
Flag-transitive point-primitive non-symmetric

2-(v, k, 2) designs with alternating socle∗

Hongxue Liang Shenglin Zhou†

Abstract

We prove that if D is a non-trivial non-symmetric 2-(v, k, 2) design admit-
ting a flag-transitive point-primitive automorphism group G with Soc(G) =
An for n ≥ 5, then D is a 2-(6, 3, 2) or 2-(10, 4, 2) design.

1 Introduction

A 2-(v, k, λ) design is a finite incidence structure D=(P , B) consisting of v points
and b blocks such that every block is incident with k points, every point is incident
with r blocks, and any two distinct points are incident with exactly λ blocks. The
design D is called symmetric if v = b (or equivalently r = k) and non-trivial if
1 < k < v. A flag of D is an incident point-block pair (α, B) where α is a point
and B is a block. An automorphism of D is a permutation of the points which
also permutes the blocks. The group of all automorphisms of D is denoted by
Aut(D). A subgroup G ≤ Aut(D) is called point-primitive if it acts primitively on
P and flag-transitive if it acts transitively on the set of flags of D.

It was shown in [12] that the socle of the automorphism group of a flag-
transitive point-primitive symmetric 2-(v, k, 2) design cannot be alternating or
sporadic. Recently, we proved in [7] that, for a non-symmetric 2-(v, k, 2) design
D, if G ≤ Aut(D) is flag-transitive and point-primitive then G must be an affine
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or almost simple group. Moreover, if the socle of G is sporadic, then D is the
unique 2-(176, 8, 2) design with G = HS, the Higman-Sims simple group. Here
we solve completely the case of almost simple groups in which Soc(G) is an
alternating group. Our main result is the following.

Theorem 1.1. If D is a non-trivial non-symmetric 2-(v, k, 2) design admitting a flag-
transitive point-primitive automorphism group G with alternating socle An for n ≥ 5,
then

(i) D is a unique 2-(6, 3, 2) design and G = A5, or

(ii) D is a unique 2-(10, 4, 2) design and G = S5, A6 or S6.

The structure of our paper is as follows. In Section 2, we give some prelimi-
nary lemmas on flag-transitive designs and permutation groups. In Section 3, we
prove Theorem 1.1 in 5 steps.

2 Preliminaries

Lemma 2.1. The parameters v, b, r, k, λ of a non-trivial 2-(v, k, λ) design satisfy the
following arithmetic conditions:

(i) vr = bk;

(ii) λ(v − 1) = r(k − 1);

(iii) b ≥ v and k ≤ r.

In particular, if the design is non-symmetric then b > v and k < r. Note also that
k > 2 as soon as λ > 1, otherwise two points could not be incident with more
than one block.

Lemma 2.2. Let D be a non-trivial 2-(v, k, λ) design. Let α be a point of D and G be a
flag-transitive automorphism group of D.

(i) r2 > λv and |Gα|3 > λ|G|. In particular, r2 > v.

(ii) r | λ(v − 1, |Gα|), where Gα is the stabilizer of α.

(iii) If d is any non-trivial subdegree of G, then r | λd (and so r
(r,λ)

| d).

Proof. (i) The equality r = λ(v−1)
k−1 implies λv = r(k − 1) + λ ≤ r(r − 1) + λ =

r2 − r + λ, and the non-triviality of D implies r > λ, and so r2 > λv. Combin-
ing this with v = |G : Gα| and r ≤ |Gα| by the flag-transitivity of G, we have
|Gα|3 > λ|G|. (ii) Since G is flag-transitive and λ(v − 1) = r(k − 1), we have
r | λ(v − 1) and r | |Gα|. It follows that r divides (λ(v − 1), |Gα|), and hence
r | λ(v − 1, |Gα|). Part (iii) was proved in [2, p.91] and [3].
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Lemma 2.3. ([8, p.366]) If G is An or Sn, acting on a set Ω of size n, and H is any
maximal subgroup of G with H 6= An, then H satisfies one of the following:

(i) H = (Sℓ × Sm) ∩ G, with n = ℓ+ m and ℓ 6= m (intransitive case);

(ii) H = (Sℓ ≀ Sm) ∩ G, with n = ℓm, ℓ > 1, m > 1 and ℓ 6= m (imprimitive case);

(iii) H = AGLm(p) ∩ G, with n = pm and p a prime (affine case);

(iv) H = (Tm.(Out T × Sm)) ∩ G, with T a nonabelian simple group, m ≥ 2 and
n = |T|m−1 (diagonal case);

(v) H = (Sℓ ≀ Sm) ∩ G, with n = ℓm, ℓ ≥ 5 and m > 1 (wreath case);

(vi) T E H ≤ Aut(T), with T a nonabelian simple group, T 6= An and H acting
primitively on Ω (almost simple case).

Remark 1. This lemma does not deal with the groups M10, PGL2(9) and PΓL2(9)
that have A6 as socle. These exceptional cases will be handled in the first part of
Section 3.

Lemma 2.4. ([9, Theorem (b)(I)]) Let G be a primitive permutation group of odd degree
n, acting on a set Ω with simple socle X = Soc(G), and let H = Gα, α ∈ Ω. If X ∼= Ac,
then one of the following holds:

(i) H is intransitive, and H = (Sa × Sc−a) ∩ G where 1 ≤ a <
1
2 c;

(ii) H is transitive and imprimitive, and H = (Sa ≀ Sc/a) ∩ G where a > 1 and a | c;

(iii) H is primitive, n = 15 and G ∼= A7.

Lemma 2.5. ([5, Theorem 5.2A]) Let G = Alt(Ω) where n = |Ω| ≥ 5, and let s be an
integer with 1 ≤ s ≤ n

2 . Suppose that K ≤ G has index |G : K| < (n
s). Then one of the

following holds:

(i) For some ∆ ⊂ Ω with |∆| < s we have G(∆) ≤ K ≤ G{∆};

(ii) n = 2m is even, K is imprimitive with two blocks of size m, and |G : K| = 1
2(

n
m);

or

(iii) one of six exceptional cases holds:

(a) K is imprimitive on Ω and (n, s, |G : K|) = (6, 3, 15);

(b) K is primitive on Ω and (n, s, |G : K|, K) = (5, 2, 6, 5 : 2), (6, 2, 6, PSL2(5)),
(7, 2, 15, PSL3(2)), (8, 2, 15, AGL3(2)) or (9, 4, 120, PΓL2(8)).

Remark 2. (1) From part (i) of Lemma 2.5 we know that K contains the alternating
group G(∆) = Alt(Ω\∆) of degree n − s + 1.

(2) A result similar to Lemma 2.5 holds for the finite symmetric groups Sym(Ω)
[5, Theorem 5.2B].
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Lemma 2.6. Let s and t be two positive integers.

(i) If t > s ≥ 7, then (s+t
s ) > 2s2t2.

(ii) If s ≥ 6 and t ≥ 2, then 2(s−1)(t−1) > 2s4( t
2)

2
implies 2s(t−1) > 2(s + 1)4( t

2)
2
.

(iii) If t ≥ 6 and s ≥ 2, then 2(s−1)(t−1) > 2s4( t
2)

2
implies 2(s−1)t > 2s4(t+1

2 )
2
.

(iv) If t ≥ 4, and s ≥ 3, then (s+t
s ) > 2s2t2 implies (s+t+1

s ) > 2s2(t + 1)2.

Proof. (i) If t > s = 7, then (t+7
7 ) > 2 · 72 · t2. If t > s ≥ 8, then [ s+t

2 ] ≥ s ≥ 8,

and so (s+t
s ) ≥ (t+8

8 ) > 2t4 > 2s2t2.

(ii) We have

2s(t−1) = 2(s−1)(t−1)2t−1
> 2s4

(

t

2

)2

2t−1 = 2(s + 1)4

(

t

2

)2

(1 −
1

s + 1
)42t−1.

Combing this with (1 − 1
s+1)

42t−1 ≥ 2 × (6
7)

4 > 1 gives (ii).

(iii) We have

2(s−1)t = 2(s−1)(t−1)2s−1
> 2s4

(

t

2

)2

2s−1 = 2s4

(

t + 1

2

)2

(1 −
2

t + 1
)22s−1.

Combing this with (1 − 2
t+1)

22s−1 ≥ 2 × (5
7)

2 > 1 gives (iii).

(iv) We have

(

s + t + 1

s

)

=

(

s + t

s

)

s + t + 1

t + 1
> 2s2t2 s + t + 1

t + 1
= 2s2(t + 1)2 (s + t + 1)t2

(t + 1)3
.

The fact that (s + t + 1)t2 > (t + 1)3 gives (iv).

3 Proof of Theorem 1.1

In this section, unless otherwise specified, D denotes always a non-trivial non-
symmetric 2-(v, k, 2) design, and G ≤ Aut(D) is flag-transitive point-primitive
with Soc(G) = An. Let α be a point of D and H = Gα. Since G is point-primitive,
H is a maximal subgroup of G by [14, Theorem 8.2]. Furthermore, by the flag-
transitivity of G, we have v = |G : H|, b | |G|, r | |H| and r2 > 2v by Lemma 2.2
(i).

If r is odd, Zhou and Wang [13] proved the following:

Proposition 3.1. Let D be a non-trivial non-symmetric 2-(v, k, 2) design admitting a
flag-transitive point-primitive automorphism group G with Soc(G) = An, n ≥ 5. If the
replication number r is odd, then D is the unique 2-(6, 3, 2) design and G = A5.
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From now on, we will assume that r is even.
Suppose first that n = 6 and G ∼= M10, PGL2(9) or PΓL2(9). Each of these

groups has exactly three maximal subgroups with index greater than 2, and their
indices are 45, 36 and 10. Using the computer algebra system GAP [6] for v = 45,
36 or 10, we have computed the parameters (v, b, r, k) that satisfy the following
conditions:

r | (2(v − 1), |H|); (3.1)

r2
> 2v; (3.2)

2 | r; (3.3)

r(k − 1) = 2(v − 1); (3.4)

r > k > 2; (3.5)

b =
vr

k
. (3.6)

It turns out that the only possible parameters (v, b, r, k) are:

(10, 15, 6, 4) and (36, 45, 10, 8).

Now we consider the possible existence of flag-transitive point-primitive non-
symmetric designs with these parameters.

Suppose first that there exists a 2-(10, 4, 2) design D with a flag-transitive
point-primitive automorphism group G. Let P = {1, 2, ..., 10} and G = M10,
PGL2(9) or PΓL2(9) be the primitive permutation group of degree 10 acting on P .
Since G is flag-transitive, G acts block-transitively on B, so |G|/b = |GB|, where
B is a block. For each case, using the command Subgroups(G:OrderEqual:=n)

where n = |G|/b by Magma [1], it turns out that G has no subgroup of order n,
which contradicts the fact that GB is a subgroup of order |G|/b.

Assume next that there exists a 2-(36, 8, 2) design D with a flag-transitive
point-primitive automorphism group G = M10, PGL2(9) or PΓL2(9).

When (v, G) = (36, PΓL2(9)), by the Magma-command Subgroups(G:Order

Equal:=n) where n = |G|/b, we get the block stabilizer GB. Since G is flag-
transitive, GB is transitive on B, and so B is an orbit of GB acting on P . Using the
Magma-command Orbits(GB) where GB = GB, it turns out that GB has no orbit of
length k, a contradiction.

Now assume that (v, G) = (36, M10) or (36, PGL2(9)). Every pair of distinct
points must be contained in 2 blocks. However, for each case, the command
PairwiseBalancedLambda(D) contradicts this condition.

If (v, G) = (36, M10), the orbits of GB are:

∆0 ={3, 17, 18, 21},

∆1 ={1, 4, 12, 14, 16, 22, 26, 34},

∆2 ={2, 6, 7, 9, 15, 23, 29, 36},

∆3 ={5, 8, 10, 11, 13, 19, 20, 24, 25, 27, 28, 30, 31, 32, 33, 35}.

As k = 8, we take B = ∆1 or B = ∆2. Using the GAP-command D1 := Block

Design(36, [[1, 4, 12, 14, 16, 22, 26, 34]], G), we get |∆G
1 | = 45 = b. We take
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P = {1, 2, . . . , 36}, B = ∆1 and B = BG. Now, we just need to check that each pair
of distinct points is contained in 2 blocks. However, PairwiseBlancedLambda(D1)
shows that this is not true, and so B 6= ∆1. Similarly, B 6= ∆2. So the case
(v, G) = (36, M10) cannot occur.

Now we consider G = An or Sn with n ≥ 5. The point stabilizer H = Gα

acts both on P and on the set Ωn = {1, 2, . . . , n}. Then by Lemma 2.3 one of the
following holds:

(i) H is primitive in its action on Ωn;

(ii) H is transitive and imprimitive in its action on Ωn;

(iii) H is intransitive in its action on Ωn.

We analyse each of these actions separately, under the following assumption:

Hypothesis 1. D is a non-trivial non-symmetric 2-(v, k, 2) design admitting a flag-
transitive point-primitive automorphism group G with Soc(G) = An (n ≥ 5) and r is
even.

3.1 H acts primitively on Ωn

Proposition 3.2. If Hypothesis 1 holds and the point stabilizer H acts primitively on
Ωn, then there are 10 possible parameters (n, v, b, r, k), which are listed in Table 3.

Proof. We claim that 2‖r. Otherwise 4 | r, and the equality r(k − 1) = 2(v − 1)
implies that v is odd. Thus by Lemma 2.4, v = 15, G = A7 and |H| = |G|/v =
168. Since r | (2(v − 1), |H|), r2 > 2v and k ≥ 3, it follows that r = 7 or 14, which
contradicts 4 | r.

Thus 2‖r. Let r = 2r′. Since r > 2, there exists an odd prime p that divides
r′, then p | (v − 1), and so (p, v) = 1. Thus H contains a Sylow p-subgroup
P of G. Let g ∈ G be a p-cycle, then there is a conjugate of g belonging to H.
This implies that H acting on Ωn contains an even permutation with exactly one
cycle of length p and n − p fixed points. By a result of Jordan [14, Theorem 13.9],
n − p ≤ 2. Therefore, n − 2 ≤ p ≤ n, p2 ∤ |G|, and so p2 ∤ r′. It follows that r′

is either a prime, namely n − 2, n − 1 or n, or the product of two twin primes,
namely (n − 2)n. Moreover, the primitivity of H acting on Ωn and H � An imply

that v ≥
[ n+1

2 ]!
2 by [14, Theorem 14.2]. Combining with r2 > 2v, we get

r2
> [

n + 1

2
]!.

Therefore, (n, r) = (5, 6), (5, 10), (5, 30), (6, 10), (7, 10), (7, 14), (7, 70), (8, 14), (9, 14)

or (13, 286). By Lemmas 2.1 and 2.2, using v ≥
[ n+1

2 ]!
2 and [b, v] | |G|, we obtain

exactly 10 possible parameters (n, v, b, r, k):

(5, 10, 15, 6, 4), (6, 16, 40, 10, 4), (6, 36, 45, 10, 8), (7, 15, 70, 14, 3), (7, 16, 40, 10, 4),

(7, 21, 42, 10, 5), (7, 36, 45, 10, 8), (7, 36, 84, 14, 6), (8, 15, 70, 14, 3), (8, 36, 84, 14, 6).

They are listed in Table 3.
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3.2 H acts transitively and imprimitively on Ωn

Proposition 3.3. If Hypothesis 1 holds and the point stabilizer H acts transitively but
imprimitively on Ωn, then there are 2 possible parameters (n, v, b, r, k) = (6, 10, 15, 6, 4)
or (10, 126, 1050, 50, 6), which are listed in Table 3.

Proof. Suppose on the contrary that Σ = {∆0, ∆1, . . . , ∆t−1} is a non-trivial
partition of Ωn preserved by H, where |∆i| = s, 0 ≤ i ≤ t − 1, s, t ≥ 2 and st = n.
Then

v =

(

ts − 1

s − 1

)(

(t − 1)s − 1

s − 1

)

. . .

(

3s − 1

s − 1

)(

2s − 1

s − 1

)

.

Moreover, the set Oj of j-cyclic partitions with respect to X (a partition of Ωn

into t classes each of size s) is a union of orbits of H on P for j = 2, . . . , t (see
[4, 15] for definitions and details).

Case (1): Suppose first that s = 2. Then t ≥ 3, v = (2t − 1)(2t − 3) · · · 5 · 3,
and

dj = |Oj| =
1

2

(

t

j

)(

s

1

)j

= 2j−1

(

t

j

)

.

If t ≥ 7, then v = (2t − 1)(2t − 3) · · · 5 · 3 > 5t2(t − 1)2. On the other hand, since
r divides 2d2 = 2t(t − 1), 2t(t − 1) ≥ r, and so v < 2t2(t − 1)2, a contradiction.
Thus t < 7. For t = 3, 4, 5 or 6, the values of d = 2gcd(d2, d3) are listed in Table 1
below.

Table 1: Possible d when s = 2

t n v d2 d3 d
3 6 15 6 4 4
4 8 105 12 16 8
5 10 945 20 40 40
6 12 10395 30 80 20

In each line r ≤ d, which contradicts the fact that r2 > 2v.
Case (2): Thus s ≥ 3. So Oj is an orbit of H on P , and dj = |Oj| = (t

j)(
s
1)

j
=

sj(t
j). In particular, d2 = s2( t

2) and r | 2d2. Moreover, from

(is−1
s−1) =

is−1
s−1 · is−2

s−2 · · · is−(s−1)
1 > is−1, for i = 2, 3, . . . , t, we have that v > 2(s−1)(t−1).

Then

2 · 2(s−1)(t−1)
< 2v < r2 ≤ 4s4

(

t

2

)2

,

and so

2(s−1)(t−1)
< 2s4

(

t

2

)2

. (3.7)

Now we determine all pairs (s, t) satisfying (3.7). Clearly, the pair
(s, t) = (6, 6) does not satisfy (3.7), but it satisfies the conditions (ii) and (iii)
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of Lemma 2.6. Thus, either s < 6 or t < 6. It is not hard to get the 36 pairs (s, t)
satisfying (3.7), namely

(3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (4, 2), (4, 3), (4, 4),

(4, 5), (4, 6), (5, 2), (5, 3), (5, 4), (5, 5), (6, 2), (6, 3), (6, 4), (7, 2), (7, 3), (8, 2),

(8, 3), (9, 2), (9, 3), (10, 2), (11, 2), (12, 2), (13, 2), (14, 2), (15, 2), (16, 2),

(17, 2), (18, 2).

For each pair (s, t), we compute the parameters (v, b, r, k) satisfying Lemmas
2.1, 2.2, 2 | r and r | 2d2. There are only 2 possible such parameters, namely

(s, t) = (3, 2) with (n, v, b, r, k) = (6, 10, 15, 6, 4),

(s, t) = (5, 2) with (n, v, b, r, k) = (10, 126, 1050, 50, 6),

which are listed in Table 3.

3.3 H acts intransitively on Ωn

Proposition 3.4. If Hypothesis 1 holds and the point stabilizer H acts intransitively on
Ωn, then there are 15 possible parameters (n, v, b, r, k), which are listed in Table 3.

Proof. Since H acts intransitively on Ωn, we have H = (Sym(S)×Sym(Ωn\S))
∩ G and, without loss of generality, we may assume that |S| = s <

n
2 by Lemma

2.3 (i). By the flag-transitivity of G, H is transitive on the blocks through α, and so
H fixes exactly one point in P . Since H stabilizes only one s-subset of Ωn, we can
identify the point α with S. As the orbit of S under G consists of all the s-subsets
of Ωn, we can identify P with the set of s-subsets of Ωn. So v = (n

s), G has rank
s + 1 and the subdegrees are:

d0 = 1, di+1 =

(

s

i

)(

n − s

s − i

)

, i = 0, 1, 2, . . . , s − 1.

It follows from r | 2ds and ds = s(n− s) that r | 2s(n− s). Combining this with
r2 > 2v, we have 2s2(n − s)2 > (n

s). Since s < n
2 is equivalent to s < t = n − s, we

have

2s2t2
>

(

s + t

s

)

.

Combining this with Lemma 2.6 (i), we have s ≤ 6.
Case (1): If s = 1, then v = n ≥ 5 and the subdegrees are 1, n− 1. If k = v− 1,

then r(v − 2) = 2(v − 1), and so v − 2 | v − 1 since (r, 2) = 2, a contradiction.
Therefore, 2 < k ≤ v − 2. Since G is (v − 2)-transitive on P , G acts k-transitively
on P , and so b = |B| = |BG| = (n

k) for every block B ∈ B. From the equality
bk = vr, we obtain (n

k)k = nr. On one hand, by r(k − 1) = 2(n − 1) and k > 2, we
have r ≤ n − 1, and so (n

k)k ≤ n(n − 1); on the other hand, by 2 < k ≤ n − 2, we
have n − i ≥ k − i + 2 > k − i + 1 for i = 2, 3, . . . , k − 1. Thus,

(

n

k

)

k = n(n − 1) ·
n − 2

k − 1
·

n − 3

k − 2
· · ·

n − k + 1

2
> n(n − 1),
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a contradiction.
Case (2): If s = 2, then v = n(n−1)

2 and the subdegrees are 1, (n−2
2 ), 2(n − 2).

By Lemma 2.2 (iii), r divides 2((n−2
2 ), 2(n − 2)) = (n − 2)(n − 3, 4).

(a) If n ≡ 0 or 2(mod 4), then r divides n − 2, and so n(n − 1) = 2v < r2 ≤
(n − 2)2, which is impossible.

(b) If n ≡ 1(mod 4), then r divides 2(n − 2).

Let r = 2(n−2)
u for some integer u. Since r2 > 2v, we have 4 >

4(n−2)2

n(n−1)
> u2,

which forces u = 1. Therefore, r = 2(n − 2). By Lemma 2.1, k = n+3
2 and

b = 2n(n−1)(n−2)
n+3 . Since b is an integer, n + 3 divides 120 with n ≡ 1(mod 4),

and so n=5, 9, 17, 21, 37, 57 or 117. For each such n, we compute the parameters
(v, b, r, k). If n ∈ {17, 21, 37, 57, 117}, then |G : GB| = b < (n

3). By Lemma 2.5 and
[5, Theorem 5.2B], G has no subgroup of index b, a contradiction. So we obtain
only 2 possible parameters (n, v, b, r, k), namely

(5, 10, 15, 6, 4), (9, 36, 84, 14, 6).

(c) If n ≡ 3(mod 4), then r divides 4(n − 2).

Let r = 4(n−2)
u for some integer u. Since r2 > 2v, we have 16 >

16(n−2)2

n(n−1)
> u2,

and so u = 1, 2 or 3.

If u = 1, then r = 4(n − 2), k = n+5
4 and b = 8n(n−1)(n−2)

n+5 . As b is an integer,
n + 5 divides 1680 with n ≡ 3(mod 4), and so n=7, 11, 15, 19, 23, 35, 43, 51, 55, 75,
79, 107, 115, 135, 163, 235, 275, 331, 415, 555, 835 or 1675. By Lemma 2.5 and [5,
Theorem 5.2B], n ∈ {7, 11, 15, 19, 23, 35, 43} and we obtain 7 possible parameters
(n, v, b, r, k), namely

(7, 21, 140, 20, 3), (11, 55, 495, 36, 4), (15, 105, 1092, 52, 5), (19, 171, 1938, 68, 6),

(23, 253, 3036, 84, 7), (35, 595, 7854, 132, 10), (43, 903, 12341, 164, 12).

If u = 2, then r = 2(n − 2), k = n+3
2 and b = 2n(n−1)(n−2)

n+3 , and so n + 3 divides
120 with n ≡ 3(mod 4). Therefore n = 7 or 27. By Lemma 2.5 and [5, Theorem
5.2B], n 6= 27 and we get (n, v, b, r, k) = (7, 21, 42, 10, 5).

If u = 3, then r = 4(n−2)
3 , k = 3n+7

4 and b = 8n(n−1)(n−2)
3(3n+7)

, and so 3n + 7 divides

7280. Since r is an integer with n ≡ 3(mod 4), it follows that n ≡ 11(mod 12).
Therefore n =11, 35, 119 or 1211. For each n, |G : GB| = b < (n

3). By Lemma 2.5
and [5, Theorem 5.2B], it is easy to know that G has no subgroup of index b.

Case (3): Suppose that 3 ≤ s ≤ 6. For each value of s, there is a value of t such

that (s+t
s ) > 2s2t2 and so, by Lemma 2.6 (iv), t is bounded (hence so n = s + t).

For example, let s = 3, since (3+102
3 ) > 2 · 32 · 1022, we must have 4 ≤ t ≤ 101,

and so 7 ≤ n ≤ 104. The bounds for n are listed in Table 2 below.
Note that v = (n

s), and d1 = (n−s
s ), d2 = s(n−s

s−1), d3 = (s
2)(

n−s
s−2) are three non-

trivial subdegrees of G acting on P . Therefore, the 5-tuple (n, v, b, r, k) satisfies
the arithmetical conditions: (3.1)-(3.6) and r | 2di, i ∈ {1, 2, 3}.

If s = 3, GAP outputs only five 5-tuples, namely

(13, 286, 429, 30, 20), (14, 364, 2002, 66, 12), (22, 1540, 6270, 114, 28),

(32, 4960, 14880, 174, 58), (50, 19600, 39480, 282, 140).
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Table 2: Bounds of n when 3 ≤ s ≤ 6

s t n
3 4 ≤ t ≤ 101 7 ≤ n ≤ 104
4 5 ≤ t ≤ 22 9 ≤ n ≤ 26
5 6 ≤ t ≤ 12 11 ≤ n ≤ 17
6 7, 8, 9 13, 14, 15

If s = 4, 5 or 6, using GAP, there is no parameter (n, v, b, r, k) satisfying these
conditions.

Thus, we obtain exactly 15 possible parameters (n, v, b, r, k), listed in Table 3.

3.4 Ruling out potential parameters

Now, we will rule out the 23 potential cases listed in Table 3.

(i) Ruling out CASES 6, 7, 11 and 12.

The GAP-command PrimitiveGroup(v,nr) returns the primitive group with
degree v in position nr in the list of the library of primitive permutation groups.
For each CASE, the command shows that there is no primitive group correspond-
ing to v.

(ii) Ruling out CASES 1 and 8.

Since G is flag-transitive, |H| = |G|/v. For each case, H is primitive on Ωn.
However, the command PrimitiveGroup(v,nr), where v = n, shows that there
is no such group of order |G|/v.

(iii) Ruling out CASES 15, 16, 18, 19, 21, 23 and 25.

Since G is flag-transitive, G acts transitively on B, so |G|/b = |GB|, where B is
a block. For each case, using the Magma-command Subgroups(G:OrderEqual:=n)

where n = |G|/b, it turns out that G has no subgroup of order n. When v ≥ 2500,
the GAP-command PrimitiveGroup(v,nr) does not know the group of degree
v. For CASE 25, G = A50 or S50, we use the Magma-command G := Alt(50)
or G := Sym(50) to get the group G, and Subgroups(G:OrderEqual:=n) where
n = |G|/b to conclude that G does not have such a subgroup of order |G|/b.

(iv) Ruling out CASES 13, 14, 17, 20 and 22.

Since GB is transitive on B, B is an orbit of GB acting on the point set P . Using
the Magma-command Orbits(GB), where GB = GB, it turns out that GB has no
orbit of length b, a contradiction.

(v) Ruling out CASES 3 and 5.

Using the command Orbits(GB), we get the orbits of GB. As |B| = k, we take
the orbit of length k as B. Since G acts transitively on B, |BG| = b. However, using
the GAP-command OrbitLength(G,B,OnSets), we get that |BG| < b.

(vi) Ruling out CASES 9 and 10.

For each case, the GAP-command PairwiseBalancedLambda(D) concludes that
D is not pairwise balanced, a contradiction.
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Table 3: Potential parameters

CASE (v, b, r, k) Soc(G) or G Proposition Step/Reference
1 (10, 15, 6, 4) A5 3.2 (ii)
2 A6 3.3 D
3 G = A5 3.4 (v)
4 G = S5 3.4 D
5 (15, 70, 14, 3) G = A7 or A8 3.2 (v)
6 G = S7 or S8 3.2 (i)
7 (16, 40, 10, 4) A6, A7 3.2 (i)
8 (21, 42, 10, 5) A7 3.2 (ii)
9 A7 3.4 (vi)
10 (21, 140, 20, 3) A7 3.4 (vi)
11 (36, 45, 10, 8) A6, A7 3.2 (i)
12 (36, 84, 14, 6) A7, A8 3.2 (i)
13 A9 3.4 (iv)
14 (55, 495, 36, 4) A11 3.4 (iv)
15 (105, 1092, 52, 5) A15 3.4 (iii)
16 (126, 1050, 50, 6) A10 3.3 (iii)
17 (171, 1938, 68, 6) A19 3.4 (iv)
18 (253, 3036, 84, 7) A23 3.4 (iii)
19 (286, 429, 30, 20) A13 3.4 (iii)
20 (364, 2002, 66, 12) A14 3.4 (iv)
21 (595, 7854, 132, 10) A35 3.4 (iii)
22 (903, 12341, 164, 12) A43 3.4 (iv)
23 (1540, 6270, 114, 28) A22 3.4 (iii)
24 (4960, 14880, 174, 58) A32 3.4 (vii)
25 (19600, 39480, 282, 140) A50 3.4 (iii)

For CASE 9, take (v, G) = (21, A7) for example. The orbits of GB are:

∆0 = {13}, ∆1 = {2, 7, 12, 14, 15},
∆2 = {4, 9, 16, 19, 20}, ∆3 = {1, 3, 5, 6, 8, 10, 11, 17, 18, 21}.

As k = 5, we take B = ∆1 or B = ∆2. Using the GAP-command D := BlockDesign

(21, [[2, 7, 12, 14, 15]], G), we get |∆G
1 | = 42 and ∆2 ∈ ∆

G
1 . Without loss of general-

ity, we take P = {1, 2, . . . , 21}, B = ∆1 and B = ∆
G
1 . Now, we just need check that

D is pairwise balanced. However, PairwiseBalancedLambda(D) shows that this is
not true. So the case (v, G) = (21, A7) cannot occur.

(vii) Ruling out CASE 24.

Consider first (v, G) = (4960, A32). Let Ωn = {1, 2, . . . , 32}, then G acts primi-

tively on Ωn. Let P = Ω
{3}
n denote the set of all 3-subsets of Ωn. Then G acts

on P in a natural way and |P| = (32
3 ) = 4960. Using the Magma-command

G := Alt(32) and Subgroups(G:OrderEqual:=n) where n = |G|/b, we get that G
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contains only one conjugacy class of subgroups of order |G|/b, with K as repre-
sentative, so the block stabilizer GB is conjugate to K, and then there is a block B0

such that K = GB0
. Since G is flag-transitive, B0 is an orbit of K acting on P . Take

S = {1, 2, 3} ∈ P . Using the command OrbitLength(G, S, OnSets), G acts tran-
sitively on P , and using the command OrbitLength(K, S′ , OnSets) for all S′ ∈ P ,
K acting on P has exactly one orbit Γ of length 58. As k = 58, we take B0 = Γ.
Furthermore, the Magma-command O := Γ∧G shows out that |O| = 14880 = b, and
so we take B = O. Now, we just need to check that each pair of distinct points
is contained in 2 blocks. Let S1 = {1, 2, 3}, S2 = {5, 6, 9} ∈ P . Magma shows
that there is no block in B containing both S1 and S2 , a contradiction. So the case
(v, G) = (4960, A32) cannot occur.

The analysis of (v, G) = (4960, S32) is similar.

3.5 The unique non-symmetric 2-(10, 4, 2) design

For CASE 2 and CASE 4, the parameters (v, b, r, k) = (10, 15, 6, 4). It is well-known
that, up to isomorphism, there are exactly three 2-(10, 4, 2) designs, see [10] or
[11]. Moreover, it is not hard to know that, among these 3 designs, only one has
a flag-transitive point-primitive automorphism group G = S5, A6 or S6, which is
denoted by D.

This completes the proof of Theorem 1.1.
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