Flag-transitive point-primitive non-symmetric $2-(v, k, 2)$ designs with alternating socle*

Hongxue Liang Shenglin Zhou ${ }^{\dagger}$

Abstract

We prove that if \mathcal{D} is a non-trivial non-symmetric $2-(v, k, 2)$ design admitting a flag-transitive point-primitive automorphism group G with $\operatorname{Soc}(G)=$ A_{n} for $n \geq 5$, then \mathcal{D} is a $2-(6,3,2)$ or $2-(10,4,2)$ design.

1 Introduction

A 2- (v, k, λ) design is a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ consisting of v points and b blocks such that every block is incident with k points, every point is incident with r blocks, and any two distinct points are incident with exactly λ blocks. The design \mathcal{D} is called symmetric if $v=b$ (or equivalently $r=k$) and non-trivial if $1<k<v$. A flag of \mathcal{D} is an incident point-block pair (α, B) where α is a point and B is a block. An automorphism of \mathcal{D} is a permutation of the points which also permutes the blocks. The group of all automorphisms of \mathcal{D} is denoted by $\operatorname{Aut}(\mathcal{D})$. A subgroup $G \leq \operatorname{Aut}(\mathcal{D})$ is called point-primitive if it acts primitively on \mathcal{P} and flag-transitive if it acts transitively on the set of flags of \mathcal{D}.

It was shown in [12] that the socle of the automorphism group of a flagtransitive point-primitive symmetric $2-(v, k, 2)$ design cannot be alternating or sporadic. Recently, we proved in [7] that, for a non-symmetric 2-($v, k, 2$) design \mathcal{D}, if $G \leq \operatorname{Aut}(\mathcal{D})$ is flag-transitive and point-primitive then G must be an affine

[^0]or almost simple group. Moreover, if the socle of G is sporadic, then \mathcal{D} is the unique $2-(176,8,2)$ design with $G=H S$, the Higman-Sims simple group. Here we solve completely the case of almost simple groups in which $\operatorname{Soc}(G)$ is an alternating group. Our main result is the following.

Theorem 1.1. If \mathcal{D} is a non-trivial non-symmetric $2-(v, k, 2)$ design admitting a flagtransitive point-primitive automorphism group G with alternating socle A_{n} for $n \geq 5$, then
(i) \mathcal{D} is a unique $2-(6,3,2)$ design and $G=A_{5}$, or
(ii) \mathcal{D} is a unique 2-($10,4,2$) design and $G=S_{5}, A_{6}$ or S_{6}.

The structure of our paper is as follows. In Section 2, we give some preliminary lemmas on flag-transitive designs and permutation groups. In Section 3, we prove Theorem 1.1 in 5 steps.

2 Preliminaries

Lemma 2.1. The parameters v, b, r, k, λ of a non-trivial $2-(v, k, \lambda)$ design satisfy the following arithmetic conditions:
(i) $v r=b k$;
(ii) $\lambda(v-1)=r(k-1)$;
(iii) $b \geq v$ and $k \leq r$.

In particular, if the design is non-symmetric then $b>v$ and $k<r$. Note also that $k>2$ as soon as $\lambda>1$, otherwise two points could not be incident with more than one block.

Lemma 2.2. Let \mathcal{D} be a non-trivial $2-(v, k, \lambda)$ design. Let α be a point of \mathcal{D} and G be a flag-transitive automorphism group of \mathcal{D}.
(i) $r^{2}>\lambda v$ and $\left|G_{\alpha}\right|^{3}>\lambda|G|$. In particular, $r^{2}>v$.
(ii) $r \mid \lambda\left(v-1,\left|G_{\alpha}\right|\right)$, where G_{α} is the stabilizer of α.
(iii) If d is any non-trivial subdegree of G, then $r \mid \lambda d$ (and so $\left.\frac{r}{(r, \lambda)} \right\rvert\, d$).

Proof. (i) The equality $r=\frac{\lambda(v-1)}{k-1}$ implies $\lambda v=r(k-1)+\lambda \leq r(r-1)+\lambda=$ $r^{2}-r+\lambda$, and the non-triviality of \mathcal{D} implies $r>\lambda$, and so $r^{2}>\lambda v$. Combining this with $v=\left|G: G_{\alpha}\right|$ and $r \leq\left|G_{\alpha}\right|$ by the flag-transitivity of G, we have $\left|G_{\alpha}\right|^{3}>\lambda|G|$. (ii) Since G is flag-transitive and $\lambda(v-1)=r(k-1)$, we have $r \mid \lambda(v-1)$ and $r\left|\left|G_{\alpha}\right|\right.$. It follows that r divides $\left(\lambda(v-1),\left|G_{\alpha}\right|\right)$, and hence $r \mid \lambda\left(v-1,\left|G_{\alpha}\right|\right)$. Part (iii) was proved in [2, p.91] and [3].

Flag-transitive point-primitive non-symmetric designs with alternating socle 561

Lemma 2.3. ([8, p.366]) If G is A_{n} or S_{n}, acting on a set Ω of size n, and H is any maximal subgroup of G with $H \neq A_{n}$, then H satisfies one of the following:
(i) $H=\left(S_{\ell} \times S_{m}\right) \cap G$, with $n=\ell+m$ and $\ell \neq m$ (intransitive case);
(ii) $H=\left(S_{\ell} \backslash S_{m}\right) \cap G$, with $n=\ell m, \ell>1, m>1$ and $\ell \neq m$ (imprimitive case);
(iii) $H=A G L_{m}(p) \cap G$, with $n=p^{m}$ and p a prime (affine case);
(iv) $H=\left(T^{m}\right.$.(Out $\left.\left.T \times S_{m}\right)\right) \cap G$, with T a nonabelian simple group, $m \geq 2$ and $n=|T|^{m-1}$ (diagonal case);
(v) $H=\left(S_{\ell} \backslash S_{m}\right) \cap G$, with $n=\ell^{m}, \ell \geq 5$ and $m>1$ (wreath case);
(vi) $T \unlhd H \leq A u t(T)$, with T a nonabelian simple group, $T \neq A_{n}$ and H acting primitively on Ω (almost simple case).

Remark 1. This lemma does not deal with the groups $M_{10}, P G L_{2}(9)$ and $P \Gamma L_{2}(9)$ that have A_{6} as socle. These exceptional cases will be handled in the first part of Section 3.

Lemma 2.4. ([9, Theorem (b)(I)]) Let G be a primitive permutation group of odd degree n, acting on a set Ω with simple socle $X=\operatorname{Soc}(G)$, and let $H=G_{\alpha}, \alpha \in \Omega$. If $X \cong A_{c}$, then one of the following holds:
(i) H is intransitive, and $H=\left(S_{a} \times S_{c-a}\right) \cap G$ where $1 \leq a<\frac{1}{2} c$;
(ii) H is transitive and imprimitive, and $H=\left(S_{a} \backslash S_{c / a}\right) \cap G$ where $a>1$ and $a \mid c$;
(iii) H is primitive, $n=15$ and $G \cong A_{7}$.

Lemma 2.5. ($[5$, Theorem 5.2 A$])$ Let $G=\operatorname{Alt}(\Omega)$ where $n=|\Omega| \geq 5$, and let s be an integer with $1 \leq s \leq \frac{n}{2}$. Suppose that $K \leq G$ has index $|G: K|<\binom{\bar{n}}{s}$. Then one of the following holds:
(i) For some $\Delta \subset \Omega$ with $|\Delta|<s$ we have $G_{(\Delta)} \leq K \leq G_{\{\Delta\}}$;
(ii) $n=2 m$ is even, K is imprimitive with two blocks of size m, and $|G: K|=\frac{1}{2}\binom{n}{m}$; or
(iii) one of six exceptional cases holds:
(a) K is imprimitive on Ω and $(n, s,|G: K|)=(6,3,15)$;
(b) K is primitive on Ω and $(n, s,|G: K|, K)=(5,2,6,5: 2),\left(6,2,6, P S L_{2}(5)\right)$, $\left(7,2,15, P S L_{3}(2)\right),\left(8,2,15, A G L_{3}(2)\right)$ or $\left(9,4,120, P \Gamma L_{2}(8)\right)$.

Remark 2. (1) From part (i) of Lemma 2.5 we know that K contains the alternating group $G_{(\Delta)}=\operatorname{Alt}(\Omega \backslash \Delta)$ of degree $n-s+1$.
(2) A result similar to Lemma 2.5 holds for the finite symmetric groups $\operatorname{Sym}(\Omega)$ [5, Theorem 5.2B].

Lemma 2.6. Let sand be two positive integers.
(i) If $t>s \geq 7$, then $\binom{s+t}{s}>2 s^{2} t^{2}$.
(ii) If $s \geq 6$ and $t \geq 2$, then $2^{(s-1)(t-1)}>2 s^{4}\binom{t}{2}^{2}$ implies $2^{s(t-1)}>2(s+1)^{4}\binom{t}{2}^{2}$.
(iii) If $t \geq 6$ and $s \geq 2$, then $2^{(s-1)(t-1)}>2 s^{4}\binom{t}{2}^{2}$ implies $2^{(s-1) t}>2 s^{4}\binom{t+1}{2}^{2}$.
(iv) If $t \geq 4$, and $s \geq 3$, then $\binom{s+t}{s}>2 s^{2} t^{2}$ implies $\binom{s+t+1}{s}>2 s^{2}(t+1)^{2}$.

Proof. (i) If $t>s=7$, then $\binom{t+7}{7}>2 \cdot 7^{2} \cdot t^{2}$. If $t>s \geq 8$, then $\left[\frac{s+t}{2}\right] \geq s \geq 8$, and so $\binom{s+t}{s} \geq\binom{ t+8}{8}>2 t^{4}>2 s^{2} t^{2}$.
(ii) We have

$$
2^{s(t-1)}=2^{(s-1)(t-1)} 2^{t-1}>2 s^{4}\binom{t}{2}^{2} 2^{t-1}=2(s+1)^{4}\binom{t}{2}^{2}\left(1-\frac{1}{s+1}\right)^{4} 2^{t-1}
$$

Combing this with $\left(1-\frac{1}{s+1}\right)^{4} 2^{t-1} \geq 2 \times\left(\frac{6}{7}\right)^{4}>1$ gives (ii).
(iii) We have

$$
2^{(s-1) t}=2^{(s-1)(t-1)} 2^{s-1}>2 s^{4}\binom{t}{2}^{2} 2^{s-1}=2 s^{4}\binom{t+1}{2}^{2}\left(1-\frac{2}{t+1}\right)^{2} 2^{s-1}
$$

Combing this with $\left(1-\frac{2}{t+1}\right)^{2} 2^{s-1} \geq 2 \times\left(\frac{5}{7}\right)^{2}>1$ gives (iii).
(iv) We have

$$
\binom{s+t+1}{s}=\binom{s+t}{s} \frac{s+t+1}{t+1}>2 s^{2} t^{2} \frac{s+t+1}{t+1}=2 s^{2}(t+1)^{2} \frac{(s+t+1) t^{2}}{(t+1)^{3}} .
$$

The fact that $(s+t+1) t^{2}>(t+1)^{3}$ gives (iv).

3 Proof of Theorem 1.1

In this section, unless otherwise specified, \mathcal{D} denotes always a non-trivial nonsymmetric $2-(v, k, 2)$ design, and $G \leq A u t(\mathcal{D})$ is flag-transitive point-primitive with $\operatorname{Soc}(G)=A_{n}$. Let α be a point of \mathcal{D} and $H=G_{\alpha}$. Since G is point-primitive, H is a maximal subgroup of G by [14, Theorem 8.2]. Furthermore, by the flagtransitivity of G, we have $v=|G: H|, b| | G|, r||H|$ and $r^{2}>2 v$ by Lemma 2.2 (i).

If r is odd, Zhou and Wang [13] proved the following:
Proposition 3.1. Let \mathcal{D} be a non-trivial non-symmetric $2-(v, k, 2)$ design admitting a flag-transitive point-primitive automorphism group G with $\operatorname{Soc}(G)=A_{n}, n \geq 5$. If the replication number r is odd, then \mathcal{D} is the unique 2- $(6,3,2)$ design and $G=A_{5}$.

Flag-transitive point-primitive non-symmetric designs with alternating socle 563

From now on, we will assume that r is even.
Suppose first that $n=6$ and $G \cong M_{10}, P G L_{2}(9)$ or $P \Gamma L_{2}(9)$. Each of these groups has exactly three maximal subgroups with index greater than 2 , and their indices are 45,36 and 10 . Using the computer algebra system GAP [6] for $v=45$, 36 or 10, we have computed the parameters (v, b, r, k) that satisfy the following conditions:

$$
\begin{gather*}
r \mid(2(v-1),|H|) ; \tag{3.1}\\
r^{2}>2 v ; \tag{3.2}\\
2 \mid r ; \tag{3.3}\\
r(k-1)=2(v-1) ; \tag{3.4}\\
r>k>2 ; \tag{3.5}\\
b=\frac{v r}{k} . \tag{3.6}
\end{gather*}
$$

It turns out that the only possible parameters (v, b, r, k) are:

$$
(10,15,6,4) \text { and }(36,45,10,8)
$$

Now we consider the possible existence of flag-transitive point-primitive nonsymmetric designs with these parameters.

Suppose first that there exists a $2-(10,4,2)$ design \mathcal{D} with a flag-transitive point-primitive automorphism group G. Let $\mathcal{P}=\{1,2, \ldots, 10\}$ and $G=M_{10}$, $P G L_{2}(9)$ or $P \Gamma L_{2}(9)$ be the primitive permutation group of degree 10 acting on \mathcal{P}. Since G is flag-transitive, G acts block-transitively on \mathcal{B}, so $|G| / b=\left|G_{B}\right|$, where B is a block. For each case, using the command Subgroups (G:OrderEqual:=n) where $n=|G| / b$ by Magma [1], it turns out that G has no subgroup of order n, which contradicts the fact that G_{B} is a subgroup of order $|G| / b$.

Assume next that there exists a $2-(36,8,2)$ design \mathcal{D} with a flag-transitive point-primitive automorphism group $G=M_{10}, P G L_{2}(9)$ or $P \Gamma L_{2}(9)$.

When $(v, G)=\left(36, P \Gamma L_{2}(9)\right)$, by the Magma-command Subgroups (G:Order Equal:=n) where $n=|G| / b$, we get the block stabilizer G_{B}. Since G is flagtransitive, G_{B} is transitive on B, and so B is an orbit of G_{B} acting on \mathcal{P}. Using the Magma-command Orbits (GB) where $G B=G_{B}$, it turns out that G_{B} has no orbit of length k, a contradiction.

Now assume that $(v, G)=\left(36, M_{10}\right)$ or $\left(36, P G L_{2}(9)\right)$. Every pair of distinct points must be contained in 2 blocks. However, for each case, the command PairwiseBalancedLambda(D) contradicts this condition.

If $(v, G)=\left(36, M_{10}\right)$, the orbits of G_{B} are:

$$
\begin{aligned}
& \Delta_{0}=\{3,17,18,21\} \\
& \Delta_{1}=\{1,4,12,14,16,22,26,34\} \\
& \Delta_{2}=\{2,6,7,9,15,23,29,36\} \\
& \Delta_{3}=\{5,8,10,11,13,19,20,24,25,27,28,30,31,32,33,35\} .
\end{aligned}
$$

As $k=8$, we take $B=\Delta_{1}$ or $B=\Delta_{2}$. Using the GAP-command D1 $:=$ Block $\operatorname{Design}(36,[[1,4,12,14,16,22,26,34]]$, G$)$, we get $\left|\Delta_{1}^{G}\right|=45=b$. We take
$\mathcal{P}=\{1,2, \ldots, 36\}, B=\Delta_{1}$ and $\mathcal{B}=B^{G}$. Now, we just need to check that each pair of distinct points is contained in 2 blocks. However, PairwiseBlancedLambda(D1) shows that this is not true, and so $B \neq \Delta_{1}$. Similarly, $B \neq \Delta_{2}$. So the case $(v, G)=\left(36, M_{10}\right)$ cannot occur.

Now we consider $G=A_{n}$ or S_{n} with $n \geq 5$. The point stabilizer $H=G_{\alpha}$ acts both on \mathcal{P} and on the set $\Omega_{n}=\{1,2, \ldots, n\}$. Then by Lemma 2.3 one of the following holds:
(i) H is primitive in its action on Ω_{n};
(ii) H is transitive and imprimitive in its action on Ω_{n};
(iii) H is intransitive in its action on Ω_{n}.

We analyse each of these actions separately, under the following assumption:
Hypothesis 1. \mathcal{D} is a non-trivial non-symmetric $2-(v, k, 2)$ design admitting a flagtransitive point-primitive automorphism group G with $\operatorname{Soc}(G)=A_{n}(n \geq 5)$ and r is even.

3.1 H acts primitively on Ω_{n}

Proposition 3.2. If Hypothesis 1 holds and the point stabilizer H acts primitively on Ω_{n}, then there are 10 possible parameters (n, v, b, r, k), which are listed in Table 3.

Proof. We claim that $2 \| r$. Otherwise $4 \mid r$, and the equality $r(k-1)=2(v-1)$ implies that v is odd. Thus by Lemma 2.4, $v=15, G=A_{7}$ and $|H|=|G| / v=$ 168. Since $r \mid(2(v-1),|H|), r^{2}>2 v$ and $k \geq 3$, it follows that $r=7$ or 14 , which contradicts $4 \mid r$.

Thus $2 \| r$. Let $r=2 r^{\prime}$. Since $r>2$, there exists an odd prime p that divides r^{\prime}, then $p \mid(v-1)$, and so $(p, v)=1$. Thus H contains a Sylow p-subgroup P of G. Let $g \in G$ be a p-cycle, then there is a conjugate of g belonging to H. This implies that H acting on Ω_{n} contains an even permutation with exactly one cycle of length p and $n-p$ fixed points. By a result of Jordan [14, Theorem 13.9], $n-p \leq 2$. Therefore, $n-2 \leq p \leq n, p^{2} \nmid|G|$, and so $p^{2} \nmid r^{\prime}$. It follows that r^{\prime} is either a prime, namely $n-2, n-1$ or n, or the product of two twin primes, namely $(n-2) n$. Moreover, the primitivity of H acting on Ω_{n} and $H \ngtr A_{n}$ imply that $v \geq \frac{\left[\frac{n+1}{2}\right]!}{2}$ by [14, Theorem 14.2]. Combining with $r^{2}>2 v$, we get

$$
r^{2}>\left[\frac{n+1}{2}\right]!.
$$

Therefore, $(n, r)=(5,6),(5,10),(5,30),(6,10),(7,10),(7,14),(7,70),(8,14),(9,14)$ or (13,286). By Lemmas 2.1 and 2.2, using $v \geq \frac{\left[\frac{n+1}{2}\right]!}{2}$ and $[b, v]||G|$, we obtain exactly 10 possible parameters (n, v, b, r, k):
$(5,10,15,6,4),(6,16,40,10,4),(6,36,45,10,8),(7,15,70,14,3),(7,16,40,10,4)$,
$(7,21,42,10,5),(7,36,45,10,8),(7,36,84,14,6),(8,15,70,14,3),(8,36,84,14,6)$.
They are listed in Table 3.

Flag-transitive point-primitive non-symmetric designs with alternating socle 565

3.2 H acts transitively and imprimitively on Ω_{n}

Proposition 3.3. If Hypothesis 1 holds and the point stabilizer H acts transitively but imprimitively on Ω_{n}, then there are 2 possible parameters $(n, v, b, r, k)=(6,10,15,6,4)$ or $(10,126,1050,50,6)$, which are listed in Table 3.

Proof. Suppose on the contrary that $\Sigma=\left\{\Delta_{0}, \Delta_{1}, \ldots, \Delta_{t-1}\right\}$ is a non-trivial partition of Ω_{n} preserved by H, where $\left|\Delta_{i}\right|=s, 0 \leq i \leq t-1, s, t \geq 2$ and $s t=n$. Then

$$
v=\binom{t s-1}{s-1}\binom{(t-1) s-1}{s-1} \ldots\binom{3 s-1}{s-1}\binom{2 s-1}{s-1} .
$$

Moreover, the set O_{j} of j-cyclic partitions with respect to X (a partition of Ω_{n} into t classes each of size s) is a union of orbits of H on \mathcal{P} for $j=2, \ldots, t$ (see [4,15] for definitions and details).

Case (1): Suppose first that $s=2$. Then $t \geq 3, v=(2 t-1)(2 t-3) \cdots 5 \cdot 3$, and

$$
d_{j}=\left|O_{j}\right|=\frac{1}{2}\binom{t}{j}\binom{s}{1}^{j}=2^{j-1}\binom{t}{j} .
$$

If $t \geq 7$, then $v=(2 t-1)(2 t-3) \cdots 5 \cdot 3>5 t^{2}(t-1)^{2}$. On the other hand, since r divides $2 d_{2}=2 t(t-1), 2 t(t-1) \geq r$, and so $v<2 t^{2}(t-1)^{2}$, a contradiction. Thus $t<7$. For $t=3,4,5$ or 6 , the values of $d=2 \operatorname{gcd}\left(d_{2}, d_{3}\right)$ are listed in Table 1 below.

Table 1: Possible d when $s=2$

t	n	v	d_{2}	d_{3}	d
3	6	15	6	4	4
4	8	105	12	16	8
5	10	945	20	40	40
6	12	10395	30	80	20

In each line $r \leq d$, which contradicts the fact that $r^{2}>2 v$.
Case (2): Thus $s \geq 3$. So O_{j} is an orbit of H on \mathcal{P}, and $d_{j}=\left|O_{j}\right|=\binom{t}{j}\binom{s}{1}^{j}=$ $s^{j}\binom{t}{j}$. In particular, $d_{2}=s^{2}\binom{t}{2}$ and $r \mid 2 d_{2}$. Moreover, from $\binom{i s-1}{s-1}=\frac{i s-1}{s-1} \cdot \frac{i s-2}{s-2} \cdots \frac{i s-(s-1)}{1}>i^{s-1}$, for $i=2,3, \ldots, t$, we have that $v>2^{(s-1)(t-1)}$. Then

$$
2 \cdot 2^{(s-1)(t-1)}<2 v<r^{2} \leq 4 s^{4}\binom{t}{2}^{2}
$$

and so

$$
\begin{equation*}
2^{(s-1)(t-1)}<2 s^{4}\binom{t}{2}^{2} \tag{3.7}
\end{equation*}
$$

Now we determine all pairs (s, t) satisfying (3.7). Clearly, the pair $(s, t)=(6,6)$ does not satisfy (3.7), but it satisfies the conditions (ii) and (iii)
of Lemma 2.6. Thus, either $s<6$ or $t<6$. It is not hard to get the 36 pairs (s, t) satisfying (3.7), namely
$(3,2),(3,3),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,2),(4,3),(4,4)$,
$(4,5),(4,6),(5,2),(5,3),(5,4),(5,5),(6,2),(6,3),(6,4),(7,2),(7,3),(8,2)$,
$(8,3),(9,2),(9,3),(10,2),(11,2),(12,2),(13,2),(14,2),(15,2),(16,2)$, $(17,2),(18,2)$.

For each pair (s, t), we compute the parameters (v, b, r, k) satisfying Lemmas 2.1,2.2,2 $\mid r$ and $r \mid 2 d_{2}$. There are only 2 possible such parameters, namely

$$
\begin{aligned}
& (s, t)=(3,2) \text { with }(n, v, b, r, k)=(6,10,15,6,4) \\
& (s, t)=(5,2) \text { with }(n, v, b, r, k)=(10,126,1050,50,6)
\end{aligned}
$$

which are listed in Table 3.

3.3 H acts intransitively on Ω_{n}

Proposition 3.4. If Hypothesis 1 holds and the point stabilizer H acts intransitively on Ω_{n}, then there are 15 possible parameters (n, v, b, r, k), which are listed in Table 3.

Proof. Since H acts intransitively on Ω_{n}, we have $H=\left(\operatorname{Sym}(S) \times \operatorname{Sym}\left(\Omega_{n} \backslash S\right)\right)$ $\cap G$ and, without loss of generality, we may assume that $|S|=s<\frac{n}{2}$ by Lemma 2.3 (i). By the flag-transitivity of G, H is transitive on the blocks through α, and so H fixes exactly one point in \mathcal{P}. Since H stabilizes only one s-subset of Ω_{n}, we can identify the point α with S. As the orbit of S under G consists of all the s-subsets of Ω_{n}, we can identify \mathcal{P} with the set of s-subsets of Ω_{n}. So $v=\binom{n}{s}, G$ has rank $s+1$ and the subdegrees are:

$$
d_{0}=1, d_{i+1}=\binom{s}{i}\binom{n-s}{s-i}, i=0,1,2, \ldots, s-1
$$

It follows from $r \mid 2 d_{s}$ and $d_{s}=s(n-s)$ that $r \mid 2 s(n-s)$. Combining this with $r^{2}>2 v$, we have $2 s^{2}(n-s)^{2}>\binom{n}{s}$. Since $s<\frac{n}{2}$ is equivalent to $s<t=n-s$, we have

$$
2 s^{2} t^{2}>\binom{s+t}{s}
$$

Combining this with Lemma 2.6 (i), we have $s \leq 6$.
Case (1): If $s=1$, then $v=n \geq 5$ and the subdegrees are $1, n-1$. If $k=v-1$, then $r(v-2)=2(v-1)$, and so $v-2 \mid v-1$ since $(r, 2)=2$, a contradiction. Therefore, $2<k \leq v-2$. Since G is $(v-2)$-transitive on \mathcal{P}, G acts k-transitively on \mathcal{P}, and so $b=|\mathcal{B}|=\left|B^{G}\right|=\binom{n}{k}$ for every block $B \in \mathcal{B}$. From the equality $b k=v r$, we obtain $\binom{n}{k} k=n r$. On one hand, by $r(k-1)=2(n-1)$ and $k>2$, we have $r \leq n-1$, and so $\binom{n}{k} k \leq n(n-1)$; on the other hand, by $2<k \leq n-2$, we have $n-i \geq k-i+2>k-i+1$ for $i=2,3, \ldots, k-1$. Thus,

$$
\binom{n}{k} k=n(n-1) \cdot \frac{n-2}{k-1} \cdot \frac{n-3}{k-2} \cdots \frac{n-k+1}{2}>n(n-1),
$$

Flag-transitive point-primitive non-symmetric designs with alternating socle 567
a contradiction.
Case (2): If $s=2$, then $v=\frac{n(n-1)}{2}$ and the subdegrees are $1,\binom{n-2}{2}, 2(n-2)$. By Lemma 2.2 (iii), r divides $2\left(\binom{n-2}{2}, 2(n-2)\right)=(n-2)(n-3,4)$.
(a) If $n \equiv 0$ or $2(\bmod 4)$, then r divides $n-2$, and so $n(n-1)=2 v<r^{2} \leq$ $(n-2)^{2}$, which is impossible.
(b) If $n \equiv 1(\bmod 4)$, then r divides $2(n-2)$.

Let $r=\frac{2(n-2)}{u}$ for some integer u. Since $r^{2}>2 v$, we have $4>\frac{4(n-2)^{2}}{n(n-1)}>u^{2}$, which forces $u=1$. Therefore, $r=2(n-2)$. By Lemma 2.1, $k=\frac{n+3}{2}$ and $b=\frac{2 n(n-1)(n-2)}{n+3}$. Since b is an integer, $n+3$ divides 120 with $n \equiv 1(\bmod 4)$, and so $n=5,9,17,21,37,57$ or 117 . For each such n, we compute the parameters (v, b, r, k). If $n \in\{17,21,37,57,117\}$, then $\left|G: G_{B}\right|=b<\binom{n}{3}$. By Lemma 2.5 and [5, Theorem 5.2B], G has no subgroup of index b, a contradiction. So we obtain only 2 possible parameters (n, v, b, r, k), namely

$$
(5,10,15,6,4),(9,36,84,14,6)
$$

(c) If $n \equiv 3(\bmod 4)$, then r divides $4(n-2)$.

Let $r=\frac{4(n-2)}{u}$ for some integer u. Since $r^{2}>2 v$, we have $16>\frac{16(n-2)^{2}}{n(n-1)}>u^{2}$, and so $u=1,2$ or 3 .

If $u=1$, then $r=4(n-2), k=\frac{n+5}{4}$ and $b=\frac{8 n(n-1)(n-2)}{n+5}$. As b is an integer, $n+5$ divides 1680 with $n \equiv 3(\bmod 4)$, and so $n=7,11,15,19,23,35,43,51,55,75$, $79,107,115,135,163,235,275,331,415,555,835$ or 1675 . By Lemma 2.5 and [5, Theorem 5.2B], $n \in\{7,11,15,19,23,35,43\}$ and we obtain 7 possible parameters (n, v, b, r, k), namely
$(7,21,140,20,3),(11,55,495,36,4),(15,105,1092,52,5),(19,171,1938,68,6)$,
$(23,253,3036,84,7),(35,595,7854,132,10),(43,903,12341,164,12)$.
If $u=2$, then $r=2(n-2), k=\frac{n+3}{2}$ and $b=\frac{2 n(n-1)(n-2)}{n+3}$, and so $n+3$ divides 120 with $n \equiv 3(\bmod 4)$. Therefore $n=7$ or 27 . By Lemma 2.5 and [5 , Theorem 5.2B],$n \neq 27$ and we get $(n, v, b, r, k)=(7,21,42,10,5)$.

If $u=3$, then $r=\frac{4(n-2)}{3}, k=\frac{3 n+7}{4}$ and $b=\frac{8 n(n-1)(n-2)}{3(3 n+7)}$, and so $3 n+7$ divides 7280. Since r is an integer with $n \equiv 3(\bmod 4)$, it follows that $n \equiv 11(\bmod 12)$. Therefore $n=11,35,119$ or 1211. For each $n,\left|G: G_{B}\right|=b<\binom{n}{3}$. By Lemma 2.5 and [5, Theorem 5.2B], it is easy to know that G has no subgroup of index b.

Case (3): Suppose that $3 \leq s \leq 6$. For each value of s, there is a value of t such that $\binom{s+t}{s}>2 s^{2} t^{2}$ and so, by Lemma 2.6 (iv), t is bounded (hence so $n=s+t$). For example, let $s=3$, since $\binom{3+102}{3}>2 \cdot 3^{2} \cdot 102^{2}$, we must have $4 \leq t \leq 101$, and so $7 \leq n \leq 104$. The bounds for n are listed in Table 2 below.

Note that $v=\binom{n}{s}$, and $d_{1}=\binom{n-s}{s}, d_{2}=s\binom{n-s}{s-1}, d_{3}=\binom{s}{2}\binom{n-s}{s-2}$ are three nontrivial subdegrees of G acting on \mathcal{P}. Therefore, the 5-tuple (n, v, b, r, k) satisfies the arithmetical conditions: (3.1)-(3.6) and $r \mid 2 d_{i}, i \in\{1,2,3\}$.

If $s=3$, GAP outputs only five 5-tuples, namely

$$
\begin{aligned}
& (13,286,429,30,20),(14,364,2002,66,12),(22,1540,6270,114,28), \\
& (32,4960,14880,174,58),(50,19600,39480,282,140) .
\end{aligned}
$$

Table 2: Bounds of n when $3 \leq s \leq 6$

s	t	n
3	$4 \leq t \leq 101$	$7 \leq n \leq 104$
4	$5 \leq t \leq 22$	$9 \leq n \leq 26$
5	$6 \leq t \leq 12$	$11 \leq n \leq 17$
6	$7,8,9$	$13,14,15$

If $s=4,5$ or 6 , using GAP, there is no parameter (n, v, b, r, k) satisfying these conditions.

Thus, we obtain exactly 15 possible parameters (n, v, b, r, k), listed in Table 3.

3.4 Ruling out potential parameters

Now, we will rule out the 23 potential cases listed in Table 3.
(i) Ruling out CASES 6, 7, 11 and 12.

The GAP-command PrimitiveGroup (v,nr) returns the primitive group with degree v in position $n r$ in the list of the library of primitive permutation groups. For each CASE, the command shows that there is no primitive group corresponding to v.
(ii) Ruling out CASES 1 and 8.

Since G is flag-transitive, $|H|=|G| / v$. For each case, H is primitive on Ω_{n}. However, the command PrimitiveGroup(v, nr), where $\mathrm{v}=n$, shows that there is no such group of order $|G| / v$.
(iii) Ruling out CASES $15,16,18,19,21,23$ and 25.

Since G is flag-transitive, G acts transitively on \mathcal{B}, so $|G| / b=\left|G_{B}\right|$, where B is a block. For each case, using the Magma-command Subgroups (G:OrderEqual:=n) where $\mathrm{n}=|G| / b$, it turns out that G has no subgroup of order n . When $\mathrm{v} \geq 2500$, the GAP-command PrimitiveGroup (v, nr) does not know the group of degree v. For Case $25, G=A_{50}$ or S_{50}, we use the Magma-command $G:=\operatorname{Alt}(50)$ or $G:=\operatorname{Sym}(50)$ to get the group G, and Subgroups (G:OrderEqual:=n) where $\mathrm{n}=|G| / b$ to conclude that G does not have such a subgroup of order $|G| / b$.
(iv) Ruling out CASES 13, 14, 17, 20 and 22.

Since G_{B} is transitive on B, B is an orbit of G_{B} acting on the point set \mathcal{P}. Using the Magma-command Orbits(GB), where $\mathrm{GB}=G_{B}$, it turns out that G_{B} has no orbit of length b, a contradiction.
(v) Ruling out CASES 3 and 5.

Using the command Orbits(GB), we get the orbits of G_{B}. As $|B|=k$, we take the orbit of length k as B. Since G acts transitively on $\mathcal{B},\left|B^{G}\right|=b$. However, using the GAP-command OrbitLength (G, B, OnSets), we get that $\left|B^{G}\right|<b$.
(vi) Ruling out CASES 9 and 10.

For each case, the GAP-command PairwiseBalancedLambda(D) concludes that D is not pairwise balanced, a contradiction.

Flag-transitive point-primitive non-symmetric designs with alternating socle 569

Table 3: Potential parameters

CASE	(v, b, r, k)	Soc (G) or G	Proposition	Step/Reference
1	$(10,15,6,4)$	A_{5}	3.2	(ii)
2		A_{6}	3.3	D
3		$G=A_{5}$	3.4	(v)
4		$G=S_{5}$	3.4	D
5	$(15,70,14,3)$	$G=A_{7}$ or A_{8}	3.2	(v)
6		$G=S_{7}$ or S_{8}	3.2	(i)
7	$(16,40,10,4)$	A_{6}, A_{7}	3.2	(i)
8	$(21,42,10,5)$	A_{7}	3.2	(ii)
9		A_{7}	3.4	(vi)
10	$(21,140,20,3)$	A_{7}	3.4	(vi)
11	$(36,45,10,8)$	A_{6}, A_{7}	3.2	(i)
12	$(36,84,14,6)$	A_{7}, A_{8}	3.2	(i)
13		A_{9}	3.4	(iv)
14	$(55,495,36,4)$	A_{11}	3.4	(iv)
15	$(105,1092,52,5)$	A_{15}	3.4	(iii)
16	$(126,1050,50,6)$	A_{10}	3.3	(iii)
17	$(171,1938,68,6)$	A_{19}	3.4	(iv)
18	$(253,3036,84,7)$	A_{23}	3.4	(iii)
19	$(286,429,30,20)$	A_{13}	3.4	(iii)
20	$(364,2002,66,12)$	A_{14}	3.4	(iv)
21	$(595,7854,132,10)$	A_{35}	3.4	(iii)
22	$(903,12341,164,12)$	A_{43}	3.4	(iv)
23	$(1540,6270,114,28)$	A_{22}	3.4	(iii)
24	$(4960,14880,174,58)$	A_{32}	3.4	(vii)
25	$(19600,39480,282,140)$	A_{50}	3.4	(iii)

For CASE 9, take $(v, G)=\left(21, A_{7}\right)$ for example. The orbits of G_{B} are:

$$
\begin{array}{ll}
\Delta_{0}=\{13\}, & \Delta_{1}=\{2,7,12,14,15\}, \\
\Delta_{2}=\{4,9,16,19,20\}, & \Delta_{3}=\{1,3,5,6,8,10,11,17,18,21\} .
\end{array}
$$

As $k=5$, we take $B=\Delta_{1}$ or $B=\Delta_{2}$. Using the GAP-command $D:=$ BlockDesign $(21,[[2,7,12,14,15]], G)$, we get $\left|\Delta_{1}^{G}\right|=42$ and $\Delta_{2} \in \Delta_{1}^{G}$. Without loss of generality, we take $\mathcal{P}=\{1,2, \ldots, 21\}, B=\Delta_{1}$ and $\mathcal{B}=\Delta_{1}^{G}$. Now, we just need check that D is pairwise balanced. However, PairwiseBalancedLambda (D) shows that this is not true. So the case $(v, G)=\left(21, A_{7}\right)$ cannot occur.
(vii) Ruling out CASE 24.

Consider first $(v, G)=\left(4960, A_{32}\right)$. Let $\Omega_{n}=\{1,2, \ldots, 32\}$, then G acts primitively on Ω_{n}. Let $\mathcal{P}=\Omega_{n}^{\{3\}}$ denote the set of all 3-subsets of Ω_{n}. Then G acts on \mathcal{P} in a natural way and $|\mathcal{P}|=\binom{32}{3}=4960$. Using the Magma-command $\mathrm{G}:=\operatorname{Alt}(32)$ and Subgroups ($\mathrm{G}:$ OrderEqual $:=\mathrm{n}$) where $\mathrm{n}=|G| / b$, we get that G
contains only one conjugacy class of subgroups of order $|G| / b$, with K as representative, so the block stabilizer G_{B} is conjugate to K, and then there is a block B_{0} such that $K=G_{B_{0}}$. Since G is flag-transitive, B_{0} is an orbit of K acting on \mathcal{P}. Take $S=\{1,2,3\} \in \mathcal{P}$. Using the command OrbitLength $(G, S, O n S e t s), G$ acts transitively on \mathcal{P}, and using the command OrbitLength($\mathrm{K}, \mathrm{S}^{\prime}$, OnSets) for all $\mathrm{S}^{\prime} \in \mathcal{P}$, K acting on \mathcal{P} has exactly one orbit Γ of length 58 . As $k=58$, we take $B_{0}=\Gamma$. Furthermore, the Magma-command $0:=\Gamma^{\wedge} \mathrm{G}$ shows out that $|0|=14880=b$, and so we take $\mathcal{B}=0$. Now, we just need to check that each pair of distinct points is contained in 2 blocks. Let $S_{1}=\{1,2,3\}, S_{2}=\{5,6,9\} \in \mathcal{P}$. Magma shows that there is no block in \mathcal{B} containing both S_{1} and S_{2}, a contradiction. So the case $(v, G)=\left(4960, A_{32}\right)$ cannot occur.

The analysis of $(v, G)=\left(4960, S_{32}\right)$ is similar.

3.5 The unique non-symmetric $2-(10,4,2)$ design

For CASE 2 and CASE 4, the parameters $(v, b, r, k)=(10,15,6,4)$. It is well-known that, up to isomorphism, there are exactly three $2-(10,4,2)$ designs, see [10] or [11]. Moreover, it is not hard to know that, among these 3 designs, only one has a flag-transitive point-primitive automorphism group $G=S_{5}, A_{6}$ or S_{6}, which is denoted by \mathcal{D}.

This completes the proof of Theorem 1.1.

Acknowledgements

The authors sincerely thank the referees for their helpful suggestions and comments which lead to the improvement of the paper.

References

[1] W. Bosma, J. Cannon and C. Playoust. The MAGMA algebra system I: The user language. J. Symb. Comput. 24 (1997), 235-265.
[2] H. Davies. Flag-transitivity and primitivity. Discrete Math. 63 (1987), 91-93.
[3] H. Davies. Automorphisms of designs. Ph.D. Thesis, University of East Anglia, 1987.
[4] A. Delandtsheer. Finite flag-transitive linear spaces with alternating socle. Algebraic Combinatorics and Applications (Gößßeinstein, 1999), Springer, Berlin, 2001, 79-88.
[5] J. D. Dixon and B. Mortimer. Permutation Groups. Springer-Verlag, 1996.
[6] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.7.4, http://www.gap-system.org, 2014.

Flag-transitive point-primitive non-symmetric designs with alternating socle 571
[7] H. Liang and S. Zhou. Flag-transitive point-primitive automorphism groups of non-symmetric 2-($v, k, 2$) designs. J. Combin. Designs. 24 (2016), 421-435.
[8] M. W. Liebeck, C. E. Praeger and J. Saxl. A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra. 111 (1987), 365-383.
[9] M. W. Liebeck and J. Saxl. The primitive permutation groups of odd degree. J. London Math. Soc. 31(2) (1988), 250-264.
[10] R. Mathon and A. Rosa. 2-(v, $k, \lambda)$ designs of small order. In: C. J. Colbourn and J. H. Dinitz (Eds.), "The CRC Handbook of combinatorial designs", second ed., CRC Press, Boca Raton, FL, 2007, 25-58.
[11] H. K. Nandi. Enumeration of non-isomorphic solutions of balanced incomplete block designs. Sankhy \bar{a} : The Indian Journal of Statistics 7 (1946), 305-312.
[12] E. O'Reilly Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. Europ. J. Combin. 26 (2005), 577-584.
[13] Y. Wang and S. Zhou. Flag-transitive non-symmetric 2-designs with $(r, \lambda)=1$ and alternating socle. Electronic J. Comb. 22 (2015), \#P2.6.
[14] H. Wielandt. Finite Permutation Groups. Academic Press, New York, 1964.
[15] S. Zhou and H. Dong. Alternating groups and flag-transitive triplanes. Des. Codes Cryptogr. 57 (2010), 117-126.

School of Mathematics,
South China University of Technology,
Guangzhou 510640, P.R. China
slzhou@scut.edu.cn

[^0]: *This work is supported by the National Natural Science Foundation of China (Grant No.11471123).
 ${ }^{\dagger}$ Corresponding author.
 Received by the editors in March 2016 - In revised form in April 2016.
 Communicated by J. Doyen.
 2010 Mathematics Subject Classification : 20B25, 05B05, 20 B15.
 Key words and phrases : primitive group; flag-transitive; non-symmetric design; alternating socle.

