meaning that $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ is intermediate between $T(V)$ and $\mathcal{B}_{\mathfrak{q}}$, while $\mathcal{L}_{\mathfrak{q}}$ is intermediate between $\mathcal{B}_{\mathfrak{q}}$ and $T^{c}(V)$. This is summarized in the following commutative diagram:

The algebras $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and $\mathcal{L}_{\mathfrak{q}}$ are generalizations of the positive parts of the De Concini-Kac-Procesi quantum group, respectively the Lusztig quantum divided powers algebra. The distinguished pre-Nichols algebra $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ is defined discarding some of the relations in [A3], while $\mathcal{L}_{\mathfrak{q}}$ is the graded dual of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$.
1.3 The following notions are discussed in Section 2. Let Δ_{+}^{q} be the generalized positive root system of $\mathcal{B}_{\mathfrak{q}}$ and let $\mathfrak{O}_{\mathfrak{q}} \subset \Delta_{+}^{\mathfrak{q}}$ be the set of Cartan roots of \mathfrak{q}. Let x_{β} be the root vector associated to $\beta \in \Delta_{+}^{q}$, let $N_{\beta}=$ ord $q_{\beta \beta}$ and let $Z_{\mathfrak{q}}$ be the subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ generated by $x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}}$. By [A5, Theorems 4.10, 4.13], $Z_{\mathfrak{q}}$ is a braided normal Hopf subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and $Z_{\mathfrak{q}}={ }^{\operatorname{co} \pi} \widetilde{\mathcal{B}}_{\mathfrak{q}}$. Actually, $Z_{\mathfrak{q}}$ is a true commutative Hopf algebra provided that

$$
\begin{equation*}
q_{\alpha \beta}^{N_{\beta}}=1, \quad \forall \alpha, \beta \in \mathfrak{O}_{\mathfrak{q}} \tag{1}
\end{equation*}
$$

Let $\mathfrak{Z}_{\mathfrak{q}}$ be the graded dual of $Z_{\mathfrak{q}}$; under the assumption (1) $\mathfrak{Z}_{\mathfrak{q}}$ is a cocommutative Hopf algebra, hence it is isomorphic to the enveloping algebra $\mathcal{U}\left(\mathfrak{n}_{\mathfrak{q}}\right)$ of the Lie algebra $\mathfrak{n}_{\mathfrak{q}}:=\mathcal{P}\left(\mathfrak{Z}_{\mathfrak{q}}\right)$. We show in Section 3 that $\mathcal{L}_{\mathfrak{q}}$ is an extension (as braided Hopf algebras) of $\mathcal{B}_{\mathfrak{q}}$ by \mathfrak{Z}_{q} :

$$
\begin{equation*}
\mathcal{B}_{\mathfrak{q}} \stackrel{\pi^{*}}{\longrightarrow} \mathcal{L}_{\mathfrak{q}} \xrightarrow{\stackrel{L}{*}^{*}} \mathfrak{Z}_{\mathfrak{q}} . \tag{2}
\end{equation*}
$$

The main result of this paper is the determination of the Lie algebra $\mathfrak{n}_{\mathfrak{q}}$ when $\theta=2$ and the generalized Dynkin diagram of \mathfrak{q} is connected.

Theorem 1.1. Assume that $\operatorname{dim} \mathcal{B}_{\mathfrak{q}}<\infty$ and $\theta=2$. Then $\mathfrak{n}_{\mathfrak{q}}$ is either 0 or isomorphic to \mathfrak{g}^{+}, where \mathfrak{g} is a finite-dimensional semisimple Lie algebra listed in the last column of Table 1.

Assume that there exists a Cartan matrix $\mathbf{a}=\left(a_{i j}\right)$ of finite type, that becomes symmetric after multiplying with a diagonal $\left(d_{i}\right)$, and a root of unit q of odd order (and relatively prime to 3 if \mathbf{a} is of type G_{2}) such that $q_{i j}=q^{d_{i} a_{i j}}$ for all $i, j \in \mathbb{I}$. Then (2) encodes the quantum Frobenius homomorphism defined by Lusztig and Theorem 1.1 is a result from [L].

The penultimate column of Table 1 indicates the type of \mathfrak{q} as established in [AA]. Thus, we associate Lie algebras in characteristic zero to some contragredient Lie (super)algebras in positive characteristic. In a forthcoming paper we shall compute the Lie algebra $\mathfrak{n}_{\mathfrak{q}}$ for $\theta>2$.
1.4 The paper is organized as follows. We collect the needed preliminary material in Section 2. Section 3 is devoted to the exactness of (2). The computations of the various $\mathfrak{n}_{\mathfrak{q}}$ is the matter of Section 4 . We denote by \mathbb{G}_{N} the group of N-th roots of 1 , and by G_{N}^{\prime} its subset of primitive roots.

2 Preliminaries

2.1 The Nichols algebra, the distinguished-pre-Nichols algebra and the Lusztig algebra

Let \mathfrak{q} be as in the Introduction and let $\left(V, c^{q}\right)$ be the corresponding braided vector space of diagonal type. We assume from now on that $\mathcal{B}_{\mathfrak{q}}$ is finite-dimensional. Let $\left(\alpha_{j}\right)_{j \in \mathbb{I}}$ be the canonical basis of \mathbb{Z}^{θ}. Let $\mathbf{q}: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \rightarrow \mathbf{k}^{\times}$be the \mathbb{Z}-bilinear form associated to the matrix \mathfrak{q}, i.e. $\mathbf{q}\left(\alpha_{j}, \alpha_{k}\right)=q_{j k}$ for all $j, k \in \mathbb{I}$. If $\alpha, \beta \in \mathbb{Z}^{\theta}$, we set $q_{\alpha \beta}=\mathbf{q}(\alpha, \beta)$. Consider the matrix $\left(c_{i j}^{\mathfrak{q}}\right)_{i, j \in \mathbb{I}}, c_{i j} \in \mathbb{Z}$ defined by $c_{i i}^{\mathfrak{q}}=2$,

$$
\begin{equation*}
c_{i j}^{q}:=-\min \left\{n \in \mathbb{N}_{0}:(n+1)_{q_{i i}}\left(1-q_{i i}^{n} q_{i j} q_{j i}\right)=0\right\}, \quad i \neq j \tag{3}
\end{equation*}
$$

This is well-defined by [R]. Let $i \in \mathbb{I}$. We recall the following definitions:
\diamond The reflection $s_{i}^{\mathfrak{q}} \in G L\left(\mathbb{Z}^{\theta}\right)$, given by $s_{i}^{\mathfrak{q}}\left(\alpha_{j}\right)=\alpha_{j}-c_{i j}^{\mathfrak{q}} \alpha_{i}, j \in \mathbb{I}$.
\diamond The matrix $\rho_{i}(\mathfrak{q})$, given by $\rho_{i}(\mathfrak{q})_{j k}=\mathbf{q}\left(s_{i}^{\mathfrak{q}}\left(\alpha_{j}\right), s_{i}^{\mathfrak{q}}\left(\alpha_{k}\right)\right), j, k \in \mathbb{I}$.
\diamond The braided vector space $\rho_{i}(V)$ of diagonal type with matrix $\rho_{i}(\mathfrak{q})$.
A basic result is that $\mathcal{B}_{\mathfrak{q}} \simeq \mathcal{B}_{\rho_{i}(\mathfrak{q})}$, at least as graded vector spaces.
The algebras $T(V)$ and $\mathcal{B}_{\mathfrak{q}}$ are \mathbb{Z}^{θ}-graded by $\operatorname{deg} x_{i}=\alpha_{i}, i \in \mathbb{I}$. Let $\Delta_{+}^{\mathfrak{q}}$ be the set of \mathbb{Z}^{θ}-degrees of the generators of a PBW-basis of $\mathcal{B}_{\mathfrak{q}}$, counted with multiplicities [H1]. The elements of $\Delta_{+}^{\mathfrak{q}}$ are called (positive) roots. Let $\Delta^{\mathfrak{q}}=\Delta_{+}^{\mathfrak{q}} \cup-\Delta_{+}^{\mathfrak{q}}$. Let

$$
\mathcal{X}:=\left\{\rho_{j_{1}} \ldots \rho_{j_{N}}(\mathfrak{q}): j_{1}, \ldots, j_{N} \in \mathbb{I}, N \in \mathbb{N}\right\} .
$$

Then the generalized root system of \mathfrak{q} is the fibration $\Delta \rightarrow \mathcal{X}$, where the fiber of $\rho_{j_{1}} \ldots \rho_{j_{N}}(\mathfrak{q})$ is $\Delta^{\rho_{j_{1}} \ldots \rho_{j_{N}}(\mathfrak{q})}$. The Weyl groupoid of $\mathcal{B}_{\mathfrak{q}}$ is a groupoid, denoted $\mathcal{W}_{\mathfrak{q}}$,

Row	Generalized Dynkin diagrams	parameters	Type of $\mathcal{B}_{\mathfrak{q}}$	$\mathfrak{n}_{\mathfrak{q}} \simeq \mathfrak{g}^{+}$
1	$\begin{array}{ll} 9 & 9^{-1} \\ 0 \end{array}$	$q \neq 1$	Cartan A	A_{2}
2		$q \neq \pm 1$	Super A	A_{1}
3	$\begin{aligned} & q q^{-2} q^{2} \\ & 0 \\ & 0 \end{aligned}$	$q \neq \pm 1$	Cartan B	B_{2}
4		$q \notin \mathrm{G}_{4}$	Super B	$A_{1} \oplus A_{1}$
5	$\begin{array}{llll} \zeta \zeta q^{-1} & q & \zeta \zeta^{-1} q^{\zeta} \zeta q^{-1} \\ & 0 \end{array}$	$\zeta \in \mathbb{G}_{3} \nexists q$	$\mathfrak{b r}(2, a)$	$A_{1} \oplus A_{1}$
6	$\begin{array}{lll} \zeta & -\zeta-1 & \zeta^{-1}-\zeta^{-1-1} \\ \\ \\ \hline \end{array}$	$\zeta \in \mathbb{G}_{3}^{\prime}$	Standard B	0
7	$\begin{array}{llll} -\zeta^{-2}-\zeta^{3}-\zeta^{2}-\zeta^{-2} \zeta^{-1} & -1 & -\zeta^{2}-\zeta & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ -\zeta^{3} & \zeta & -1 & -\zeta^{3}-\zeta^{-1}-1 \\ 0 & 0 & 0 & 0 \end{array}$	$\zeta \in \mathbb{G}_{12}^{\prime}$	$\mathfrak{u f o}(7)$	0
8	$\begin{array}{\|cccc} \hline-\zeta^{2} & \zeta \zeta^{2}-\zeta^{2} \zeta^{3} & -1-\zeta^{-1}-\zeta^{3}-1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$	$\zeta \in \mathbb{G}_{12}^{\prime}$	$\mathfrak{u f o}(8)$	A_{1}
9	$\begin{array}{ccccccc} \hline-\zeta & \zeta^{-2} & \zeta^{3} & \zeta^{3} & \zeta^{-1} & -1 & -\zeta^{2} \\ 0 & \zeta_{0}^{-1} \\ & 0 & & \\ \hline \end{array}$	$\zeta \in \mathbb{G}_{9}^{\prime}$	$\mathfrak{b r j}(2 ; 3)$	$A_{1} \oplus A_{1}$
10	0	$q \notin \mathbb{G}_{2} \cup G_{3}$	Cartan G_{2}	G_{2}
11	$\begin{array}{llllll} \zeta^{2} & \zeta \zeta^{-1} & \zeta^{2}-\zeta^{-1}-1 & \zeta & -\zeta-1 \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$	$\zeta \in \mathbb{G}_{8}^{\prime}$	Standard G_{2}	$A_{1} \oplus A_{1}$
12		$\zeta \in \mathbb{G}_{24}^{\prime}$	$\mathfrak{u f o}(9)$	$A_{1} \oplus A_{1}$
13	$\begin{array}{llll} \zeta & \zeta^{2}-1-\zeta^{-2} \zeta^{-2}-1 \\ \\ \hdashline & 0 \\ \hline \end{array}$	$\zeta \in \mathbb{G}_{5}^{\prime}$	$\mathfrak{b r j}(2 ; 5)$	B_{2}
14	$\begin{array}{ccc} \zeta \zeta^{-3}-1 & -\zeta-\zeta^{-3}-1 \\ 0 & \zeta^{-3} & 0 \\ -\zeta^{-2} \zeta^{3} & -1 & \zeta^{-2}-\zeta^{3}-1 \\ 0 & 0 & 0 \end{array}$	$\zeta \in \mathbb{G}_{20}^{\prime}$	$\mathfrak{u f o}(10)$	$A_{1} \oplus A_{1}$
15	$\begin{array}{ccc} \hline-\zeta-\zeta^{-3} \zeta^{5} & \zeta^{3}-\zeta^{4-\zeta^{-4}} \\ \bigcirc \longrightarrow & 0- \\ \zeta^{5}-\zeta^{-2}-1 & \zeta^{3} & -\zeta^{2}-1 \\ 0 & 0 & 0 \\ \hline \end{array}$	$\zeta \in \mathbb{G}_{15}^{\prime}$	$\mathfrak{u f o}(11)$	$A_{1} \oplus A_{1}$
16	${ }^{-\zeta-\zeta^{-3}-1}-\zeta^{-\zeta^{-2}}-\zeta^{3}-1$	$\zeta \in \mathbb{G}_{7}^{\prime}$	$\mathfrak{u f o}(12)$	G_{2}

Table 1: Lie algebras arising from Dynkin diagrams of rank 2.
that acts on this fibration, generalizing the classical Weyl group, see [H1]. We know from loc. cit. that $\mathcal{W}_{\mathfrak{q}}$ is finite (and this characterizes finite-dimensional Nichols algebras of diagonal type).

Here is a useful description of $\Delta_{+}^{\mathfrak{q}}$. Let $w \in \mathcal{W}_{\mathfrak{q}}$ be an element of maximal length. We fix a reduced expression $w=\sigma_{i_{1}}^{\mathfrak{q}} \sigma_{i_{2}} \cdots \sigma_{i_{M}}$. For $1 \leq k \leq M$ set

$$
\begin{equation*}
\beta_{k}=s_{i_{1}}^{q} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right), \tag{4}
\end{equation*}
$$

Then $\Delta_{+}^{\mathfrak{q}}=\left\{\beta_{k} \mid 1 \leq k \leq M\right\}\left[C H\right.$, Prop. 2.12]; in particular $\left|\Delta_{+}^{\mathfrak{q}}\right|=M$.
The notion of Cartan root is instrumental for the definitions of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and \mathcal{L}_{q}. First, following [A5] we say that $i \in \mathbb{I}$ is a Cartan vertex of \mathfrak{q} if

$$
\begin{equation*}
q_{i j} q_{j i}=q_{i i}^{c_{i j}^{q}}, \quad \text { for all } j \neq i \tag{5}
\end{equation*}
$$

Then the set of Cartan roots of \mathfrak{q} is

$$
\mathfrak{O}_{\mathfrak{q}}=\left\{s_{i_{1}}^{\mathfrak{q}} s_{i_{2}} \ldots s_{i_{k}}\left(\alpha_{i}\right) \in \Delta_{+}^{\mathfrak{q}}: i \in \mathbb{I} \text { is a Cartan vertex of } \rho_{i_{k}} \ldots \rho_{i_{2}} \rho_{i_{1}}(\mathfrak{q})\right\} .
$$

Given a positive root $\beta \in \Delta_{+}^{q}$, there is an associated root vector $x_{\beta} \in \mathcal{B}_{q}$ defined via the so-called Lusztig isomorphisms [H3]. Set $N_{\beta}=\operatorname{ord} q_{\beta \beta} \in \mathbb{N}$, $\beta \in \Delta_{+}^{\mathfrak{q}}$. Also, for $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right) \in \mathbb{N}_{0}^{M}$ we write

$$
x^{\mathbf{h}}=x_{\beta_{M}}^{h_{M}} x_{\beta_{M-1}}^{h_{M-1}} \cdots x_{\beta_{1}}^{h_{1}} .
$$

Let $\widetilde{N}_{k}=\left\{\begin{array}{ll}N_{\beta_{k}} & \text { if } \beta_{k} \notin \mathcal{O}_{\mathfrak{q}}, \\ \infty & \text { if } \beta_{k} \in \mathcal{O}_{\mathfrak{q}} .\end{array}\right.$. For simplicity, we introduce

$$
\begin{equation*}
\mathrm{H}=\left\{\mathbf{h} \in \mathbb{N}_{0}^{M}: 0 \leq h_{k}<\widetilde{N}_{k}, \text { for all } k \in \mathbb{I}_{M}\right\} . \tag{6}
\end{equation*}
$$

By [A5, Theorem 3.6] the set $\left\{x^{\mathbf{h}} \mid \mathbf{h} \in H\right\}$ is a basis of $\widetilde{\mathcal{B}}_{q}$.
As said in the Introduction, the Lusztig algebra associated to $\mathcal{B}_{\mathfrak{q}}$ is the braided Hopf algebra $\mathcal{L}_{\mathfrak{q}}$ which is the graded dual of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Thus, it comes equipped with a bilinear form $\langle\rangle:, \widetilde{\mathcal{B}}_{\mathfrak{q}} \times \mathcal{L}_{\mathfrak{q}} \rightarrow \mathbf{k}$, which satisfies for all $x, x^{\prime} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}, y, y^{\prime} \in \mathcal{L}_{\mathfrak{q}}$

$$
\left\langle y, x x^{\prime}\right\rangle=\left\langle y^{(2)}, x\right\rangle\left\langle y^{(1)}, x^{\prime}\right\rangle \quad \text { and } \quad\left\langle y y^{\prime}, x\right\rangle=\left\langle y, x^{(2)}\right\rangle\left\langle y^{\prime}, x^{(1)}\right\rangle
$$

If $\mathbf{h} \in \mathbf{H}$, then define $\mathbf{y}_{\mathbf{h}} \in \mathcal{L}_{\mathfrak{q}}$ by $\left\langle\mathbf{y}_{\mathbf{h}}, x^{\mathbf{j}}\right\rangle=\delta_{\mathbf{h}, \mathbf{j}}, \mathbf{j} \in \mathrm{H}$. Let $\left(\mathbf{h}_{k}\right)_{k \in \mathbb{I}_{M}}$ denote the canonical basis of \mathbb{Z}^{M}. If $k \in \mathbb{I}_{M}$ and $\beta=\beta_{k} \in \Delta_{+}^{q}$, then we denote the element $\mathbf{y}_{n \mathbf{h}_{k}}$ by $y_{\beta}^{(n)}$. Then the algebra $\mathcal{L}_{\mathfrak{q}}$ is generated by

$$
\left\{y_{\alpha}: \alpha \in \Pi_{\mathfrak{q}}\right\} \cup\left\{y_{\alpha}^{\left(N_{\alpha}\right)}: \alpha \in \mathfrak{O}_{\mathfrak{q}}, x_{\alpha}^{N_{\alpha}} \in \mathcal{P}\left(\widetilde{\mathcal{B}}_{\mathfrak{q}}\right)\right\},
$$

by [AAR]. Moreover, by [AAR, 4.6], the following set is a basis of \mathcal{L}_{q} :

$$
\left\{y_{\beta_{1}}^{\left(h_{1}\right)} \cdots y_{\beta_{M}}^{\left(h_{M}\right)} \mid\left(h_{1}, \ldots, h_{M}\right) \in \mathrm{H}\right\} .
$$

2.2 Lyndon words, convex order and PBW-basis

For the computations in Section 4 we need some preliminaries on Kharchenko's PBW-basis. Let (V, \mathfrak{q}) be as above and let \mathbb{X} be the set of words with letters in $X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ (our fixed basis of V); the empty word is 1 and for $u \in \mathbb{X}$ we write $\ell(u)$ the length of u. We can identify $\mathbf{k} \mathbb{X}$ with $T(V)$.
Definition 2.1. Consider the lexicographic order in \mathbb{X}. We say that $u \in \mathbb{X}-\{1\}$ is a Lyndon word if for every decomposition $u=v w, v, w \in \mathbb{X}-\{1\}$, then $u<w$. We denote by L the set of all Lyndon words.

A well-known theorem, due to Lyndon, established that any word $u \in \mathbb{X}$ admits a unique decomposition, named Lyndon decomposition, as a non-increasing product of Lyndon words:

$$
\begin{equation*}
u=l_{1} l_{2} \ldots l_{r}, \quad l_{i} \in L, l_{r} \leq \cdots \leq l_{1} . \tag{7}
\end{equation*}
$$

Also, each $l_{i} \in L$ in (7) is called a Lyndon letter of u.
Now each $u \in L-X$ admits at least one decomposition $u=v_{1} v_{2}$ with $v_{1}, v_{2} \in$ L. Then the Shirshov decomposition of u is the decomposition $u=u_{1} u_{2}, u_{1}, u_{2} \in L$, such that u_{2} is the smallest end of u between all possible decompositions of this form.

For any braided vector space V, the braided bracket of $x, y \in T(V)$ is

$$
\begin{equation*}
[x, y]_{c}:=\text { multiplication } \circ(\operatorname{id}-c)(x \otimes y) \tag{8}
\end{equation*}
$$

Using the identification $T(V)=\mathbf{k} \mathbb{X}$ and the decompositions described above, we can define a k-linear endomorphism $[-]_{c}$ of $T(V)$ as follows:

$$
[u]_{c}:= \begin{cases}u, & \text { if } u=1 \text { or } u \in X \\ {\left[[v]_{c},[w]_{c}\right]_{c},} & \text { if } u \in L-X, u=v w \text { its Shirshov decomposition; } \\ {\left[u_{1}\right]_{c} \ldots\left[u_{t}\right]_{c},} & \text { if } u \in \mathbb{X}-L, u=u_{1} \ldots u_{t} \text { its Lyndon decomposition. }\end{cases}
$$

We will describe PBW-bases using this endomorphism.
Definition 2.2. For $l \in L$, the element $[l]_{c}$ is the corresponding hyperletter. A word written in hyperletters is an hyperword; a monotone hyperword is an hyperword $W=\left[u_{1}\right]_{c}^{k_{1}} \ldots\left[u_{m}\right]_{c}^{k_{m}}$ such that $u_{1}>\cdots>u_{m}$.

Consider now a different order on \mathbb{X}, called deg-lex order [K]: For each pair $u, v \in \mathbb{X}$, we have that $u \succ v$ if $\ell(u)<\ell(v)$, or $\ell(u)=\ell(v)$ and $u>v$ for the lexicographical order. This order is total, the empty word 1 is the maximal element and it is invariant by left and right multiplication.

Let I be a Hopf ideal of $T(V)$ and $R=T(V) / I$. Let $\pi: T(V) \rightarrow R$ be the canonical projection. We set:

$$
G_{I}:=\left\{u \in \mathbb{X}: u \notin \mathbf{k} \mathbb{X}_{\succ u}+I\right\} .
$$

Thus, if $u \in G_{I}$ and $u=v w$, then $v, w \in G_{I}$. So, each $u \in G_{I}$ is a non-increasing product of Lyndon words of G_{I}.

Let $S_{I}:=G_{I} \cap L$ and let $h_{I}: S_{I} \rightarrow\{2,3, \ldots\} \cup\{\infty\}$ be defined by:

$$
\begin{equation*}
h_{I}(u):=\min \left\{t \in \mathbb{N}: u^{t} \in \mathbf{k} \mathbb{X}_{\succ u^{t}}+I\right\} . \tag{9}
\end{equation*}
$$

Theorem 2.3. [K] The following set is a PBW-basis of $R=T(V) / I$:

$$
\left\{\left[u_{1}\right]_{c}^{k_{1}} \ldots\left[u_{m}\right]_{c}^{k_{m}}: m \in \mathbb{N}_{0}, u_{1}>\ldots>u_{m}, u_{i} \in S_{I}, 0<k_{i}<h_{I}\left(u_{i}\right)\right\} .
$$

We refer to this base as Kharchenko's PBW-basis of $T(V) / I$ (it depends on the order of X).

Definition 2.4. [A2, 2.6] Let Δ_{q}^{+}be as above and let $<$be a total order on Δ_{q}^{+}. We say that the order is convex if for each $\alpha, \beta \in \Delta_{q}^{+}$such that $\alpha<\beta$ and $\alpha+\beta \in \Delta_{q}^{+}$, then $\alpha<\alpha+\beta<\beta$. The order is called strongly convex if for each ordered subset $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$ of elements of $\Delta_{\mathfrak{q}}^{+}$such that $\alpha=\sum_{i} \alpha_{i} \in \Delta_{\mathfrak{q}}^{+}$, then $\alpha_{1}<\alpha<\alpha_{k}$.

Theorem 2.5. [A2, 2.11] The following statements are equivalent:

- The order is convex.
- The order is strongly convex.
- The order arises from a reduced expression of a longest element $w \in \mathcal{W}_{\mathfrak{q}}$, cf. (4).

Now, we have two PBW-basis of \mathcal{B}_{q} (and correspondingly of $\widetilde{\mathcal{B}}_{q}$), namely Kharchenko's PBW-basis and the PBW-basis defined from a reduced expression of a longest element of the Weyl groupoid. But both basis are reconciled by [AY, Theorem 4.12], thanks to [A2, 2.14]. Indeed, each generator of Kharchenko's PBW-basis is a multiple scalar of a generator of the secondly mentioned PBWbasis. So, for ease of calculations, in the rest of this work we shall use the Kharchenko generators.

The following proposition is used to compute the hyperword $\left[l_{\beta}\right]_{c}$ associated to a $\operatorname{root} \beta \in \Delta_{\text {q }}^{+}$:

Proposition 2.6. [A2, 2.17] For $\beta \in \Delta_{q}^{+}$,

$$
l_{\beta}= \begin{cases}x_{\alpha_{i}}, & \text { if } \beta=\alpha_{i}, i \in \mathbb{I} \\ \max \left\{l_{\delta_{1}} l_{\delta_{2}}: \delta_{1}, \delta_{2} \in \Delta_{\mathfrak{q}}^{+}, \delta_{1}+\delta_{2}=\beta, l_{\delta_{1}}<l_{\delta_{2}}\right\}, & \text { if } \beta \neq \alpha_{i}, i \in \mathbb{I}\end{cases}
$$

We give a list of the hyperwords appearing in the next section:

Root	Hyperword	Notation
α_{i}	x_{i}	x_{i}
$n \alpha_{1}+\alpha_{2}$	$\left(\operatorname{ad}_{c} x_{1}\right)^{n} x_{2}$	$x_{1} \ldots 12$
$\alpha_{1}+2 \alpha_{2}$	$\left[x_{\alpha_{1}+\alpha_{2}}, x_{2}\right]_{c}$	$\left[x_{12}, x_{2}\right]_{c}$
$3 \alpha_{1}+2 \alpha_{2}$	$\left[x_{2 \alpha_{1}+\alpha_{2}}, x_{\alpha_{1}+\alpha_{2}}\right]_{c}$	$\left[x_{112}, x_{12}\right]_{c}$
$4 \alpha_{1}+3 \alpha_{2}$	$\left[x_{3 \alpha_{1}+2 \alpha_{2}}, x_{\alpha_{1}+\alpha_{2}}\right]_{c}$	$\left[\left[x_{112}, x_{12}\right]_{c}, x_{12}\right]_{c}$
$5 \alpha_{1}+3 \alpha_{2}$	$\left[x_{2 \alpha_{1}+\alpha_{2}}, x_{3 \alpha_{1}+2 \alpha_{2}}\right]_{c}$	$\left[x_{112},\left[x_{112}, x_{12}\right]_{c}\right]_{c}$

We use an analogous notation for the elements of \mathcal{L}_{q} : for example we write $y_{112,12}$ when we refer to the element of $\mathcal{L}_{\mathfrak{q}}$ which corresponds to $\left[x_{112}, x_{12}\right]_{c}$.

3 Extensions of braided Hopf algebras

We recall the definition of braided Hopf algebra extensions given in [AN]; we refer to $[B D, G G]$ for more general definitions. Below we denote by $\underline{\Delta}$ the coproduct of a braided Hopf algebra A and by A^{+}the kernel of the counit.

First, if $\pi: C \rightarrow B$ is a morphism of Hopf algebras in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$, then we set

$$
\begin{aligned}
& C^{\operatorname{co} \pi}=\{c \in C \mid(\operatorname{id} \otimes \pi) \underline{\Delta}(c)=c \otimes 1\} \\
& \operatorname{co} \pi C=\{c \in C \mid(\pi \otimes \operatorname{id}) \underline{\Delta}(c)=1 \otimes c\} .
\end{aligned}
$$

Definition 3.1. [AN, $\S 2.5$] Let H be a Hopf algebra. A sequence of morphisms of Hopf algebras in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$

$$
\begin{equation*}
\mathbf{k} \rightarrow A \xrightarrow{\iota} C \xrightarrow{\pi} B \rightarrow \mathbf{k} \tag{10}
\end{equation*}
$$

is an extension of braided Hopf algebras if
(i) ι is injective,
(ii) π is surjective,
(iii) $\operatorname{ker} \pi=C \iota\left(A^{+}\right)$and
(iv) $A=C^{\mathrm{co} \pi}$, or equivalently $A={ }^{\mathrm{co} \pi} C$.

For simplicity, we shall write $A \stackrel{\iota}{\hookrightarrow} C \xrightarrow{\pi} B$ instead of (10).
This Definition applies in our context: recall that $\mathcal{B}_{\mathfrak{q}} \simeq \widetilde{\mathcal{B}}_{\mathfrak{q}} /\left\langle x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}}\right\rangle$. Let $Z_{\mathfrak{q}}$ be the subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ generated by $x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}}$. Then

- The inclusion $\iota: Z_{\mathfrak{q}} \rightarrow \widetilde{\mathcal{B}}_{\mathfrak{q}}$ is injective and the projection $\pi: \widetilde{\mathcal{B}}_{\mathfrak{q}} \rightarrow \mathcal{B}_{\mathfrak{q}}$ is surjective.
- [A5, Theorem 4.10] $Z_{\mathfrak{q}}$ is a normal Hopf subalgebra of $\widetilde{\mathcal{B}}_{q}$; since $\operatorname{ker} \pi$ is the two-sided ideal generated by $\iota\left(Z_{\mathfrak{q}}^{+}\right)$, $\operatorname{ker} \pi=\widetilde{\mathcal{B}}_{\mathfrak{q}} \iota\left(Z_{\mathfrak{q}}^{+}\right)$.
- [A5, Theorem 4.13] $Z_{\mathfrak{q}}=\operatorname{co} \pi \widetilde{\mathcal{B}}_{\mathfrak{q}}$.

Hence we have an extension of braided Hopf algebras

$$
\begin{equation*}
Z_{\mathfrak{q}} \stackrel{\iota}{\hookrightarrow} \widetilde{\mathcal{B}}_{\mathfrak{q}} \stackrel{\pi}{\longrightarrow} \mathcal{B}_{\mathfrak{q}} . \tag{11}
\end{equation*}
$$

The morphisms ι and π are graded. Thus, taking graded duals, we obtain a new sequence of morphisms of braided Hopf algebras

$$
\begin{equation*}
\mathcal{B}_{\mathfrak{q}} \stackrel{\pi^{*}}{\hookrightarrow} \mathcal{L}_{\mathfrak{q}} \xrightarrow{\iota^{*}} \mathfrak{Z}_{\mathfrak{q}} . \tag{2}
\end{equation*}
$$

Proposition 3.2. The sequence (2) is an extension of braided Hopf algebras.
Proof. The argument of [A, 3.3.1] can be adapted to the present situation, or more generally to extensions of braided Hopf algebras that are graded with finitedimensional homogeneous components. The map $\pi^{*}: \mathcal{B}_{\mathfrak{q}} \rightarrow \mathcal{L}_{\mathfrak{q}}$ is injective because $\mathcal{B}_{\mathfrak{q}} \simeq \mathcal{B}_{\mathfrak{q}}^{*} ; \iota^{*}: \mathcal{L}_{\mathfrak{q}} \xrightarrow{\iota^{*}} \mathcal{Z}_{\mathfrak{q}}$ is surjective being the transpose of a graded monomorphism between two locally finite graded vector spaces. Now, since $Z_{\mathfrak{q}}=\operatorname{co} \pi \widetilde{\mathcal{B}}_{\mathfrak{q}}=\widetilde{\mathcal{B}}_{\mathfrak{q}}^{\operatorname{co} \pi}$, we have

$$
\begin{equation*}
\operatorname{ker} \iota^{*}=\mathcal{L}_{\mathfrak{q}} \mathcal{B}_{\mathfrak{q}}^{+}=\mathcal{B}_{\mathfrak{q}}^{+} \mathcal{L}_{\mathfrak{q}} . \tag{12}
\end{equation*}
$$

Similarly $\mathcal{L}_{\mathfrak{q}}^{\text {co }}{ }^{*}=\mathcal{B}_{\mathfrak{q}}^{*}$ because ker $\pi^{\perp}=\mathcal{B}_{\mathfrak{q}}$.
From now on, we assume the condition (1) on the matrix \mathfrak{q} mentioned in the Introduction, that is

$$
q_{\alpha \beta}^{N_{\beta}}=1, \quad \forall \alpha, \beta \in \mathfrak{O}_{\mathfrak{q}} .
$$

The following result is our basic tool to compute the Lie algebra $\mathfrak{n}_{\mathfrak{q}}$.
Theorem 3.3. The braided Hopf algebra $\mathfrak{Z}_{\mathfrak{q}}$ is an usual Hopf algebra, isomorphic to the universal enveloping algebra of the Lie algebra $\mathfrak{n}_{\mathfrak{q}}=\mathcal{P}\left(\mathfrak{Z}_{\mathfrak{q}}\right)$. The elements $\xi_{\beta}:=$ $\iota^{*}\left(y_{\beta}^{\left(N_{\beta}\right)}\right), \beta \in \mathfrak{O}_{\mathfrak{q}}$, form a basis of $\mathfrak{n}_{\mathfrak{q}}$.

Proof. Let $A_{\mathfrak{q}}$ be the subspace of $\mathcal{L}_{\mathfrak{q}}$ generated by the ordered monomials $y_{\beta_{i_{1}}}^{\left(r_{1} N_{i_{i_{1}}}\right)} \ldots y_{\beta_{i_{k}}}^{\left(r_{k} N_{i_{i_{k}}}\right)}$ where $\beta_{i_{1}}<\cdots<\beta_{i_{k}}$ are all the Cartan roots of $\mathcal{B}_{\mathfrak{q}}$ and $r_{1}, \ldots, r_{k} \in \mathbb{N}_{0}$. We claim that the restriction of the multiplication $\mu: \mathcal{B}_{\mathfrak{q}} \otimes A_{\mathfrak{q}} \rightarrow$ $\mathcal{L}_{\mathfrak{q}}$ is an isomorphism of vector spaces. Indeed, μ is surjective by the commuting relations in $\mathcal{L}_{\mathfrak{q}}$. Also, the Hilbert series of $\mathcal{L}_{\mathfrak{q}}, \mathcal{B}_{\mathfrak{q}}$ and $A_{\mathfrak{q}}$ are respectively:

$$
\begin{aligned}
& \mathcal{H}_{\mathcal{L}_{\mathfrak{q}}}=\prod_{\beta_{k} \in \mathfrak{D}_{\mathfrak{q}}} \frac{1}{1-T^{\operatorname{deg} \beta}} \cdot \prod_{\beta_{k} \notin \mathfrak{V}_{\mathfrak{q}}} \frac{1-T^{N_{\beta} \operatorname{deg} \beta}}{1-T^{\operatorname{deg} \beta}} ; \\
& \mathcal{H}_{\mathcal{B}_{\mathfrak{q}}}=\prod_{\beta_{k} \in \Delta_{\mathfrak{q}}^{+}} \frac{1-T^{N_{\beta} \operatorname{deg} \beta}}{1-T^{\operatorname{deg} \beta}} ; \\
& \mathcal{H}_{A_{\mathfrak{q}}}=\prod_{\beta_{k} \in \mathfrak{D}_{\mathfrak{q}}} \frac{1}{1-T^{N_{\beta} \operatorname{deg} \beta}} .
\end{aligned}
$$

Since the multiplication is graded and $\mathcal{H}_{\mathcal{L}_{\mathfrak{q}}}=\mathcal{H}_{\mathcal{B}_{\mathfrak{q}}} \mathcal{H}_{A_{\mathfrak{q}}}, \mu$ is injective. The claim follows and we have

$$
\begin{equation*}
\mathcal{L}_{\mathfrak{q}}=A_{\mathfrak{q}} \oplus \mathcal{B}_{\mathfrak{q}}^{+} A_{\mathfrak{q}} . \tag{13}
\end{equation*}
$$

We next claim that $\iota^{*}: A_{\mathfrak{q}} \rightarrow \mathfrak{Z}_{\mathfrak{q}}$ is an isomorphism of vector spaces. Indeed, by (12), $\operatorname{ker} \iota^{*}=\mathcal{B}_{\mathfrak{q}}^{+} \mathcal{L}_{\mathfrak{q}}=\mathcal{B}_{\mathfrak{q}}^{+}\left(\mathcal{B}_{\mathfrak{q}} A_{\mathfrak{q}}\right)=\mathcal{B}_{\mathfrak{q}}^{+} A_{\mathfrak{q}}$. By (13), the claim follows.

By (1), $Z_{\mathfrak{q}}$ is a commutative Hopf algebra, see [A5]; hence $\mathfrak{Z}_{\mathfrak{q}}$ is a cocommutative Hopf algebra. Now the elements $\xi_{\beta}:=\iota^{*}\left(y_{\beta}^{\left(N_{\beta}\right)}\right), \beta \in \mathfrak{O}_{\mathfrak{q}}$, are primitive,
i.e. belong to $\mathfrak{n}_{\mathfrak{q}}=\mathcal{P}\left(\mathfrak{Z}_{\mathfrak{q}}\right)$. The monomials $\tilde{\zeta}_{\beta_{i_{1}}}^{r_{1}} \ldots \xi_{\beta_{i_{k}}}^{r_{k}}, \beta_{i_{1}}<\cdots<\beta_{i_{k}} \in \mathfrak{O}_{\mathfrak{q}}$, $r_{1}, \ldots, r_{k} \in \mathbb{N}_{0}$ form a basis of $\mathfrak{Z}_{\mathfrak{q}}$, hence

$$
\mathfrak{Z}_{\mathfrak{q}}=\mathbf{k}\left\langle\xi_{\beta}: \beta \in \mathfrak{O}_{\mathfrak{q}}\right\rangle \subseteq \mathcal{U}\left(\mathfrak{n}_{\mathfrak{q}}\right) \subseteq \mathfrak{Z}_{\mathfrak{q}} .
$$

We conclude that $\left(\xi_{\beta}\right)_{\beta \in \mathfrak{D}_{\mathfrak{q}}}$ is a basis of $\mathfrak{n}_{\mathfrak{q}}$ and that $\mathfrak{Z}_{\mathfrak{q}}=\mathcal{U}\left(\mathfrak{n}_{\mathfrak{q}}\right)$.

4 Proof of Theorem 1.1

In this section we consider all indecomposable matrices \mathfrak{q} of rank 2 whose associated Nichols algebra $\mathcal{B}_{\mathfrak{q}}$ is finite-dimensional; these are classified in [H2] and we recall their diagrams in Table 1. For each \mathfrak{q} we obtain an isomorphism between $\mathfrak{Z}_{\mathfrak{q}}$ and $\mathcal{U}\left(\mathfrak{g}^{+}\right)$, the universal enveloping algebra of the positive part of \mathfrak{g}. Here \mathfrak{g} is the semisimple Lie algebra of the last column of Table 1, with Cartan matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq 2}$. By simplicity we denote \mathfrak{g} by its type, e.g. $\mathfrak{g}=A_{2}$.

We recall that we assume (1) and that $\xi_{\beta}=\iota^{*}\left(y_{\beta}^{\left(N_{\beta}\right)}\right) \in \mathfrak{Z}_{\mathfrak{q}}$. Thus,

$$
\left[\xi_{\alpha}, \xi_{\beta}\right]_{c}=\xi_{\alpha} \xi_{\beta}-\xi_{\beta} \xi_{\alpha}=\left[\xi_{\alpha}, \xi_{\beta}\right], \quad \text { for all } \alpha, \beta \in \mathfrak{O}_{\mathfrak{q}}
$$

The strategy to prove the isomorphism $\mathfrak{F}: \mathcal{U}\left(\mathfrak{g}^{+}\right) \rightarrow \mathfrak{Z}_{\mathfrak{q}}$ is the following:

1. If $\mathfrak{O}_{\mathfrak{q}}=\varnothing$, then $\mathfrak{g}^{+}=0$. If $\left|\mathfrak{O}_{\mathfrak{q}}\right|=1$, then $\mathfrak{g}=\mathfrak{s l}_{2}$, i.e. of type A_{1}.
2. If $\left|\mathfrak{O}_{\mathfrak{q}}\right|=2$, then \mathfrak{g} is of type $A_{1} \oplus A_{1}$. Indeed, let $\mathfrak{O}_{\mathfrak{q}}=\{\alpha, \beta\}$. As $\mathfrak{Z}_{\mathfrak{q}}$ is \mathbb{N}_{0}^{θ}-graded, $\left[\xi_{\alpha}, \xi_{\beta}\right] \in \mathfrak{n}_{\mathfrak{q}}$ has degree $N_{\alpha} \alpha+N_{\beta} \beta$. Thus $\left[\xi_{\alpha}, \xi_{\beta}\right]=0$.
3. Now assume that $\left|\mathfrak{O}_{\mathfrak{q}}\right|>2$. We recall that $\mathfrak{Z}_{\mathfrak{q}}$ is generated by

$$
\left\{\tilde{\xi}_{\beta} \mid x_{\beta}^{N_{\beta}} \text { is a primitive element of } \widetilde{\mathcal{B}}_{\mathfrak{q}}\right\} .
$$

We compute the coproduct of all $x_{\beta}^{N_{\beta}}$ in $\widetilde{\mathcal{B}}_{\mathfrak{q}}, \beta \in \mathfrak{O}_{\mathfrak{q}}$, using that $\underline{\Delta}$ is a graded map and $Z_{\mathfrak{q}}$ is a Hopf subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. In all cases we get two primitive elements $x_{\beta_{1}}^{N_{\beta_{1}}}$ and $x_{\beta_{2}}^{N_{\beta_{2}}}$, thus $\mathfrak{Z}_{\mathfrak{q}}$ is generated by $\xi_{\beta_{1}}$ and $\xi_{\beta_{2}}$.
4. Using the coproduct again, we check that

$$
\begin{equation*}
\left(\operatorname{ad} \xi_{\beta_{i}}\right)^{1-a_{i j}} \xi_{\beta_{j}}=0, \quad 1 \leq i \neq j \leq 2 \tag{14}
\end{equation*}
$$

To prove (14), it is enough to observe that $\mathfrak{n}_{\mathfrak{q}}$ has a trivial component of degree $N_{\beta_{i}}\left(1-a_{i j}\right) \beta_{i}+N_{\beta_{j}} \beta_{j}$. Now (14) implies that there exists a surjective map of Hopf algebras $\mathfrak{F}: \mathcal{U}\left(\mathfrak{g}^{+}\right) \rightarrow \mathfrak{Z}_{\mathfrak{q}}$ such that $e_{i} \mapsto \xi_{\beta_{i}}$.
5. To prove that \mathfrak{F} is an isomorphism, it suffices to see that the restriction $\mathfrak{g}^{+} \xrightarrow{*} \mathfrak{n}_{\mathfrak{q}}$ is an isomorphism; but in each case we see that $*$ is surjective, and $\operatorname{dim} \mathfrak{g}^{+}=$ $\operatorname{dim} \mathfrak{n}_{\mathfrak{q}}=\left|\mathfrak{O}_{\mathfrak{q}}\right|$.

We refer to [A1, AAY, A4] for the presentation, root system and Cartan roots of braidings of standard, super and unidentified type respectively.

Row 1. Let $q \in \mathbb{G}_{N^{\prime}}^{\prime}, N \geq 2$. The diagram $\overbrace{0}^{q} q^{-1} \quad q$ corresponds to a braiding of Cartan type A_{2} whose set of positive roots is $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$. In this case $\mathfrak{O}_{\mathfrak{q}}=\Delta_{\mathfrak{q}}^{+}$and $N_{\beta}=N$ for all $\beta \in \mathfrak{O}_{\mathfrak{q}}$. By hypothesis, $q_{12}^{N}=q_{21}^{N}=1$. The elements $x_{1}, x_{2} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive and

$$
\underline{\Delta}\left(x_{12}\right)=x_{12} \otimes 1+1 \otimes x_{12}+\left(1-q^{-1}\right) x_{1} \otimes x_{2} .
$$

Then the coproducts of the elements $x_{1}^{N}, x_{12}^{N}, x_{2}^{N} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are:

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}^{N}\right)=x_{1}^{N} \otimes 1+1 \otimes x_{1}^{N} ; \quad \underline{\Delta}\left(x_{2}^{N}\right)=x_{2}^{N} \otimes 1+1 \otimes x_{2}^{N} ; \\
& \underline{\Delta}\left(x_{12}^{N}\right)=x_{12}^{N} \otimes 1+1 \otimes x_{12}^{N}+\left(1-q^{-1}\right)^{N} q_{21}^{\frac{N(N-1)}{2}} x_{1}^{N} \otimes x_{2}^{N} .
\end{aligned}
$$

As $\left[\xi_{2}, \xi_{12}\right],\left[\xi_{1}, \xi_{12}\right] \in \mathfrak{n}_{\mathfrak{q}}$ have degree $N \alpha_{1}+2 N \alpha_{2}$, respectively $2 N \alpha_{1}+N \alpha_{2}$, and the components of these degrees of $\mathfrak{n}_{\mathfrak{q}}$ are trivial, we have

$$
\left[\xi_{2}, \xi_{12}\right]=\left[\xi_{1}, \xi_{12}\right]=0 .
$$

Again by degree considerations, there exists $c \in \mathbf{k}$ such that $\left[\xi_{2}, \xi_{1}\right]=c \xi_{12}$. By the duality between $\mathfrak{Z}_{\mathfrak{q}}$ and $Z_{\mathfrak{q}}$ we have that

$$
\left[\xi_{2}, \xi_{1}\right]=\left(1-q^{-1}\right)^{N} q_{21}^{\frac{N(N-1)}{2}} \xi_{12} .
$$

Then there exists a morphism of algebras $\mathfrak{F}: \mathcal{U}\left(A_{2}^{+}\right) \rightarrow \mathfrak{Z}_{\mathfrak{q}}$ given by

$$
e_{1} \mapsto \xi_{1}, \quad e_{2} \mapsto \xi_{2}
$$

This morphism takes a basis of A_{2}^{+}to a basis of $\mathfrak{n}_{\mathfrak{q}}$, so $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(A_{2}^{+}\right)$.
Row 2. Let $q \in \mathbb{G}_{N^{\prime}}^{\prime}, N \geq 3$. These diagrams correspond to braidings of super type A with positive roots $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.

The first diagram is $\stackrel{q}{0}_{Q^{q} q^{-1}-1}^{0}$. In this case the unique Cartan root is α_{1} with $N_{\alpha_{1}}=N$. The element $x_{1}^{N} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ is primitive and $\mathfrak{Z}_{\mathfrak{q}}$ is generated by ξ_{1}. Hence $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(A_{1}^{+}\right)$.

The second diagram gives a similar situation, since $\mathfrak{O}_{\mathfrak{q}}=\left\{\alpha_{1}+\alpha_{2}\right\}$.
 Cartan type B_{2} with $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$. In this case $\mathfrak{O}_{\mathfrak{q}}=\Delta_{\mathfrak{q}}^{+}$. The coproducts of the generators of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ are:

$$
\begin{aligned}
\underline{\Delta}\left(x_{1}\right)= & x_{1} \otimes 1+1 \otimes x_{1} ; \quad \underline{\Delta}\left(x_{2}\right)=x_{2} \otimes 1+1 \otimes x_{2} ; \\
\underline{\Delta}\left(x_{12}\right)= & x_{12} \otimes 1+1 \otimes x_{12}+\left(1-q^{-2}\right) x_{1} \otimes x_{2} ; \\
\underline{\Delta}\left(x_{112}\right)= & x_{112} \otimes 1+1 \otimes x_{112}+\left(1-q^{-1}\right)\left(1-q^{-2}\right) x_{1}^{2} \otimes x_{2} \\
& +q\left(1-q^{-2}\right) x_{1} \otimes x_{12} .
\end{aligned}
$$

We have two different cases depending on the parity of N.

1. If N is odd, then $N_{\beta}=N$ for all $\beta \in \Delta_{q}^{+}$. In this case,

$$
\begin{aligned}
\underline{\Delta}\left(x_{1}^{N}\right)= & x_{1}^{N} \otimes 1+1 \otimes x_{1}^{N} ; \quad \underline{\Delta}\left(x_{2}^{N}\right)=x_{2}^{N} \otimes 1+1 \otimes x_{2}^{N} \\
\underline{\Delta}\left(x_{12}^{N}\right)= & x_{12}^{N} \otimes 1+1 \otimes x_{12}^{N}+\left(1-q^{-2}\right)^{N} x_{1}^{N} \otimes x_{2}^{N} ; \\
\underline{\Delta}\left(x_{112}^{N}\right)= & x_{112}^{N} \otimes 1+1 \otimes x_{112}^{N}+\left(1-q^{-1}\right)^{N}\left(1-q^{-2}\right)^{N} x_{1}^{2 N} \otimes x_{2}^{N} \\
& +C x_{1}^{N} \otimes x_{12}^{N}
\end{aligned}
$$

for some $C \in \mathbf{k}$. Hence, in $\mathfrak{Z}_{\mathfrak{q}}$ we have the relations

$$
\begin{aligned}
& {\left[\xi_{1}, \xi_{2}\right]=\left(1-q^{-2}\right)^{N} \xi_{12}} \\
& {\left[\xi_{12}, \xi_{1}\right]=C \xi_{112}} \\
& {\left[\xi_{1}, \xi_{2}\right]_{c}=\left(1-q^{-1}\right)^{N}\left(1-q^{-2}\right)^{N} \xi_{112}+\left(1-q^{-2}\right)^{N} \xi_{1} \xi_{12}} \\
& {\left[\xi_{1}, \xi_{112}\right]=\left[\xi_{2}, \xi_{12}\right]=0 .}
\end{aligned}
$$

Thus there exists an algebra map $\mathfrak{F}: \mathcal{U}\left(B_{2}^{+}\right) \rightarrow \mathfrak{Z}_{\mathfrak{q}}$ given by $e_{1} \mapsto \xi_{1}, e_{2} \mapsto \xi_{2}$. Moreover, \mathfrak{F} is an isomorphism, and so $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(B_{2}^{+}\right)$. Using the relations of $\mathcal{U}\left(B_{2}^{+}\right)$ we check that $C=2\left(1-q^{-1}\right)^{N}\left(1-q^{-2}\right)^{N}$.
(2) If $N=2 M>2$, then $N_{\alpha_{1}}=N_{\alpha_{1}+\alpha_{2}}=N$ and $N_{2 \alpha_{1}+\alpha_{2}}=N_{\alpha_{2}}=M$. In this case we have

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}^{N}\right)=x_{1}^{N} \otimes 1+1 \otimes x_{1}^{N} ; \quad \underline{\Delta}\left(x_{2}^{M}\right)=x_{2}^{M} \otimes 1+1 \otimes x_{2}^{M} ; \\
& \underline{\Delta}\left(x_{12}^{N}\right)=x_{12}^{N} \otimes 1+1 \otimes x_{12}^{N}+\left(1-q^{-2}\right)^{N} q_{21}^{M(N-1)} x_{1}^{N} \otimes x_{2}^{2 M} \\
& +\left(1-q^{-2}\right)^{M} q_{21}^{M^{2}} x_{112}^{M} \otimes x_{2}^{M} ; \\
& \underline{\Delta}\left(x_{112}^{M}\right)=x_{112}^{M} \otimes 1+1 \otimes x_{112}^{M}+\left(1-q^{-1}\right)^{M}\left(1-q^{-2}\right)^{M} q_{21}^{M(M-1)} x_{1}^{N} \otimes x_{2}^{M} .
\end{aligned}
$$

Hence, the following relations hold in \mathfrak{Z}_{q} :

$$
\begin{aligned}
& {\left[\xi_{2}, \xi_{1}\right]=\left(1-q^{-1}\right)^{M}\left(1-q^{-2}\right)^{M} q_{21}^{M(M-1)} \xi_{112} ;} \\
& {\left[\xi_{112}, \xi_{2}\right]=\left(1-q^{-2}\right)^{M} q_{21}^{M^{2}} \xi_{12} ;} \\
& {\left[\xi_{1}, \xi_{112}\right]=\left[\xi_{2}, \xi_{12}\right]=0 .}
\end{aligned}
$$

Thus $\mathfrak{F}: \mathcal{U}\left(C_{2}^{+}\right) \rightarrow \mathfrak{Z}_{q}, e_{1} \mapsto \xi_{1}, e_{2} \mapsto \xi_{2}$, is an isomorphism of algebras. (Of course $C_{2} \simeq B_{2}$ but in higher rank we will get different root systems depending on the parity of N).
Row 4. Let $q \in \mathbb{G}_{N}^{\prime}, N \neq 2,4$. These diagrams correspond to braidings of super type B with $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.

If the diagram is $\quad{ }^{q} q^{q^{-2}-1}$, then the Cartan roots are α_{1} and $\alpha_{1}+\alpha_{2}$, with $N_{\alpha_{1}}=N, N_{\alpha_{1}+\alpha_{2}}=M$; here, $M=N$ if N is odd and $M=\frac{N}{2}$ if N is even. The elements $x_{1}^{N}, x_{12}^{M} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive in $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Thus, in $\mathfrak{Z}_{\mathfrak{q}},\left[\xi_{12}, \xi_{1}\right]=0$ and $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$.

If we consider the diagram $\stackrel{-q^{-1} q^{2}}{q^{-1}}$, then $\mathfrak{O}_{\mathfrak{q}}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\}, N_{\alpha_{1}}=M$ and $N_{\alpha_{1}+\alpha_{2}}=N$. The elements $x_{1}^{M}, x_{12}^{N} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive, so $\left[\xi_{12}, \xi_{1}\right]=0$ and $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$.

Row 5. Let $q \in \mathbb{G}_{N}^{\prime}, N \neq 3, \zeta \in \mathbb{G}_{3}^{\prime}$. The diagram $\underset{\sim}{\zeta} \underbrace{q^{-1}}{ }^{q}$ corresponds to a braiding of standard type B_{2}, so $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$. The other diagram $\stackrel{\zeta}{\stackrel{\zeta}{ } \tau^{-1} \zeta q^{-1}}$ is obtained by changing the parameter $q \leftrightarrow \zeta q^{-1}$.

The Cartan roots are $2 \alpha_{1}+\alpha_{2}$ and α_{2}, with $N_{2 \alpha_{1}+\alpha_{2}}=M:=\operatorname{ord}\left(\zeta q^{-1}\right)$ and $N_{\alpha_{2}}=N$. The elements $x_{112}^{M}, x_{2}^{N} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive. Thus, in $\mathfrak{Z}_{\mathfrak{q}}$, we have $\left[\xi_{112}, \xi_{2}\right]=0$. Hence, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$.

Row 6. Let $\zeta \in \mathbb{G}_{3}^{\prime}$. The diagrams $\stackrel{\zeta-\zeta-1}{\square-\alpha_{0}^{-1}}$ and $\underset{\sim}{\zeta^{-1}-\zeta^{-1-1}}$ correspond to braidings of standard type B, thus $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$. In both cases $\mathfrak{O}_{\mathfrak{q}}$ is empty so the corresponding Lie algebras are trivial.

Row 7. Let $\zeta \in \mathbb{G}_{12}^{\prime}$. The diagrams of this row correspond to braidings of type $\mathfrak{u f o}(7)$. In all cases $\mathfrak{V}_{\mathfrak{q}}=\varnothing$ and the associated Lie algebras are trivial.

Row 8. Let $\zeta \in \mathbb{G}_{12}^{\prime}$. The diagrams of this row correspond to braidings of type $\mathfrak{u f o}(8)$. For $\xrightarrow{-\zeta^{2} \zeta-\zeta^{2}}, \Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$. In this case $\mathfrak{O}_{\mathfrak{q}}=\left\{\alpha_{1}+\alpha_{2}\right\}, N_{\alpha_{1}+\alpha_{2}}=12$. Hence $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(A_{1}^{+}\right)$. The same result holds for the other braidings in this row.

Row 9. Let $\zeta \in \mathbb{G}_{9}^{\prime}$. The diagrams of this row correspond to braidings of type $\mathfrak{b r j}(2 ; 3)$. If \mathfrak{q} has diagram $\stackrel{-\zeta}{\stackrel{\zeta^{7}}{\zeta^{3}}}{ }^{\circ}$, then

$$
\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\} .
$$

In this case $\mathfrak{O}_{\mathfrak{q}}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\}$ and $N_{\alpha_{1}}=N_{\alpha_{1}+\alpha_{2}}=18$. Thus $\left[\xi_{12}, \xi_{1}\right]=0$, so $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$.

$$
\begin{aligned}
& \left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 4 \alpha_{1}+3 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\} \\
& \left\{\alpha_{1}, 4 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}
\end{aligned}
$$

the Cartan roots are, respectively, $\alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}$ and $\alpha_{1}, 2 \alpha_{1}+\alpha_{2}$. Hence, in both cases, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$.

Row 10. Let $q \in \mathbb{G}_{N}^{\prime}, N \geq 4$. The diagram $\xlongequal{q} \underbrace{q^{-3}} q^{3}$ corresponds to a braiding of Cartan type G_{2}, so $\mathfrak{O}_{\mathfrak{q}}=\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$. The coproducts of the PBW-generators are:

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}\right)=x_{1} \otimes 1+1 \otimes x_{1} ; \quad \underline{\Delta}\left(x_{2}\right)=x_{2} \otimes 1+1 \otimes x_{2} ; \\
& \underline{\Delta}\left(x_{12}\right)=x_{12} \otimes 1+1 \otimes x_{12}+\left(1-q^{-3}\right) x_{1} \otimes x_{2} ; \\
& \underline{\Delta}\left(x_{112}\right)=x_{112} \otimes 1+1 \otimes x_{112}+(1+q)\left(1-q^{-2}\right) x_{1} \otimes x_{12} \\
& \quad+\left(1-q^{-2}\right)\left(1-q^{-3}\right) x_{1}^{2} \otimes x_{2} ; \\
& \underline{\Delta}\left(x_{1112}\right)=x_{1112} \otimes 1+1 \otimes x_{1112}+q^{2}\left(1-q^{-3}\right) x_{1} \otimes x_{112}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(q^{2}-1\right)\left(1-q^{-3}\right) x_{1}^{2} \otimes x_{12}+\left(1-q^{-3}\right)\left(1-q^{-2}\right)\left(1-q^{-1}\right) x_{1}^{3} \otimes x_{2} \\
\Delta & \left(\left[x_{112}, x_{12}\right]_{c}\right)=\left[x_{112}, x_{12}\right]_{c} \otimes 1+1 \otimes\left[x_{112}, x_{12}\right]_{c}+\left(q-q^{-1}\right) x_{112} \otimes x_{12} \\
& +\left(1-q^{-3}\right)(1+q)\left(1-q^{-1}+q\right) x_{112} x_{1} \otimes x_{2} \\
& -q q_{21}\left(1-q^{-3}\right)\left(1+q-q^{2}\right) x_{1112} \otimes x_{2}+q^{2} q_{21}\left(1-q^{-3}\right) x_{1} \otimes\left[x_{112}, x_{2}\right]_{c} \\
& +\left(1-q^{-3}\right)^{2}\left(q^{2}-1\right) x_{1}^{2} \otimes x_{2} x_{12} \\
& +q_{21}\left(1-q^{-3}\right)^{2}\left(1-q^{-2}\right)\left(1-q^{-1}\right) x_{1}^{3} \otimes x_{2}^{2} .
\end{aligned}
$$

We have two cases.

1. If 3 does not divide N, then $N_{\beta}=N$ for all $\beta \in \Delta_{\mathfrak{q}}^{+}$. Thus, in $\widetilde{\mathcal{B}}_{\mathfrak{q}}$,

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}^{N}\right)=x_{1}^{N} \otimes 1+1 \otimes x_{1}^{N} ; \quad \underline{\Delta}\left(x_{2}^{N}\right)=x_{2}^{N} \otimes 1+1 \otimes x_{2}^{N} ; \\
& \underline{\Delta}\left(x_{12}^{N}\right)=x_{12}^{N} \otimes 1+1 \otimes x_{12}^{N}+a_{1} x_{1}^{N} \otimes x_{2}^{N} ; \\
& \underline{\Delta}\left(x_{112}^{N}\right)=x_{112}^{N} \otimes 1+1 \otimes x_{112}^{N}+a_{2} x_{1}^{N} \otimes x_{12}^{N}+a_{3} x_{1}^{2 N} \otimes x_{2}^{N} ; \\
& \underline{\Delta}\left(x_{1112}^{N}\right)=x_{1112}^{N} \otimes 1+1 \otimes x_{1112}^{N}+a_{4} x_{1}^{N} \otimes x_{112}^{N}+a_{5} x_{1}^{2 N} \otimes x_{12}^{N} \\
& \quad+a_{6} x_{1}^{3 N} \otimes x_{2}^{N} ; \\
& \underline{\Delta}\left(\left[x_{112}, x_{12}\right]_{c}^{N}\right)=\left[x_{112}, x_{12}\right]_{c}^{N} \otimes 1+1 \otimes\left[x_{112}, x_{12}\right]_{c}^{N}+a_{7} x_{112}^{N} \otimes x_{12}^{N} \\
& \quad+a_{8} x_{1112}^{N} \otimes x_{2}^{N}+a_{9} x_{1}^{N} \otimes x_{12}^{2 N}+a_{10} x_{1}^{2 N} \otimes x_{2}^{N} x_{12}^{N} \\
& \quad+a_{11} x_{112}^{N} x_{1}^{N} \otimes x_{2}^{N}+a_{12} x_{1}^{3 N} \otimes x_{2}^{2 N} ;
\end{aligned}
$$

for some $a_{i} \in \mathbf{k}$. Since

$$
\begin{aligned}
a_{1} & =\left(1-q^{-3}\right)^{N} q_{21}^{\frac{N(N-1)}{2}} \neq 0, \\
a_{3} & =\left(1-q^{-2}\right)^{N}\left(1-q^{-3}\right)^{N} \neq 0, \\
a_{6} & =\left(1-q^{-1}\right)^{N}\left(1-q^{-2}\right)^{N}\left(1-q^{-3}\right)^{N} q_{21}^{\frac{3 N(N-1)}{2}} \neq 0, \\
a_{12} & =\left(1-q^{-1}\right)^{N}\left(1-q^{-2}\right)^{N}\left(1-q^{-3}\right)^{2 N} \neq 0,
\end{aligned}
$$

the elements $x_{12}^{N}, x_{112}^{N}, x_{1112}^{N}$ and $\left[x_{112}, x_{12}\right]_{c}^{N}$ are not primitive. Hence $\mathfrak{Z}_{\mathfrak{q}}$ is generated by $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$; also

$$
\begin{aligned}
{\left[\xi_{2}, \xi_{1}\right] } & =a_{1} \xi_{12} ; & {\left[\xi_{12}, \xi_{1}\right] } & =a_{2} \xi_{112} ; \\
{\left[\xi_{112}, \xi_{1}\right] } & =a_{4} \xi_{1112} ; & {\left[\xi_{1}, \xi_{1112}\right] } & =\left[\xi_{2}, \xi_{12}\right]=0 .
\end{aligned}
$$

Thus, we have $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(G_{2}^{+}\right)$.
(2) If $N=3 M$, then $N_{\alpha_{1}}=N_{\alpha_{1}+\alpha_{2}}=N_{2 \alpha_{1}+\alpha_{2}}=N$ and $N_{3 \alpha_{1}+\alpha_{2}}=N_{3 \alpha_{1}+2 \alpha_{2}}=$ $N_{\alpha_{2}}=M$. In this case we have

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}^{N}\right)=x_{1}^{N} \otimes 1+1 \otimes x_{1}^{N} ; \quad \underline{\Delta}\left(x_{2}^{M}\right)=x_{2}^{M} \otimes 1+1 \otimes x_{2}^{M} ; \\
& \underline{\Delta}\left(x_{12}^{N}\right)=x_{12}^{N} \otimes 1+1 \otimes x_{12}^{N}+b_{1}\left[x_{112}, x_{12}\right]_{c}^{M} \otimes x_{2}^{M}
\end{aligned}
$$

$$
\begin{aligned}
& \quad+b_{2} x_{1112}^{M} \otimes x_{2}^{2 M}+\left(1-q^{-3}\right)^{N} q_{21}^{\frac{N(N-1)}{2}} x_{1}^{N} \otimes x_{2}^{3 M} ; \\
& \underline{\Delta}\left(x_{112}^{N}\right)=x_{112}^{N} \otimes 1+1 \otimes x_{112}^{N}+b_{3} x_{1}^{N} \otimes x_{12}^{N}+b_{4} x_{1112}^{M} \otimes\left[x_{112}, x_{12}\right]_{c}^{M} \\
& \quad+\left(1-q^{-2}\right)^{N}\left(1-q^{-3}\right)^{N} x_{1}^{2 N} \otimes x_{2}^{3 M}+b_{5} x_{1112}^{2 M} \otimes x_{2}^{M} \\
& \quad+b_{6} x_{1112}^{M} x_{1}^{N} \otimes x_{2}^{2 M}+b_{7} x_{1}^{N} \otimes x_{2}^{M}\left[x_{112}, x_{12}\right]_{c}^{M} ; \\
& \underline{\Delta}\left(x_{1112}^{M}\right)=x_{1112}^{M} \otimes 1+1 \otimes x_{1112}^{M}+b_{8} x_{1}^{N} \otimes x_{2}^{M} ; \\
& \underline{\Delta}\left(\left[x_{112}, x_{12}\right]_{c}^{M}\right)=\left[x_{112}, x_{12}\right]_{c}^{M} \otimes 1+1 \otimes\left[x_{112}, x_{12}\right]_{c}^{M} \\
& \quad+b_{9} x_{1}^{N} \otimes x_{2}^{2 M}+b_{10} x_{1112}^{M} \otimes x_{2}^{M} ;
\end{aligned}
$$

for some $b_{i} \in \mathbf{k}$. We compute some of them explicitly:

$$
\begin{aligned}
& b_{8}=\left(1-q^{-3}\right)^{M}\left(1-q^{-2}\right)^{M}\left(1-q^{-1}\right)^{M} q_{21}^{\frac{N(M-1)}{2}} \\
& b_{9}=\left(1-q^{-3}\right)^{2 M}\left(1-q^{-2}\right)^{M}\left(1-q^{-1}\right)^{M} q_{21}^{M}
\end{aligned}
$$

As these scalars are not zero, the elements $x_{12}^{N}, x_{112}^{N}, x_{1112}^{M}$ and $\left[x_{112}, x_{12}\right]_{c}^{M}$ are not primitive. Thus $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(G_{2}^{+}\right)$.

Row 11. Let $\zeta \in \mathbb{G}_{8}^{\prime}$. The diagrams of this row correspond to braidings of standard type G_{2}, so $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.

If \mathfrak{q} has diagram $\xlongequal{\zeta^{2} \alpha^{\zeta} \zeta^{-1}}$, then the Cartan roots are $2 \alpha_{1}+\alpha_{2}$ and α_{2} with $N_{2 \alpha_{1}+\alpha_{2}}=N_{\alpha_{2}}=8$. The elements $x_{112}^{8}, x_{2}^{8} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive and $\left[\xi_{2}, \xi_{112}\right]=0$ in $\mathfrak{Z}_{\mathfrak{q}}$. Hence $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$. An analogous result holds for the other diagrams of the row.

Row 12. Let $\zeta \in \mathbb{G}_{24}^{\prime}$. This row corresponds to type $\mathfrak{u f o}(9)$. If \mathfrak{q} has diagram $\stackrel{\zeta^{6}}{\substack{\zeta^{11} \\ \zeta^{8} \\ \square}}$, then

$$
\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 4 \alpha_{1}+3 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}
$$

and $\mathfrak{O}_{\mathfrak{q}}=\left\{\alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}\right\}$. Here, $N_{\alpha_{1}+\alpha_{2}}=N_{3 \alpha_{1}+\alpha_{2}}=24$, and $x_{12}^{24}, x_{1112}^{24} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive. In $\mathfrak{Z}_{\mathfrak{q}}$ we have the relation $\left[\xi_{12}, \xi_{1112}\right]=0$; thus $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus\right.\right.$ $\left.A_{1}\right)^{+}$).
 positive roots are, respectively,

$$
\begin{aligned}
& \left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 5 \alpha_{1}+2 \alpha_{2}, 5 \alpha_{1}+3 \alpha_{2}, \alpha_{2}\right\}, \\
& \left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 4 \alpha_{1}+3 \alpha_{2}, 5 \alpha_{1}+3 \alpha_{2}, 5 \alpha_{1}+4 \alpha_{2}, \alpha_{2}\right\}, \\
& \left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 4 \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\} .
\end{aligned}
$$

The Cartan roots are, respectively, $2 \alpha_{1}+\alpha_{2}, \alpha_{2} ; \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+3 \alpha_{2} ; \alpha_{1}, 5 \alpha_{1}+2 \alpha_{2}$. Hence, in all cases, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$.

Row 13. Let $\zeta \in \mathbb{G}_{5}^{\prime}$. The braidings in this row are associated to the Lie superalgebra $\mathfrak{b r j}(2 ; 5)[A 5, \S 5.2]$. If \mathfrak{q} has diagram $\underset{\substack{\zeta \\ \zeta^{2}}}{\substack{-1 \\ \hline}}$, then $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 3 \alpha_{1}+\right.$
$\left.\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+3 \alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 4 \alpha_{1}+3 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$. In this case the Cartan roots are $\alpha_{1}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}$ and $3 \alpha_{1}+\alpha_{2}$, with $N_{\alpha_{1}}=N_{3 \alpha_{1}+2 \alpha_{2}}=5$ and $N_{\alpha_{1}+\alpha_{2}}=N_{2 \alpha_{1}+\alpha_{2}}=10$. In $\widetilde{\mathcal{B}}_{\mathfrak{q}}$,

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}\right)=x_{1} \otimes 1+1 \otimes x_{1} ; \\
& \underline{\Delta}\left(x_{12}\right)=x_{12} \otimes 1+1 \otimes x_{12}+\left(1-\zeta^{2}\right) x_{1} \otimes x_{2} ; \\
& \underline{\Delta}\left(x_{112}\right)=x_{112} \otimes 1+1 \otimes x_{112}+(1+\zeta)\left(1-\zeta^{3}\right) x_{1} \otimes x_{12} \\
& \quad+\left(1-\zeta^{2}\right)\left(1-\zeta^{3}\right) x_{1}^{2} \otimes x_{2} ; \\
& \underline{\Delta}\left(\left[x_{112}, x_{12}\right]_{c}\right)=\left[x_{112}, x_{12}\right]_{c} \otimes 1+1 \otimes\left[x_{112}, x_{12}\right]_{c} \\
& \quad-\zeta^{3}\left(1-\zeta^{3}\right)(1+\zeta)^{2} x_{1} \otimes x_{12}^{2}-\zeta q_{21} x_{1} x_{112} \otimes x_{2} \\
& \quad+\left(1+q_{21}+\zeta^{3} q_{21}\right) x_{112} x_{1} \otimes x_{2}+\zeta\left(1-\zeta^{2}\right) x_{1} x_{12} x_{1} \otimes x_{2} \\
& \quad+\left(1-\zeta^{2}\right)\left(1-\zeta^{3}\right)^{2} x_{1}^{2} \otimes x_{2} x_{12} .
\end{aligned}
$$

Hence the coproducts of $x_{1}^{5}, x_{12}^{10}, x_{112}^{10},\left[x_{112}, x_{12}\right]_{c}^{5}, \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are:

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}^{5}\right)=x_{1}^{5} \otimes 1+1 \otimes x_{1}^{5} ; \quad \underline{\Delta}\left(x_{12}^{10}\right)=x_{12}^{10} \otimes 1+1 \otimes x_{12}^{10} ; \\
& \underline{\Delta}\left(x_{112}^{10}\right)=x_{112}^{10} \otimes 1+1 \otimes x_{112}^{10}+a_{1} x_{1}^{10} \otimes x_{12}^{10}+a_{2} x_{1}^{5} \otimes\left[x_{112}, x_{12}\right]_{c}^{5} ; \\
& \underline{\Delta}\left(\left[x_{112}, x_{12}\right]_{c}^{5}\right)=\left[x_{112}, x_{12}\right]_{c}^{5} \otimes 1+1 \otimes\left[x_{112}, x_{12}\right]_{c}^{5}+a_{3} x_{1}^{5} \otimes x_{12}^{10} .
\end{aligned}
$$

for some $a_{i} \in \mathbf{k}$. Thus, the following relations hold in $\mathfrak{Z}_{\mathfrak{q}}$

$$
\left[\xi_{12}, \xi_{1}\right]=a_{3} \xi_{112,12} ; \quad\left[\xi_{112,12}, \xi_{1}\right]=a_{2} \xi_{112} ; \quad\left[\xi_{1}, \xi_{112,12}\right]=\left[\xi_{12}, \xi_{112}\right]=0 .
$$

Since

$$
\begin{aligned}
& a_{1}=-\left(1-\zeta^{3}\right)^{5}(1+\zeta)^{5}\left(1+62 \zeta-15 \zeta^{2}-87 \zeta^{3}+70 \zeta^{4}\right) \neq 0 \\
& a_{3}=-\left(1-\zeta^{3}\right)^{5}(1+\zeta)^{8}\left(4-8 \zeta-19 \zeta^{2}-3 \zeta^{3}-50 \zeta^{4}\right) \neq 0
\end{aligned}
$$

the elements $x_{112}^{10},\left[x_{112}, x_{12}\right]_{c}^{5}$ are not primitive, so ξ_{1}, ξ_{12} generate $\mathfrak{Z}_{\mathfrak{q}}$. Hence, $\mathfrak{Z}_{\mathfrak{q}} \simeq$ $\mathcal{U}\left(B_{2}^{+}\right)$.

If \mathfrak{q} has diagram $\stackrel{\zeta^{-} \zeta^{3} \zeta^{3}-1}{-}$, then

$$
\begin{aligned}
\Delta_{\mathfrak{q}}^{+} & =\left\{\alpha_{1}, 4 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+2 \alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\} \\
\mathfrak{O}_{\mathfrak{q}} & =\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}\right\},
\end{aligned}
$$

with $N_{\alpha_{1}}=N_{\alpha_{1}+\alpha_{2}}=10, N_{3 \alpha_{1}+\alpha_{2}}=N_{\alpha_{1}+\alpha_{2}}=5$. In $\widetilde{\mathcal{B}}_{\mathfrak{q}}$

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}\right)=x_{1} \otimes 1+1 \otimes x_{1} ; \\
& \underline{\Delta}\left(x_{12}\right)=x_{12} \otimes 1+1 \otimes x_{12}+\left(1-\zeta^{3}\right) x_{1} \otimes x_{2} ; \\
& \underline{\Delta}\left(x_{112}\right)=x_{112} \otimes 1+1 \otimes x_{112}+(1+\zeta)\left(1-\zeta^{3}\right) x_{1} \otimes x_{12} \\
& \quad+\left(1+\zeta^{2}\right)\left(1-\zeta^{3}\right) x_{1}^{2} \otimes x_{2} ; \\
& \quad \underline{\Delta}\left(x_{1112}\right)=x_{1112} \otimes 1+1 \otimes x_{1112}+\left(1+\zeta-\zeta^{3}\right)\left(1-\zeta^{4}\right) x_{1} \otimes x_{112} \\
& \quad+(1+\zeta)\left(1+\zeta-\zeta^{3}\right)\left(1-\zeta^{4}\right) x_{1}^{2} \otimes x_{12}+(1+\zeta)\left(1-\zeta^{3}\right)\left(1-\zeta^{4}\right) x_{1}^{3} \otimes x_{2} .
\end{aligned}
$$

Hence the coproducts of $x_{1}^{10}, x_{12}^{5}, x_{112}^{10}, x_{1112}^{5}, \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are:

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}^{10}\right)=x_{1}^{10} \otimes 1+1 \otimes x_{1}^{10} ; \quad \underline{\Delta}\left(x_{12}^{5}\right)=x_{12}^{5} \otimes 1+1 \otimes x_{12}^{5} ; \\
& \underline{\Delta}\left(x_{112}^{10}\right)=x_{112}^{10} \otimes 1+1 \otimes x_{112}^{10}-(1+\zeta)^{5}\left(1-\zeta^{3}\right)^{5} x_{1112}^{5} \otimes x_{12}^{5} \\
& \quad+(1+\zeta)^{10}\left(1-\zeta^{3}\right)^{10} x_{1}^{10} \otimes x_{12}^{10} ; \\
& \underline{\Delta}\left(x_{1112}^{5}\right)=x_{1112}^{5} \otimes 1+1 \otimes x_{1112}^{5}+(1+\zeta)^{10}\left(1-\zeta^{3}\right)^{5} x_{1}^{10} \otimes x_{12}^{5} .
\end{aligned}
$$

Thus, the generators of $\mathfrak{Z}_{\mathfrak{q}}$ are ξ_{1} and ξ_{12} and they satisfy the following relations

$$
\begin{aligned}
{\left[\xi_{12}, \xi_{1}\right] } & =(1+\zeta)^{10}\left(1-\zeta^{3}\right)^{5} \xi_{1112} \\
{\left[\xi_{1112}, \xi_{12}\right] } & =-(1+\zeta)^{5}\left(1-\zeta^{3}\right)^{5} \xi_{112} \\
{\left[\xi_{1}, \xi_{1112}\right] } & =\left[\xi_{12}, \xi_{112}\right]=0 .
\end{aligned}
$$

Hence $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(C_{2}^{+}\right)$.
Row 14. Let $\zeta \in \mathbb{G}_{20}^{\prime}$. This row corresponds to type $\mathfrak{u f o}(10)$. If \mathfrak{q} has diagram ${ }^{\zeta}{ }^{\zeta^{17}-1}{ }^{-1}$, then $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+3 \alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 4 \alpha_{1}+3 \alpha_{2}, \alpha_{1}+\right.$ $\left.\alpha_{2}, \alpha_{2}\right\}$. The Cartan roots are α_{1} and $3 \alpha_{1}+2 \alpha_{2}$ with $N_{\alpha_{1}}=N_{3 \alpha_{1}+2 \alpha_{2}}=20$. The elements $x_{1}^{20},\left[x_{112}, x_{12}\right]_{c}^{20} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive; thus $\left[\xi_{12}, \xi_{112,12}\right]=0$ in $\mathfrak{Z}_{\mathfrak{q}}$ and $\mathfrak{Z}_{\mathfrak{q}} \simeq$ $\mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$. The same holds when the diagram of \mathfrak{q} is another one in this row: $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$.

Row 15. Let $\zeta \in \mathbb{G}_{15}^{\prime}$. This row corresponds to type $\mathfrak{u f o}(11)$. If \mathfrak{q} has diagram $\stackrel{-\zeta}{-\zeta^{12} \zeta^{5}}$, then $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+2 \alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\right.$ $\left.2 \alpha_{2}, \alpha_{2}\right\}$. The Cartan roots are α_{1} and $3 \alpha_{1}+2 \alpha_{2}$ with $N_{\alpha_{1}}=N_{3 \alpha_{1}+2 \alpha_{2}}=30$. In $\mathfrak{Z}_{\mathfrak{q}}$ we have $\left[\xi_{12}, \xi_{112,12}\right]=0$, thus $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(\left(A_{1} \oplus A_{1}\right)^{+}\right)$. The same result holds if we consider the other diagrams of this row.

Row 16. Let $\zeta \in \mathbb{G}_{7}^{\prime}$. This row corresponds to type $\mathfrak{u f o}(12)$. If \mathfrak{q} has diagram $\xrightarrow{-\zeta^{5}-\zeta^{3}-1}{ }^{-1}$, then

$$
\begin{aligned}
& \Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, 5 \alpha_{1}+\alpha_{2}, 4 \alpha_{1}+\right. \alpha_{2}, 7 \alpha_{1}+2 \alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 8 \alpha_{1}+3 \alpha_{2} \\
&\left.5 \alpha_{1}+2 \alpha_{2}, 7 \alpha_{1}+3 \alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}
\end{aligned}
$$

Also, $\mathfrak{O}_{\mathfrak{q}}=\left\{\alpha_{1}, 4 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 5 \alpha_{1}+2 \alpha_{2}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$ with $N_{\beta}=14$ for all $\beta \in \mathfrak{O}_{\mathfrak{q}}$. In $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ we have

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}\right)=x_{1} \otimes 1+1 \otimes x_{1} ; \\
& \underline{\Delta}\left(x_{12}\right)=x_{12} \otimes 1+1 \otimes x_{12}+\left(1+\zeta^{3}\right) x_{1} \otimes x_{2} ; \\
& \underline{\Delta}\left(x_{112}\right)=x_{112} \otimes 1+1 \otimes x_{112}+(1-\zeta)\left(1-\zeta^{5}\right) x_{1} \otimes x_{12} \\
& \quad+(1-\zeta)\left(1+\zeta^{3}\right) x_{1}^{2} \otimes x_{2} ; \\
& \underline{\Delta}\left(x_{1112}\right)=x_{1112} \otimes 1+1 \otimes x_{1112}+\left(1+\zeta^{3}-\zeta^{5}\right)\left(1+\zeta^{6}\right) x_{1} \otimes x_{112} \\
& \quad+\zeta\left(\zeta^{3}-1\right) x_{1}^{2} \otimes x_{12}+\zeta^{6}\left(1-\zeta^{2}\right)\left(1+\zeta^{3}\right) x_{1}^{3} \otimes x_{2} ;
\end{aligned}
$$

$$
\begin{aligned}
\underline{\Delta} & \left(x_{11112}\right)=x_{11112} \otimes 1+1 \otimes x_{11112}-\zeta(1-\zeta)\left(1-\zeta^{2}\right) x_{1} \otimes x_{1112} \\
& +\left(-2+2 \zeta^{2}-\zeta^{4}+\zeta^{5}\right) x_{1}^{2} \otimes x_{112}-(1-\zeta)\left(1-\zeta^{2}\right)^{2} x_{1}^{3} \otimes x_{12} \\
& +\zeta^{2}(1-\zeta)\left(1-\zeta^{2}\right) x_{1}^{4} \otimes x_{2} ; \\
\Delta & \left(\left[x_{1112}, x_{112}\right]_{c}\right)=\left[x_{1112}, x_{112}\right]_{c} \otimes 1+1 \otimes\left[x_{1112}, x_{112}\right]_{c} \\
& -\frac{\left(1-\zeta^{5}\right)}{(1+\zeta)}\left(1-\zeta^{3}+2 \zeta^{4}\right) x_{1} \otimes x_{112}^{2} \\
& -q_{21}(1-\zeta)\left(1-\zeta^{3}\right) x_{1}^{2} \otimes\left[x_{112}, x_{12}\right]_{c} \\
& -(1-\zeta)^{2}\left(4+4 \zeta+\zeta^{2}-2 \zeta^{3}-3 \zeta^{4}\right) x_{1}^{2} \otimes x_{12} x_{112} \\
& +q_{21}\left(1-\zeta^{2}\right)^{2} \zeta^{4}\left(1-2 \zeta-3 \zeta^{4}-2 \zeta^{5}+\zeta^{6}\right) x_{1}^{3} \otimes x_{12}^{2} \\
& +(1-\zeta)^{2}\left(1+\zeta^{3}\right)^{2}\left(1+\zeta^{6}\right) x_{1}^{3} \otimes x_{2} x_{112} \\
& -\zeta(1-\zeta)\left(1-\zeta^{2}\right) x_{1112} \otimes x_{112} \\
& -q_{21} \zeta^{6}(1-\zeta)^{2}\left(1-\zeta^{2}\right)(1+2 \zeta) x_{1}^{4} \otimes x_{2} x_{12} \\
& +q_{21}^{2} \zeta^{2}(1-\zeta)^{2}\left(1-\zeta^{2}\right)\left(1+\zeta^{3}\right) x_{1}^{5} \otimes x_{2}^{2} \\
& -q_{12}^{2}\left(1+\zeta^{3}\right)(1-\zeta)\left(1-\zeta^{4}+\zeta^{6}\right) x_{111112} \otimes x_{2} \\
& +\zeta q_{21}\left(1+\zeta^{3}\right)(1-\zeta)\left(1-\zeta^{2}\right)\left(1+\zeta-\zeta^{2}\right) x_{11112} x_{1} \otimes x_{2} \\
& -\zeta(1-\zeta)^{2}\left(1+\zeta^{3}\right)\left(1-\zeta-2 \zeta^{2}-\zeta^{3}\right) x_{1112} x_{1}^{2} \otimes x_{2} \\
& +(1-\zeta)\left(1+\zeta^{2}+\zeta^{3}-\zeta^{4}-\zeta^{5}\right) x_{1112} x_{1} \otimes x_{12} \\
& +\zeta q_{21}(1-\zeta)^{2}\left(2+\zeta-\zeta^{3}\right) x_{11112} \otimes x_{12} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \underline{\Delta}\left(x_{1}^{14}\right)=x_{1}^{14} \otimes 1+1 \otimes x_{1}^{14} ; \quad \underline{\Delta}\left(x_{12}^{14}\right)=x_{12}^{14} \otimes 1+1 \otimes x_{12}^{14} ; \\
& \underline{\Delta}\left(x_{112}^{14}\right)=x_{112}^{14} \otimes 1+1 \otimes x_{112}^{14}+a_{1} x_{1}^{14} \otimes x_{12}^{14} ; \\
& \underline{\Delta}\left(x_{1112}^{14}\right)=x_{1112}^{14} \otimes 1+1 \otimes x_{1112}^{14}+a_{2} x_{1}^{14} \otimes x_{112}^{14}+a_{3} x_{1}^{28} \otimes x_{12}^{14} ; \\
& \underline{\Delta}\left(x_{11112}^{14}\right)=x_{11112}^{14} \otimes 1+1 \otimes x_{11112}^{14}+a_{4} x_{1}^{14} \otimes x_{1112}^{14} \\
& \quad+a_{5} x_{1}^{28} \otimes x_{112}^{14}+a_{6} x_{1}^{42} \otimes x_{12}^{14} ; \\
& \underline{\Delta}\left(\left[x_{1112}, x_{112}\right]_{c}^{14}\right)=\left[x_{1112}, x_{112}\right]_{c}^{14} \otimes 1+1 \otimes\left[x_{1112}, x_{112}\right]_{c}^{14}+a_{7} x_{1112}^{14} \otimes x_{12}^{14} \\
& \quad+a_{8} x_{11112}^{14} \otimes x_{12}^{14}+a_{9} x_{1}^{42} \otimes x_{12}^{28}+a_{10} x_{1}^{14} \otimes x_{112}^{28} \\
& \quad+a_{11} x_{1}^{28} \otimes x_{12}^{14} x_{112}^{14}+a_{12} x_{1112}^{14} x_{1}^{14} \otimes x_{12}^{14} ;
\end{aligned}
$$

with $a_{i} \in \mathbf{k}$. For instance,

$$
a_{1}=q_{21}^{7}\left(-2352 \zeta^{5}+2548 \zeta^{4}+2548 \zeta^{3}-2352 \zeta^{2}+4067\right) \neq 0
$$

because $\zeta \in \mathbb{G}_{7}^{\prime}$. Also,

$$
\begin{aligned}
a_{3}= & 5860813 \zeta^{5}+974589 \zeta^{4}-3164658 \zeta^{3}+3609109 \zeta^{2} \\
& +5243917 \zeta-1667869 \neq 0 \\
a_{6}= & q_{21}^{7}\left(10074385052942 \zeta^{5}+31910289509889 \zeta^{4}+12118010152752 \zeta^{3}\right. \\
& \left.\quad-909500144560 \zeta^{2}+24680570802531 \zeta+26319432020966\right) \neq 0
\end{aligned}
$$

$$
\begin{aligned}
a_{9}= & 5736482678185949424 \zeta^{5}+10808606486393112796 \zeta^{4} \\
& +2814368183725984844 \zeta^{3}+1300044629337708464 \zeta^{2} \\
& +9968706251262033856 \zeta+7625687982247823061 \neq 0 .
\end{aligned}
$$

Then $x_{112}^{14}, x_{1112}^{14}, x_{11112}^{14}$ and $\left[x_{1112}, x_{112}\right]_{c}^{14}$ are not primitive elements in $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Thus, ξ_{1} and ξ_{12} generates \mathfrak{Z}_{q}.

Also, in $\mathfrak{Z}_{\mathfrak{q}}$ we have

$$
\begin{array}{lr}
{\left[\xi_{12}, \xi_{1}\right]=a_{1} \xi_{112} ;} & {\left[\xi_{1}, \xi_{112}\right]=a_{2} \xi_{1112} ;} \\
{\left[\xi_{1}, \xi_{1112}\right]=a_{4} \xi_{11112 ;}} & {\left[\xi_{1}, \xi_{11112}\right]=\left[\xi_{12}, \xi_{112}\right]=0 .}
\end{array}
$$

So, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(G_{2}^{+}\right)$.
In the case of the diagram $\stackrel{-\zeta-\zeta^{4}-1}{-} \mathfrak{Z}_{\mathfrak{q}}$ is generated by ξ_{1}, ξ_{12} and

$$
\begin{aligned}
{\left[\xi_{12}, \xi_{1}\right] } & =b_{1} \xi_{112 ;} & {\left[\xi_{12}, \xi_{112}\right] } & =b_{2} \xi_{112,12} ; \\
{\left[\xi_{12}, \xi_{112,12}\right] } & =b_{3} \xi_{(112,12), 12 ;} & {\left[\xi_{1}, \xi_{112}\right] } & =\left[\xi_{12,}, \xi_{(112,12), 12}\right]=0
\end{aligned}
$$

where $b_{1}, b_{2}, b_{3} \in \mathbf{k}^{\times}$. Hence, we also have $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}\left(G_{2}^{+}\right)$.
Remark 4.1. The results of this paper are part of the thesis of one of the authors [RB], where missing details of the computations can be found.

References

[A] N. Andruskiewitsch, Notes on extensions of Hopf algebras. Canad. J. Math. 48 (1996), 3-42.
[AA] Andruskiewitsch, N; Angiono, I., Generalized root systems, contragredient Lie superalgebras and Nichols algebras, in preparation.
[AAR] Andruskiewitsch, N., Angiono, I., Rossi Bertone, F. The divided powers algebra of a finite-dimensional Nichols algebra of diagonal type, Math. Res. Lett., to appear.
[AAY] N. Andruskiewitsch, I. Angiono, H. Yamane. On pointed Hopf superalgebras, Contemp. Math. 544 (2011), 123-140.
[AN] N. Andruskiewitsch, S. Natale. Braided Hopf algebras arising from matched pairs of groups, J. Pure Appl. Alg. 182 (2003), 119-149.
[AS] N. Andruskiewitsch, H.-J. Schneider. Pointed Hopf algebras, New directions in Hopf algebras, MSRI series, Cambridge Univ. Press; 1-68 (2002).
[A1] I. Angiono. On Nichols algebras with standard braiding. Algebra and Number Theory, Vol. 3 (2009), 35-106.
[A2] I. Angiono. A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. J. Eur. Math. Soc. 17 (2015), 2643-2671.
[A3] On Nichols algebras of diagonal type. J. Reine Angew. Math. 683 (2013), 189-251.
[A4] Nichols algebras of unidentified diagonal type, Comm. Alg 41 (2013), 4667-4693.
[A5] Distinguished pre-Nichols algebras, Transform. Groups 21 (2016), 1-33.
[AY] I. Angiono, H. Yamane. The R-matrix of quantum doubles of Nichols algebras of diagonal type. J. Math. Phys. 56, 021702 (2015) 1-19.
[BD] Y. Bespalov, B. Drabant. Cross Product Bialgebras Part II, J. Algebra 240 (2001), 445-504.
[CH] M. Cuntz, I. Heckenberger. Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213 (2009), 1112-1128.
[GG] J. Guccione, J. Guccione. Theory of braided Hopf crossed products, J. Algebra 261 (2003), 54-101.
[H1] I. Heckenberger. The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164 (2006), 175-188.
[H2] Classification of arithmetic root systems. Adv. Math. 220 (2009), 59-124.
[H3] Lusztig isomorphisms for Drinfel'd doubles of bosonizations of Nichols algebras of diagonal type. J. Alg. 323 (2010), 2130-2180.
[K] V. Kharchenko, A quantum analogue of the Poincaré-Birkhoff-Witt theorem. Algebra and Logic 38 (1999), 259-276.
[L] G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata 35 (1990), 89-113.
[RB] F. Rossi Bertone. Álgebras cuánticas de potencias divididas. Thesis doctoral FaMAF, Universidad Nacional de Córdoba, available at www.famaf.unc.edu.ar/~rossib/.
[R] M. Rosso. Quantum groups and quantum shuffles. Inv. Math. 133 (1998), 399416.

FaMAF-CIEM (CONICET),
Universidad Nacional de Córdoba,
Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, República Argentina.
email: (andrus—angiono-rossib)@mate.uncor.edu

[^0]: *The work was partially supported by CONICET, Secyt (UNC), the MathAmSud project GR2HOPF

 Received by the editors in March 2016.
 Communicated by Y. Zhang.
 2010 Mathematics Subject Classification : 17B37,16T20.

