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Abstract

In this paper we study common fixed point properties of non-linear
actions of semi-topological semigroups on non-void weak* compact convex
sets in dual Banach spaces. Among other things, we derive from our main
result Theorem 1, the existence of a common fixed point property for semi-
groups of non-expansive mappings acting on non-empty weakly compact
convex sets, generalizing a result of Hsu [13], Mitchell [25].

1 Introduction

Let K be a non-empty subset of Banach space E. We say that a mapping T : K → K
is non-expansive if

‖T(x)− T(y)‖ ≤ ‖x − y‖, for all x, y ∈ K.

A bounded closed convex subset C ⊂ E is said to have normal structure, if for all
closed convex subset W of C such that δ(W) > 0 (i.e., with positive diameter),
there is x ∈ W such that :

sup
y∈W

q(x − y) < sup
y,z∈W

q(y − z).
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The notion of normal structure was introduced by Brodskii and Milman (see
[4]), when they studied fixed points of isometries. During the 60’s, DeMarr in
[7] showed that norm compact convex subsets of Banach spaces possess normal
structure. This result played a crucial key on DeMarr’s proof on the existence
of a common fixed point for commuting families of non-expansive mappings on
non-empty compact convex sets in Banach spaces. Takahashi in [29], extended
DeMarr’s result by considering left amenable discrete semigroups of non-expan-
sive mappings. Mitchell in [25], improved Takahashi’s result by showing that it
still holds even for left reversible semigroups of non-expansive mappings (note
that a left amenable discrete semigroup is always left reversible). A generalization
of Mitchell’s result to left reversible semi-topological semigroups was established
by Lim in [22] to separated locally convex spaces, and by Lau and Holmes in
[12] with some continuity assumption. A related result was proved by Hsu [13],
where he showed that every weakly continuous non-expansive action of a left
reversible discrete semigroup on a non-empty weakly compact convex subset of a
Banach space possesses a common fixed point. When we deal with weak topolo-
gies, one cannot in general avoid the use of normal structure for non-expansive
mappings without additional assumption. Indeed, it was proved by Alspach
[1] in 1981 that there is a non-expansive mapping on a non-void weakly com-
pact convex set into itself that is fixed point free. In 1965, Kirk [16] proved a
surprising result showing that a non-expansive self-map on a weakly compact
convex set with normal structure has a fixed point. Hsu’s result shows that if we
restrict to the subclass of weakly continuous non-expansive mappings, then nor-
mal structure can be avoided. A modification of Kirk’s proof shows that his result
can be extended to conjugate Banach spaces with the weak* topology. Karlovitz
[15] proved that in ℓ1, any non-expansive mapping on a bounded weak* closed
convex subset has a fixed point. Lim [23] extended this result to left reversible
semi-topological semigroups of non-expansive mappings.

A semigroup S is said to be a semi-topological semigroup, if it has a Hausdorff
topology such that, for all s ∈ S, the following mappings : t 7→ s.t and t 7→ t.s
from S into itself, are continuous. A non-expansive action of S on K, is a mapping
S : S × K → K such that for all s, t ∈ S and for all x ∈ K we have :

S(st, x) = S(s,S(t, x))

and x 7→ S(s, x) : K → K is non-expansive. For short, we shall denote the value
S(s, x) of the mapping S at the point (s, x), by the symbol ”s.x” or sometimes by
”ŝ(x)”.

Given an action of S on K, an element x ∈ K is said to be a common fixed point for
S if it is subject to the condition ŝ(x) = x for all s ∈ S. The collection of all such x
in K is called the fixed point set of S and denoted by F(S).
When S is semi-topological, let S : S × X → X be a representation of S on a
topological space X. S is said to be jointly continuous, if it is continuous when-
ever S × X is given the product topology. A subset C of X is called S-invariant, if
s.C := S(s, C) ⊂ C for all s ∈ S.
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Given a semi-topological semigroup S, we shall denote by Cb(S) the Banach
algebra of all bounded continuous real-valued functions on S, with the sup norm.
Let Φ be a closed subspace of Cb(S). We say that Φ is left translation invariant, if it
has the following property :

For all f ∈ Φ and s ∈ S, we have ℓs f ∈ Φ

where the operator ℓs : Cb(S) → Cb(S) is defined by the formula ℓs f (t) = f (st),
for all t ∈ S. The element ”ℓs f ” is called the left translate of f by s. Analogously, we
define the right translation operator rs and the right translate rs f of f by rs f (t) :=
f (ts). If Φ is a left translation invariant subspace of Cb(S) containing the constant
functions on S, a member m of Φ∗ (topological dual of Φ) is called a mean on Φ, if
m(e) = 1 = ‖m‖.
A mean m on Φ is called left invariant if it satisfies the following equation :

m(ℓs f ) = m( f ) for all f ∈ Φ and for all s ∈ S.

We say that the subspace Φ is left amenable, if it possesses a left invariant mean.
For short, we write ”Φ has a LIM”. A multiplicative mean on Φ, is a mean m such
that

m( f .g) = m( f ).m(g), for all f , g ∈ Φ.

Let LUC(S) be the subspace of Cb(S) of those functions f such that the mapping
t 7→ ℓt f : S → Cb(S) is continuous when Cb(S) is given the sup norm topology.
The elements of LUC(S) are called left uniformly continuous functions on S. It is
well-known that LUC(S) is a translation invariant (i.e. left and right invariant)
closed sub-algebra of Cb(S) and contains constants functions (see [2] or [24]). The
Banach algebra LUC(S) was introduced jointly by Mitchell and Itzkowitz (see
[14]). By misuse of language, we shall say that a semi-topological semigroup S is
left amenable, if LUC(S) is.

Example 1. When S is a topological group, then LUC(S) is the set of all uni-
formly continuous functions on S with respect to the right uniformity of S i.e.,
f ∈ LUC(S) ⇔ ∀ ǫ > 0, ∃ U neighborhood of the identity of S such that
s−1t ∈ U ⇒ | f (s)− f (t)| ≤ ǫ. See [11] for more details.

The following properties are well-known (see [2]):

• If S is a discrete semigroup, then LUC(S) = Cb(S) = ℓ∞(S).

• If S is a compact topological semigroup (i.e., the operation of S is jointly
continuous), then LUC(S) = Cb(S).

A semi-topological semigroup S is called left reversible, if any two closed right
ideals intersect i.e.,

a.S ∩ b.S 6= ∅, for all a, b ∈ S.
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When S is discrete, then S left amenable implies S left reversible. Note that the
converse is not true in general e.g., just consider a non-amenable group (free
group on two generators see [5] and [6]). If we consider the topological case,
a left amenable semi-topological semigroup need not be left reversible. Indeed,
Hewitt[10] has constructed a regular Hausdorff topological space S such that the
only continuous real-valued functions on it are constant functions; in [9], Granirer
defined a semi-topological semigroup structure on S by letting a.b = a for all
a, b ∈ S. Then it is easy to see that for all a ∈ S the point mass f 7→ δa( f ) = f (a)
defines a left invariant mean on Cb(S). However, S is not left reversible since, if
a 6= b, ({a} = a.S) ∩ (b.S = {b}) = ∅. See also [12].

2 Main Results

In this section, we shall present our main results. We first give the following
definitions which will be used in the sequel. Let S be a semi-topological semi-
group.

• S is said to be sequentially left amenable, if there is a left invariant mean
m ∈LUC(S)∗ and a sequence (mn)n∈N of finite means such that m = weak*-
limn mn. In this case, we shall write ”S is seq-LA”.

The class Seq-LA of all sequentially left amenable semi-topological semigroups
was introduced by the author (see [28]). It contains all countable left amenable
discrete semigroups (see [28, theorem 2.3]), all compact metrizable left amenable
semi-topological semigroups.

• S is said to be σ-left amenable, if there is a family (Sγ)γ∈Γ of sub-semi-topological
semigroups subject to the following conditions:
1. S =

⋃
γ Sγ;

2. For all γ, γ′ ∈ Γ, there is γ′′ ∈ Γ such that Sγ ∪ Sγ′ ⊂ Sγ′′ ;
3. For all γ ∈ Γ, Sγ is separable;
4. For all γ ∈ Γ, LUC(Sγ) has a LIM.

The class Γ-LA of all σ-left amenable semi-topological semigroups contains triv-
ially all separable left amenable semi-topological semigroups and all amenable
locally compact topological groups (due to the fact that each closed subgroup is
amenable).

Example 1. Discrete left amenable semigroups are in Γ-LA. Indeed, given a
discrete left amenable discrete semigroup S, we know that each countable sub-
semigroup of S is contained in some countable left amenable one (see [8]). Define

S := {Z ⊂ S ; Z is a left amenable countable sub-semigroup}.

Note that S is non-void because if we fix s ∈ S, S contains the commutative semi-
group 〈s〉 generated by s which is countable an amenable. We order S by letting
Z ≤ Z′ ⇔ Z ⊂ Z′. Then it is clear that S =

⋃
Z∈S Z and given Z, Z′ ∈ S , there is
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Z” ∈ S such that Z ∪ Z′ ⊂ Z”. Because Z and Z′ being countable, it follows that
〈Z ∪ Z′〉 is countable too, and we choose Z” ∈ S such that Z” ⊃ 〈Z ∪ Z′〉 using
[8, theorem E1].

• S is said to be strongly left reversible, if there is a family (Sγ)γ∈Γ of countable
left reversible sub-semigroups of S satisfying the conditions 1 and 2 of the previ-
ous definition.

The class of all strongly left reversible semi-topological semigroups was intro-
duced in [19] by Lau and Zhang. It includes all discrete left reversible semigroups
(see [13]), all separable left reversible semi-topological semigroups and all metriz-
able left reversible semi-topological semigroups see [19].

2.1 Common fixed point properties in dual spaces

Given a Banach space E, let BE∗∗ denote the unit closed ball of the second dual E∗∗;
and let Ext(BE∗∗) be the set of all extreme points of BE∗∗ (which is of course non-
void by virtue of the Krein-Milman theorem). Consider on the dual E∗ the locally
convex topology τ defined by the family of semi-norms Q := {pe ;
e ∈ Ext(BE∗∗)} where, pe( f ) = |e( f )|; then using the Krein-Milman theorem, it is
easy to see that τ is separated. On the other hand, by construction τ is weaker
than the weak topology σ(E∗, E∗∗).

In this section, the notations A
τ

and coτ(A) will stand respectively for the clo-
sure and closed convex hull of a subset A ⊂ E∗ with respect to a locally convex
topology τ on E∗.

Theorem 1. Let S be a semi-topological semigroup. Assume that it satisfies ei-
ther one of the following conditions :
1. S is σ-LA;
2. S is seq-LA;
3. S is strongly left reversible.
Then S possesses the following fixed point property :

(F∗
τ ) : Whenever S × K → K is a weak* jointly continuous non-expansive action

on a non-empty weak* compact convex subset K of a dual E∗ of a Banach space
E, such that for all non-void weak* closed and S-invariant subset B of K with
the property s.B = B for all s ∈ S, there is x ∈ B whose orbit Ox is relatively
countably τ-compact, then there is in K a common fixed point for S.

In order to prove this result, the following lemmas are needed :

Lemma 1. Whenever S defines a jointly continuous action on a compact topolog-

ical space M, then for all x ∈ M and f ∈ C(M) the mapping θ
f
x : S → R, s 7→

f (s.x) lies in LUC(S).

Proof. See [25, proof of theorem 1].



534 K. Salame

Lemma 2. For each non-void weak* compact and S-invariant subset K∗ of K,
there is a minimal non-empty weak* compact set Ω∗ ⊂ K∗ such that s.Ω∗ = Ω∗,
for all s ∈ S.

Proof. See [28, lemma 2.12].

Lemma 3. Let Ω∗ be as in the previous lemma. Then the following facts hold :
1. For all x ∈ Ω∗, the orbit Ox := {s.x ; s ∈ S} of x, is weak* dense in Ω∗.
2. Ω∗ is σ(E∗, E∗∗)-compact.

For the proof of this lemma, we shall need the following well-known charac-
terization of weak relative compactness in Banach space theory (see [27]) :

Lemma 3.1. Let B be a Banach space and C be a non-empty bounded subset
of B. C is relatively weakly compact if and only if, for all sequence (xn)n in C,
there is a sequence (yn)n ∈ E such that yn ∈ co(xi ; i ≥ n) for all n that is weakly
convergent.

Proof of Lemma 3. For part 1, clearly orbits are S-invariant; and since for all s in
S, the mapping x 7→ s.x is weak*-weak* continuous (due to the continuity of the
action) then weak* closures of orbits are also S-invariant. Hence, by minimality, it
follows that 1 holds. For part 2, from lemma 2 we have that Ω∗ is non-empty with
the property s.Ω∗ = Ω∗ for all s ∈ S. Let us fix x ∈ Ω∗ with relatively τ-compact
orbit; and let (zn)n be a sequence in Ox. Since the orbit Ox is bounded (as a sub-
set of K), then so is (zn)n; therefore, by [26, corollary 0.2], there is a subsequence
(znk

)k of (zn)n such that:

∞⋂

k=1

coτ(zni
; i ≥ k) ⊂

∞⋂

n=1

co(zi ; i ≥ n).

Define Fn := {zni
; i ≥ n}

τ
for all n. Then {Fn ; n ∈ N} is a decreasing sequence

of τ-closed non-empty subsets of the countably τ-compact space Ox
τ
; therefore,⋂∞

n=1 Fn 6= ∅; and this implies a fortiori, the existence of ξ ∈
⋂∞

n=1 co(zi ; i ≥ n).
Thus it follows the existence of a sequence (ξn)n ∈ E∗ such that ξn ∈ co(zi ; i ≥ n)

for all n and ‖ξn − ξ‖ → 0. Hence by lemma 3, it follows that Ox
wk

is weakly
compact; and therefore weakly* closed and together with the first part, we deduce
that

Ω∗ = Ox
wk∗

= Ox
wk

.

Hence, Ω∗ is a weakly compact space.

Lemma 4. Let Ω∗ be as in the previous lemma. If S is a separable or a seq-LA
semi-topological semigroup, then Ω∗ is compact in the norm topology.

Proof. We first show that Ω∗ is separable in the norm topology. Note that on
Ω∗ weak and weak* topologies agree (see lemma 3).

• If S is seq-LA, let us pick x ∈ Ω∗ and consider (mn)n be a sequence of finite
means converging pointwise to a LIM m on LUC(S). Define ψ : C(Ω∗) → R by
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ψ( f ) := m( fx), with fx(s) = f (s.x) (ψ is well-defined by lemma 1). As readily
checked, ψ is a non-zero non-negative linear functional. By the Riesz representa-
tion theorem, there is a regular Borel measure µ on Ω∗ such that ψ( f ) =

∫
Ω∗ f dµ

which is moreover a probability (µ(Ω∗) =1). Let ω∗ be the support of µ. It is easy
to see that ω∗ is characterized by :

x ∈ ω∗ ⇔ ∀ V ∈ Vwk(x), µ(V ∩ ω∗) > 0.

Where Vwk(x) denotes the collection of all weak neighborhoods of x in E. For all
n ∈ N, let mn = ∑

αn
i=1 tiδsn

i
. Then for n fixed, ψn

i : f 7→ f (sn
i .x) is a non-zero

multiplicative linear functional on C(Ω∗); therefore there is xn
i ∈ Ω∗ such that

ψn
i ( f ) = f (xn

i ). We claim that

ω∗ ⊂
⋃

n

{xn
i ; i = 1, · · · , αn}

wk

(the closure being taken with respect to the weak topology). Indeed, if y is a point
outside this (weakly) closed set, then by Urysohn’s lemma, there is f ∈ C(Ω∗)
such that f ≥ 0, f (y)=1 and f (xn

i ) = 0 for all n and i=1, · · · , αn. Then V :=
{ f > 0} is a neighborhood of y (in the weak topology) and furthermore we have

µ(V ∩ ω∗) ≤
∫

V∩Ω∗
f dµ ≤

∫

Ω∗
f dµ = ψ( f ) = m( fx)

= lim
n

αn

∑
i=1

tn
i δsn

j
( fx) = lim

n

n

∑
i=1

tn
i ψn

i ( f )

= lim
n

n

∑
i=1

tn
i f (xn

i ) = 0

Therefore y /∈ ω∗, since µ(V ∩ ω∗ = 0; which proves our claim. Hence ω∗ as
a subset of a weakly separable set (therefore norm separable) is a fortiori norm
separable. On the other hand, by [28], ω∗ satisfies s.ω∗ = ω∗ for all s ∈ S. Thus
by minimality, Ω∗ = ω∗ is norm separable.

• Now we assume that S is separable. Let D ⊂ S be a dense subset and fix
xo ∈ Ω∗. We shall show that the countable set {d.xo ; d ∈ D} is dense in Ω∗

in the weak topology. Let y ∈ Ω∗ and V ∈ V ∗(0) (fundamental system of con-
vex neighborhoods of ”0” in the weak* topology). We choose s ∈ S such that
s.xo ∈ y + 1

2V. Then by continuity of z 7→ z.xo, there is a neighborhood Us of s in

S such that z ∈ Us ⇒ z.xo ∈ s.xo +
1
2V. Now let us fix d ∈ D ∩ Us. Then,

d.xo ∈ s.xo +
1

2
V ⊂ y +

1

2
V +

1

2
V = y + V.

Therefore we have :

(y + V) ∩ {d.xo ; d ∈ D} 6= ∅ for all V ∈ V ∗(0).

Thus, y ∈ {d.xo ; d ∈ D}
wk∗

. Since y is arbitrary, it follows that Ω∗ =

{d.xo ; d ∈ D}
wk∗

is weak* separable. But, we know from lemma 3 that Ω∗ is
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weakly compact. So weak and weak* topologies must coincide; and this fact im-
plies the weak separability of Ω∗. Next, we justify that Ω∗ is separable in the
norm topology. Let M := span(d.xo ; d ∈ D) (norm closed linear manifold gener-
ated by the d.xo’s, d ∈ D). The subset D := spanQ(d.xo ; d ∈ D) (linear manifold
generated over Q) is clearly countable and it is norm dense in M. Therefore M is
norm separable and a fortiori Ω∗ (as a subspace of a separable metric space).
The second part of the proof is devoted to showing the norm compactness of Ω∗.
We follow an argument of Hsu [13] or in [20] for non-expansive mappings in lo-
cally convex spaces. Note that as Ω∗ is norm closed, showing its compactness
is equivalent to proving that it is totally bounded in the norm topology. So Let
ǫ > 0 fixed. From the norm separability showed earlier, let Ω∗ = ς (norm clo-
sure of ς; a countable subset of Ω∗). Then Ω∗ ⊂

⋃
σ∈ς B[σ, ǫ

2 ]. Since each closed
ball B[σ, ǫ

2 ] is norm closed and convex, it is weakly closed. So {B[σ, ǫ
2 ] ∩ Ω∗;

σ ∈ ς} is a countable weakly closed covering of Ω∗. But Ω∗ being weakly
compact, it is a Baire space. Therefore there is σ̃ ∈ ς such that B[σ̃, ǫ

2 ] ∩ Ω∗

has non-void interior in the relative weak topology. So let xǫ ∈ Ω∗ and Vǫ be
a weak neighborhood of the origin such that (xǫ + Vǫ)∩ Ω∗ ⊂ B[σ̃, ǫ

2 ]∩ Ω∗. Then
(xǫ + Vǫ) ∩ Ω∗ ⊂ B[xǫ, ǫ]. Indeed, if z ∈ (xǫ + Vǫ) ∩ Ω∗ then, z − xǫ ∈ Vǫ. Thus
‖xǫ − z‖ ≤ ‖xǫ − σ̃‖ + ‖σ̃ − z‖ ≤ ǫ. Now choose a weak neighborhood V ′

ǫ of
”0” such that V ′

ǫ + V ′
ǫ ⊂ Vǫ. Then let δǫ > 0 such that B[0, δǫ] ⊂ V ′

ǫ (this can be
done because the norm topology is finer than the weak topology). Then we have
Ω∗ ⊂

⋃
x∈σ B[x, δǫ]. As σ(E∗, E∗∗) = σ(E∗, E) on Ω∗, then orbits are also weakly

dense in Ω∗. Since ς is countable, let σ := {σi ; i = 1, 2, · · · }. Then by induction
the following implications hold

For n=1, xǫ ∈ Oσ1

wk
⇒ ∃ s1 ∈ S such that ŝ1(σ1)− xǫ ∈ V ′

ǫ.

For n=2, xǫ ∈ Os1.σ1

wk
⇒ ∃ s2 ∈ S such that ŝ1(σ2)− xǫ ∈ V ′

ǫ.

For n=3, xǫ ∈ Os2s1.σ3

wk
⇒ ∃ s3 ∈ S such that ŝ3s2s1(σ3)− xǫ ∈ V ′

ǫ.

By induction for n=p, since xǫ ∈ Osp−1···s1.σp

wk
, there is sp ∈ S such that

̂sp · · · s1(σp)− xǫ ∈ V ′
ǫ.

Given n ∈ N, if x ∈ ̂sn · · · s1(B[σn, δǫ] ∩ Ω∗), let x := ̂sn · · · s1(σn + zx) for some
zx ∈ B[0, δǫ]. Then by non-expansiveness of the action, we have that

‖ ̂sn · · · s1(σn)− x‖ = ‖ ̂sn · · · s1(σn)− ̂sn · · · s1(σn + zx)‖

≤ ‖σn − (σn + zx)‖ = ‖zx‖

≤ δǫ.

This above inequality yields the following inclusions :

̂sn · · · s1(B[σn, δǫ] ∩ Ω∗) ⊂ B[ ̂sn · · · s1(σn), δǫ] ∩ Ω∗

⊂ xǫ + V ′
ǫ + V ′

ǫ

⊂ xǫ + Vǫ.

Hence for all n ∈ N, we have ̂sn · · · s1(B[σn, δǫ] ∩ Ω∗) ⊂ xǫ + Vǫ. So we have :

Ω∗ =
∞⋃

i=1

B[σi, δǫ] ∩ Ω∗ ⊂
∞⋃

i=1

̂si · · · s1
−1

(xǫ + Vǫ)



Fixed point properties for semigroups 537

Then { ̂si · · · s1
−1

(xǫ + Vǫ) ∩ Ω∗ ; i = 1, 2, · · · } is a weak open covering of the

weakly compact set Ω∗. Therefore there is m ∈ N such that Ω∗ =
⋃m

i=1 ̂si · · · s1
−1

(xǫ + Vǫ) ∩ Ω∗. From lemma 2 we know that ̂sm · · · s1(Ω
∗) = Ω∗ therefore it

follows

Ω∗ =
m⋃

i=1

̂si · · · s1
−1

(xǫ + Vǫ) ∩ Ω∗ ⊂
m⋃

i=1

̂sm · · · si+1((xǫ + Vǫ) ∩ Ω∗)

⊂
m⋃

i=1

̂sm · · · si+1(B[xǫ, ǫ] ∩ Ω∗)

By non-expansiveness, we have ‖ ̂sm · · · si+1(y) − ̂sm · · · si+1(xǫ)‖ ≤ ǫ, for all
y ∈ B[xǫ, ǫ]. Thus we have the following inclusion

Ω∗ ⊂
m⋃

i=1

B[ ̂sm · · · si+1(xǫ), ǫ].

Therefore Ω∗ is norm totally bounded. On the other hand, since it is weakly
closed, it is norm complete. Hence, these two facts imply Ω∗ is compact in the
topology induced by the norm. �

Now we are ready to proceed to the proof of Theorem 1.

Proof. By a Zorn’s lemma argument we fix a minimal non-void weak* compact
convex subset K∗ of K. From lemma 2, there is a minimal non-empty, weak* com-
pact set Ω∗ ⊂ K∗ with the property that s.Ω∗ = Ω∗ for all s ∈ S.

• Step 1: S is a separable or seq-LA semi-topological semigroup.

Then by lemma 4, Ω∗ is norm compact; and so is its closed convex hull (by
Mazur’s theorem). If it has a positive diameter then, by [7, lemma 1], there is
u ∈ co(Ω∗) such that :

r := sup
x∈Ω∗

‖x − u‖ < δ(Ω∗) (∗).

As readily checked, the set K∗ :=
⋂

x∈Ω∗ B[x, r] ∩ K∗ is a non-void (because con-
tains u) weak* compact (as a weak* closed subset of K∗), convex (intersection of
convex sets), proper (because of (*)) subset of K∗ which is also S-invariant. In fact,
given s ∈ S if we fix x ∈ Ω∗ and y ∈ K∗ then, x = s.z for some z ∈ Ω∗ (because
s.Ω∗ = Ω∗). Therefore, ‖x − s.y‖ ≤ ‖z − y‖ ≤ r ⇒ s.y ∈ B[x, r] ∩ K∗. Hence
s.y ∈ K∗. Therefore by minimality of K∗, K∗ = K∗ which is absurd since K∗ is a
proper subset.

• Step 2: We assume that S is σ-LA.

Let S =
⋃

γ∈Γ Sγ such that for all γ, γ′ ∈ Γ, there is γ′′ ∈ Γ such that Sγ ∪ Sγ′ ⊂ Sγ′′

where each Sγ is separable. Define

γ ≤ γ′ if and only if Sγ ⊂ Sγ′ .
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By the first step, for all γ ∈ Γ, the restriction Sγ × K → K of the S-action on
K possesses a common fixed point in K which we denote by xγ. Since (Γ,≤) is a
directed set, then (xγ)γ∈Γ defines a net of elements of K such that s.xγ = xγ for all
s ∈ Sγ and for all γ ∈ Γ. Since K is weak* compact, there is a subnet (xγt)t∈(T,R)

of (xγ)γ∈Γ which is weak* convergent. Let x̂ := wk*-limt xγt ∈ K be its weak*
limit. We shall show that x̂ is a common fixed point for S in K. Let us fixed s ∈ S.
Since S =

⋃
γ∈Γ Sγ, let γs ∈ Γ such that s ∈ Sγs . Fix ts ∈ T such that tsRt ⇒

γs ≤ γt (this implies that s ∈ Sγt). Note that such a ts does exist because (Sγt)t is
a subnet of (Sγ)γ. On the other hand, by weak* continuity, we have s.x̂− x̂ =wk*-
limt s.xγt − xγt . Since the norm of the dual is weak* lower semi-continuous, given
ǫ > 0 there is tǫ ∈ T such that lim inft ‖s.xγt − xγt‖ ≤ inftǫRt ‖s.xγt − xγt‖+ ǫ.
Now let ts

ǫ ∈ T such that tǫRts
ǫ and tsRts

ǫ. Then ts
ǫRt ⇒ s ∈ Sγt ⇒ s.xγt = xγt .

Therefore the following inequalities hold

‖s.x̂ − x̂‖ ≤ lim inf
t

‖s.xγt − xγt‖

≤ inf
tǫRt

‖s.xγt − xγt‖+ ǫ

≤ inf
ts
ǫRt

‖s.xγt − xγt‖+ ǫ

= ǫ

Hence, ‖s.x̂ − x̂‖ ≤ ǫ for all ǫ > 0 which implies sx̂ = x̂ for all s ∈ S.

• Step 3 : We assume that S is strongly left reversible

Since a strongly left reversible semi-topological semigroup S is a direct union
of a family of countable (left reversible) sub-semigroups Sγ, if we consider the
restriction of the S-action on each Sγ × K when γ runs through Γ, and fix a mini-
mal non-empty weak* compact convex and Sγ-invariant subset Kγ of K, then [20]
guarantees the existence of a minimal non-void weak* compact subset Ω∗

γ ⊂ K∗
γ

such that s.Ω∗
γ = Ω∗

γ for all s ∈ Sγ. Then using Step 1, the sub-semigroup Sγ pos-
sesses a common fixed point xγ in K. By considering the family (xγ)γ, a similar
argument as in Step 2 shows that under a suitable pre-order on Γ, it becomes a net
with a weak* convergent subnet converging to a common fixed point for S.

From Theorem 1, we derive the following result which is more easy to handle
in applications.

Theorem 2. Let S be a semi-topological semigroup satisfying the conditions of
Theorem 1. Then it has the following property :

(F∗
weak) : Whenever S×K → K is a weak* jointly continuous non-expansive action

on a non-empty weak* compact convex subset K of a dual E∗ of a Banach space
E, such that for all non-void weak* closed and S-invariant subset B of K with the
property s.B = B for all s ∈ S, there is x ∈ B whose orbit Ox is relatively compact
in the weak topology; then there is in K a common fixed point for S.
Proof. Indeed, the weak topology σ(E∗, E∗∗) is finer than the locally convex topol-
ogy generated by Ext(BE∗∗).
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We know that discrete left amenable semigroups and separable left amenable
semi-topological semigroups have the above fixed point property. A natural
question to raise at this point is the following :

Question 1 : Do left amenable semi-topological semigroups possess the fixed
point property (F∗

weak) ?

Remark 1. We point out that, theorem 1 is related to the following long-standing
and difficult question raised by A. T. -M. Lau in 1976 which can be stated as fol-
lows :

Does any left amenable semi-topological semigroup S possess the following fixed
point property :

(F∗) : Whenever S defines a jointly weak* continuous non-expansive action on a
non-void, weak* compact convex set K in a dual E∗ of a Banach space E, then S
has a common fixed in K.

The converse of this question is true, just by looking at the action of the adjoints
of left translation operators on the set of all means on LUC (which is a non-void
weak* compact convex set). If the answer to this question is affirmative, then (F∗)
will be a non-linear fixed point characterization of left amenable semi-topological
semigroups. While an affine characterization was established by Mitchell [24].

Remark 2. In our best knowledge up to now, the answer of this question is af-
firmative for commutative semigroups [3]. Unfortunately, the proof for the com-
mutative case does not use the fact that such semigroups are left amenable, but
strongly the abelian property. So we still do not know for the general case, whether
the answer is positive. On the other hand, our work shows that with an additional
assumption on K, it is possible to guarantee the non-emptiness of the fixed point
set. For instance, that is the case if K has normal structure [20]; or norm separable
[21]. These partial results show that, the answer to this question is very related
to the geometrical and topological structures of K. Up to now, some partial non-
commutative answers have been established (see [18],[20],[21]).

Theorem 3. Let S be a semi-topological semigroup. If LUC(S) has a LIM, then S
has the following fixed point property :

(F∗
isom): Whenever S × K → K is a jointly weak* continuous non-expansive action

of S on a non-empty weak* compact convex subset K of a dual Banach space E∗

such that there is a weak* closed isometry from K into ℓ1, then there is in K a
common fixed point for S.

Remark 3. In the above theorem, we consider ℓ1 as the dual of c0 and point
out that the isometry in the above theorem need not be linear, but only closed in
the weak* topology (i.e., the direct image of a weak* closed subset of K is weak*
closed in ℓ1).
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Proof. By [28, lemma 2.12], there is a non-void weak* compact subset ωwk∗ of
K with the property :

s.ωwk∗ = ωwk∗ for all s ∈ S. (*).

Let φ : K → ℓ1 be the isometry whose existence is guaranteed by assumption.
Then by [49], the set

C := {x ∈ φ(K) ; sup
y∈φ(ωwk∗)

‖x − y‖ = r}

where r := infy∈φ(K) supz∈φ(ωwk∗)
‖y − z‖, is a non-void and norm compact set.

Therefore its preimage φ−1(C) is a non-empty norm compact subset of E∗. Now
define analogously as C the set

K̂ := {x ∈ K ; sup
y∈ωwk∗

‖x − y‖ = ρ}.

where ρ := infy∈K supz∈ωwk∗
‖y − z‖. The set K̂ is non-void because on the one

hand, it can be written as

⋂

j

{x ∈ K ; sup
y∈ωwk∗

‖x − y‖ ≤ ρ +
1

j
}

and on the other hand, each set in the intersection is non-empty and weak* closed
due to the weak* lower-semi-continuity of the dual norm on E∗. Hence, the weak*
compactness of K forces K̂ to be non-void. Next we show that K̂ is norm compact.
For that, it is enough to prove that it is a subset of φ−1(C). Fortunately, it does. In
fact, given x ∈ K̂ we have φ(x) ∈ φ(K) and

sup
y∈φ(ωwk∗)

‖φ(x)− y‖ = sup
y∈ωwk∗

‖φ(x)− φ(y)‖

= sup
y∈ωwk∗

‖x − y‖ = ρ

= inf
y∈K

sup
z∈ωwk∗

‖y − z‖

= inf
y∈K

sup
z∈ωwk∗

‖φ(y)− φ(z)‖

= inf
y∈φ(K)

sup
z∈φ(ωwk∗)

‖y − z‖ = r

Therefore the inclusion holds and it follows that K̂ is a non-empty norm compact
convex subset of K. We prove that K̂ is S-invariant. Let x ∈ K̂ and s ∈ S fixed.
Given y ∈ ωwk∗, using the property (*) we let y = s.z for some z ∈ ωwk∗. Then
using the non-expansiveness of the action, we get :

‖s.x − y‖ = ‖s.x − s.z‖

≤ ‖x − z‖

≤ sup
y∈ωwk∗

‖x − y‖ = ρ
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Therefore it follows that
sup

y∈ωwk∗

‖s.x − y‖ = ρ

Thus, s.x ∈ K̂; i.e., K̂ is invariant under S. It follows that the restriction S× K̂ → K̂
of the S-action on K̂ is jointly continuous in the norm topology (since norm and
weak* topologies agree on K̂). Using a Zorn’s lemma argument if necessary, we
may assume that K̂ is minimal (i.e., there is no proper subset of K̂ which is non-
void, norm compact convex and S-invariant). Then K̂ must be a singleton because
otherwise, being norm compact and convex, it has normal structure (see [7]) and
therefore a similar argument as in Step 1 in the proof of Theorem 1 leads us to a
contradiction.

The following question appears natural from this result.

Question 2 : Can we remove or weaken the weak* closeness assumption of
the isometry in Theorem 3 ?

Corollary 1. Any σ-LA semi-topological semigroup S possesses the fixed point
property (F∗

isom).

Proof. In fact, this follows using a similar argument as in Step 2 in the proof
of Theorem 1.

When S is left reversible as a semi-topological semigroup, then (see [12] or [21]),
S becomes a directed set if we let :

a ≤ b iff {b} ∪ b.S ⊂ {a} ∪ a.S

Then if fix x ∈ K (i.e., whenever S defines an action as in theorem 3) we define
Ωs := s.S.x for all s ∈ S. We obtain a decreasing net of non-void subsets of
K whose asymptotic center AC((Ωs)s∈S; K) is non-void, norm compact, convex
and S-invariant. Hence, it follows:

Corollary 2. All left reversible semi-topological semigroups possess the fixed
point property (F∗

isom).

2.2 A non-linear common fixed point property in Banach spaces

Using Theorem 1, we derive the following result which is a dual version of the
fixed point property F∗

τ .

Theorem 4. Let S be a semi-topological semigroup. Assume that it satisfies ei-
ther one of the following conditions :
1. S is σ-LA;
2. S is seq-LA;
3. S is strongly left reversible.
Then S possesses the following fixed point property :

(Fweak) : Whenever S × K → K is a jointly weakly continuous non-expansive
action of S on a non-empty weakly compact convex subset K of a Banach space
E, then there is in K a common fixed point for S.
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Proof.
• Step 1 : We first assume that S is separable or seq-LA. We embed E in its second
dual E∗∗ through the canonical injection j : E → E∗∗ which is an isomorphism
from (E,wk) onto (j(E),wk*). Then K̂ := j(K) is a non-void weak* compact convex
subset of E∗∗. We carry the S-action on K to K̂ by letting s ∗ j(x) := j(s.x), for all
s ∈ S and x ∈ K. As readily checked, the action S × K̂ → K̂ is jointly weak*
continuous and norm non-expansive. Let τ̂ be the locally convex topology on
E∗∗ induced by the extreme points of BE∗∗∗[0,1] (the unit closed ball of the dual
of E∗∗). If B̂ ⊂ K̂ is a non-void weak* compact subset such that s ∗ B̂ = B̂ for all
s ∈ S, using a Zorn’s lemma argument if necessary together with [28, lemma 2.12]
if S is left amenable or [20, corollary 3.7] if S is left reversible, we may assume that
B̂ is minimal (in the sense that, if B̃ is a non-void weak* compact S-invariant set
contained in B̂, then B̃ = B̂). Then B := j−1(B̂) is a minimal non-empty weakly
compact S-invariant and separable subset of K with the property that s.B = B
for all s ∈ S. Therefore using lemma 4, it follows that B is norm compact and a
fortiori its image B̂. Thus, for all j(x) ∈ K̂, the orbit Oj(x) is relatively τ̂-compact
(since norm and τ̂ topologies agree on the norm closed orbit). Hence by Theorem
1, there is x̂ ∈ K such that s ∗ j(x̂) = j(x̂) for all s ∈ S. Hence, x̂ is a common fixed
point for S due to the injectivity of j.

• Step 2 : Now we assume that S is an arbitrary semi-topological semigroup with
either one of the properties in the theorem. From Step 1 , a similar argument as in
the proof of theorem 1, shows that if we consider the action of S carried on E∗∗,
then we have

F(S) := {x ∈ K; s ∗ j(x) = j(x) for all s ∈ S} 6= ∅.

Hence using the injectivity of j, the non-empty set F(S) is contained in the fixed
point set of S; which proves the existence of a common fixed point.

Remark 3. Theorem 4 extends Hsu [13, theorem 4], because discrete left
reversible semigroups are strongly left reversible (nice proof due to Hsu [13,
lemma 1]) and Mitchell [26]. On the other hand, it shows that joint weak con-
tinuity condition is a sufficient condition for avoiding the use of normal structure
when dealing with non-expansive actions on weak compact convex sets.

Discrete left reversible semigroups and separable left reversible semi-topological
semigroups possess the previous fixed point property. However, we may ask :

Question 3 : Do left reversible semi-topological semigroups possess the fixed
point property (Fweak) ?

Since a left amenable semi-topological semigroup S need not be σ-LA, the fol-
lowing question is natural :

Question 4 : Do left amenable semi-topological semigroups have the fixed point
property (Fweak) ?
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