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Abstract

In this paper, we find coefficient estimates by a new method making use
of the Faber polynomial expansions for a comprehensive subclass of analytic
bi-univalent functions, which is defined by subordinations in the open unit
disk. The coefficient bounds presented in this paper would generalize and
improve some recent works appeared in the literature.

1 Introduction

Let C be the set of complex numbers, N := {1, 2, · · · } and Z := {0,±1,±2, · · · }.
Let A denote the class of all functions of the form

f (z) = z +
∞

∑
n=2

anzn, (1.1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .
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Denote by S the class of all functions in the normalized analytic function class A
which are univalent in U.

Since univalent functions are one-to-one, they are invertible and the inverse
functions need not be defined on the entire unit disk U. In fact, the Koebe one-
quarter theorem [10] ensures that the image of U under every univalent function
f ∈ S contains a disk of radius 1/4. Thus every function f ∈ S has an inverse
f−1, which is defined by

f−1 ( f (z)) = z (z ∈ U)

and

f
(

f−1 (w)
)

= w

(

|w| < r0 ( f ) ; r0 ( f ) ≥ 1

4

)

.

In fact, the inverse function f−1 is given by

f−1 (w) = w − a2w2 +
(

2a2
2 − a3

)

w3 −
(

5a3
2 − 5a2a3 + a4

)

w4 + · · · .

A function f ∈ S is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1.1).

Determination of the bounds for the coefficients an is an important problem
in geometric function theory as they give information about the geometric prop-
erties of these functions.

Lewin [21] investigated the class Σ of bi-univalent functions and showed that
|a2| < 1.51 for the functions belonging to Σ. Subsequently, Brannan and Clunie

[6] conjectured that |a2| ≤
√

2. Kedzierawski [19] proved this conjecture for a
special case when the function f and f−1 are starlike functions. Recently, Srivas-
tava et al. [24], Frasin and Aouf [12], and Ali et al. [4] found estimates for the
first two coefficients of certain subclasses of bi-univalent functions. Not much is
known about the higher coefficients of bi-univalent functions; in fact Ali et al. [4]
remarked that finding the bounds for |an| (n ∈ N − {1, 2}) for the bi-univalent
functions is an open problem.

Recently, Bulut [8] introduced a comprehensive subclass Hλ,µ
Σ (ϕ, Θ) of ana-

lytic bi-univalent functions and obtained estimates on the coefficients |a2| and
|a3| for functions in this subclass. In this paper, we use the Faber polynomial
expansions to obtain estimates of coefficients |an| where n ≥ 3, of functions in
these subclasses. Consequently, we obtain improvements on the bounds found
by Bulut [8] for the first two coefficients |a2| and |a3| of functions in this subclass.

2 Preliminary results

Some special classes of univalent functions play an important role in geomet-
ric function theory because of their geometric properties, such as, the classes of
convex, starlike, strongly convex and strongly starlike functions. It is fairly com-
mon that a function in one of these classes is lying in a given region in the right
half-plan and the region is often symmetric with respect to the real axis. In this
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section we define a subclass Hλ,µ
Σ (ϕ; Θ) (Definition 2.1), which in particular case

(for λ = 1, µ = 0 and Θ = z
1−z ) reduces to class starlike functions (z f ′(z)/ f (z)).

Therefore in this paper, we assume that ϕ is an analytic function with positive
real part in the unit disk U and ϕ(U) is symmetric with respect to the real axis,
satisfying ϕ(0) = 1, ϕ′(0) > 0 such that it has series expansion of the form

ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · (B1 > 0). (2.1)

Denote by f ∗ Θ the Hadamard product (or convolution) of the functions f and
Θ, that is, if f (z) = z + ∑

∞
n=2 anzn and Θ(z) = z + ∑

∞
n=2 bnzn, then

( f ∗ Θ) (z) = z +
∞

∑
n=2

anbnzn.

For two functions f and F which are analytic in U, we say that the function f is
subordinate to F in U, and write

f (z) ≺ F (z) (z ∈ U) ,

if there exists a Schwarz function ω, which is analytic in U with

ω (0) = 0 and |ω (z)| < 1 , z ∈ U,

such that
f (z) = F (ω (z)) , z ∈ U.

By Schwarz’s lemma we have |ω(z)| ≤ |z|, which concludes ω(U) ⊂ U. Since
ω(0) = 0 and ω(U) ⊂ U it follows that

if f (z) ≺ F (z) then f (0) = F (0) and f (U) ⊂ F (U) .
Furthermore, if the function F is univalent in U, then we have the following

equivalence

f (z) ≺ F (z) (z ∈ U) ⇔ f (0) = F (0) and f (U) ⊂ F (U) .

Recently, Bulut [8] introduced a comprehensive subclass of analytic bi-univa-
lent functions and obtained non-sharp estimates on the coefficients |a2| and |a3|
for functions in this subclass as follow.

Definition 2.1. [8] Let the function f , defined by (1.1) , be in the class A and let

Θ ∈ Σ and Θ (z) = z +
∞

∑
n=2

bnzn , (bn > 0) . (2.2)

We say that

f ∈ Hλ,µ
Σ (ϕ; Θ) (λ ≥ 1, µ ≥ 0) ,

if the following conditions are satisfied:

f ∈ Σ,

(1 − λ)

(

( f ∗ Θ) (z)

z

)µ

+ λ ( f ∗ Θ)′ (z)
(

( f ∗ Θ) (z)

z

)µ−1

≺ ϕ (z) , (z ∈ U)
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and

(1 − λ)

(

( f ∗ Θ)−1 (w)

w

)µ

+λ
(

( f ∗ Θ)−1
)′

(w)

(

( f ∗ Θ)−1 (w)

w

)µ−1

≺ ϕ (w) ,

(w ∈ U) ,

where the function ( f ∗ Θ)−1 is given by

( f ∗ Θ)−1 (w) = w − a2b2w2 +
(

2a2
2b2

2 − a3b3

)

w3−
(

5a3
2b3

2 − 5a2b2a3b3 + a4b4

)

w4 + · · · .

Theorem 2.2. [8] Let the function f (z) given by the Taylor-Maclaurin series expansion
(1.1) be in the function class

Hλ,µ
Σ (ϕ; Θ) (λ ≥ 1, µ ≥ 0) ,

with Θ is given by (2.2). Then

|a2| ≤ 1

b2
min

{

B1

λ + µ
,

√

2 (B1 + |B2 − B1|)
(µ + 1) (2λ + µ)

,

B1

√
2B1

√

∣

∣

∣
B2

1 (µ + 1) (2λ + µ)− 2 (B2 − B1) (λ + µ)2
∣

∣

∣















, (2.3)

and

|a3| ≤
1

b3
min

{

B2
1

(λ + µ)2
+

B1

2λ + µ
,

B1 [(µ + 3) + |1 − µ|]
2 (µ + 1) (2λ + µ)

+
2 |B2 − B1|

(µ + 1) (2λ + µ)
,

2B3
1

∣

∣

∣
B2

1 (µ + 1) (2λ + µ)− 2 (B2 − B1) (λ + µ)2
∣

∣

∣

+
B1

2λ + µ







. (2.4)

In the present paper by using the Faber polynomial expansions we obtain es-

timates of coefficients |an| where n ≥ 3, of functions in the subclasses Hλ,µ
Σ (ϕ; Θ).

The Faber polynomials introduced by Faber [13] play an important role in various
areas of mathematical sciences, especially in geometric function theory. Several
authors worked on using Faber polynomial expansions to find coefficient esti-
mates for classes bi-univalent functions, see for example [8, 14, 15, 16, 17, 18]. For
this purpose we need the following lemmas.
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Lemma 2.3. Let φ(z) = a2z + a3z2 + · · ·+ ak+1zk + · · · . Then for any m ∈ N, the
coefficient of zn in (φ(z))m is equal to

Dm
n (a2, a3, · · ·an+1) = ∑

m!(a2)
i1 · · · (an+1)

in

i1! · · · in!
, (2.5)

where the sum is taken over all nonnegative integers i1, · · · , in satisfying

{

i1 + i2 + · · ·+ in = m,
i1 + 2i2 + · · ·+ nin = n.

It is clear that

Dn
n(a2, a3, · · ·an+1) = an

2 .

Proof. It is derived from the expansion (a2z + a3z2 + · · ·+ an+1zn)m.

Lemma 2.4. [1, 2] Let f (z) = z + ∑
∞
n=2 anzn ∈ S . Then for any p ∈ Z, there are the

polynomials K
p
n, such that

(1 + a2z + a3z2 + · · ·+ akzk−1 + · · · )p = 1 +
∞

∑
n=1

K
p
n(a2, a3, · · · , an+1)z

n,

where

K
p
n(a2, · · · , an+1) = pan+1 +

p(p − 1)

2
D2

n +
p!

(p − 3)!3!
D3

n + · · ·+ p!

(p − n)!(n)!
Dn

n,

(2.6)
with Dm

n is given by (2.5). In particular, K1
n = an+1, K2

1 = 2a2, K2
2 = 2a3 + a2

2,
K2

3 = 2a4 + 2a2a3, K2
4 = 2a5 + 2a2a4 + a2

3.

Lemma 2.5. Let f (z) = z + ∑
∞
n=2 anzn ∈ S , then for every µ ≥ 0, we have the

following expansion,

(1 − λ)

(

f (z)

z

)µ

+λ f ′(z)
(

f (z)

z

)µ−1

= 1 + ∑
n≥1

(

µ + λn

µ

)

K
µ
n(a2, a3, · · ·, an+1)z

n,

where
(

µ + λn

µ

)

K
µ
n(a2, a3, · · · , an+1) = [µ + λn](µ − 1)!

×
[

∑
i1+2i2+···+nin=n

(a2)
i1(a3)

i2 · · · (an+1)
in

i1!i2! · · · in![µ − (i1 + i2 + · · ·+ in)]!

]

.

(2.7)

In particular, the first two terms are,
(

µ+λ
µ

)

K
µ
1 (a2) = (µ+λ)a2 ,

(

µ+2λ
µ

)

K
µ
2 (a2, a3) =

(µ + 2λ)[µ−1
2 a2

2 + a3].
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Proof. For f (z) = z + ∑
∞
n=2 anzn, consider h(z) =

f (z)
z = 1+ ∑n≥1 an+1zn, then by

using Lemma 2.4, we have h(z)µ = 1 + ∑n≥1 K
µ
n(a2, a3, · · · , an+1)z

n, therefore

(1 − λ)

(

f (z)

z

)µ

+ λ f ′(z)
(

f (z)

z

)µ−1

= h(z)µ +
λz

µ

d

dz
(h(z)µ)

= 1 + ∑
n≥1

(

µ + λn

µ

)

K
µ
n(a2, a3, · · · , an+1)z

n.

Now by using equation (2.6), we have the result.

Corollary 2.6. Let f ∈ Hλ,µ
Σ (ϕ; Θ), then we have the following expansion

(1 − λ)

(

f ∗ Θ(z)

z

)µ

+λ( f ∗ Θ)′(z)
(

f ∗ Θ(z)

z

)µ−1

= 1 +
∞

∑
n=2

Fn−1(a2b2, a3b3, · · ·, anbn)z
n−1,

(2.8)

where

Fn−1(a2b2, a3b3, · · · , anbn) =

(

µ + (n − 1)λ

µ

)

K
µ
n−1(a2b2, a3b3, · · · , anbn)

= [µ + (n − 1)λ](µ − 1)!×


 ∑
i1+···+(n−1)in−1=n−1

(a2b2)
i1(a3b3)

i2 · · · (anbn)in−1

i1!i2! · · · in−1![µ − (i1 + i2 + · · ·+ in−1)]!



 .

Proof. Since ( f ∗ Θ)(z) = z + ∑n≥1 anbnzn, by applying Lemma 2.5 we have the
result.

Lemma 2.7. Let f (z) = z + ∑
∞
n=2 anzn ∈ S . Then for every µ ≥ 0, ( f−1)µ, is given

by the expansion,

( f−1(w))µ = wµ + ∑
n≥1

µ

µ + n
K
−(n+µ)
n wn+µ.

Proof. Let
(

f−1(w)
w

)µ
= 1 + ∑n≥1 cnwn, then by Cauchy theorem,

cn =
1

2iπ

∫

γ

f−1(w)µ

wµwn+1
dw =

1

2iπ

∫

zµ f ′(z)
f (z)µ+n+1

dz, where w = f (z).

Integrate by parts, then

cn =
1

2iπ

∫

µ

µ + n
× f (z)−(n+µ)

z−(n+µ)
× 1

zn+1
dz =

µ

µ + n
K
−(n+µ)
n .

Consequently, the expansion of
(

f−1(w)
w

)µ
, is given by

(

f−1(w)

w

)µ

= 1 + ∑
n≥1

µ

µ + n
K
−(n+µ)
n wn. (2.9)
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If we take µ = 1 in Lemma 2.7, we have the following result.

Corollary 2.8. [2] Let f (z) = z + ∑
∞
n=2 anzn ∈ S . Then the inverse map of f , is given

by the expansion,

f−1(w) = w +
∞

∑
n=2

1

n
K−n

n−1(a2, a3, · · · , an)w
n. (2.10)

In particular, the first three terms of K−n
n−1 are

1

2
K−2

1 = −a2,
1

3
K−3

2 = 2a2
2 − a3,

1

4
K−4

3 = −(5a3
2 − 5a2a3 + a4).

Corollary 2.9. Let f (z) = z + ∑
∞
n=2 anzn ∈ S , then for every µ ≥ 0, we have the

following expansion,

(1 − λ)

(

f−1(w)

w

)µ

+λ( f−1)′(w)

(

f−1(w)

w

)µ−1

= 1 + ∑
n≥1

µ + λn

µ + n
K
−(n+µ)
n wn.

Proof. Let f−1(w) = wh1(w), then ( f−1)′(w) = h1(w) + wh′1(w). Now by Lemma

2.7, we have (h1(w))µ = 1 + ∑n≥1
µ

µ+nK
−(n+µ)
n wn. Therefore

(1 − λ)

(

f−1(w)

w

)µ

+λ( f−1)′(w)

(

f−1(w)

w

)µ−1

= (1 − λ)(h1(w))µ + λ(h1(w) + wh′1(w))(h1(w))µ−1

= (h1(w))µ + λwh′1(w)(h1(w))µ−1

= (h1(w))µ +
λw

µ

d

dw
((h1(w))µ)

= 1 + ∑
n≥1

µ + λn

µ + n
K
−(n+µ)
n wn.

Corollary 2.10. Let f (z) = z + ∑
∞
n=2 anzn ∈ S , then for every µ ≥ 0 and n ∈ N we

have
µ

µ + n
K
−(n+µ)
n (a2, · · · , an+1) = K

µ
n(L2, · · · , Ln+1),

where Ln = 1
n K−n

n−1(a2, a3, · · · , an).

Proof. From equation (2.10) we have
(

f−1(w)

w

)

= 1 + ∑
n≥2

(

1

n
K−n

n−1(a2, a3, · · · , an)

)

wn−1.

Therefore by using Lemma 2.4, we have

(

f−1(w)

w

)µ

= 1 + ∑
n≥1

K
µ
n(L2, · · · , Ln+1)w

n, (2.11)
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where Ln = 1
n K−n

n−1(a2, a3, · · · , an).
Comparing the corresponding coefficients of equations (2.9) and (2.11), we have
the result.

Lemma 2.11. Let f ∈ Hλ,µ
Σ (ϕ; Θ), then we have the following expansion

(1 − λ)

(

( f ∗ Θ)−1(w)

w

)µ

+ λ(( f ∗ Θ)−1)′(w)

(

( f ∗ Θ)−1(w)

w

)µ−1

= 1 +
∞

∑
n=2

Fn−1(A2, A3, · · ·, An)w
n−1, (2.12)

where Fn−1 =
(

µ+(n−1)λ
µ

)

K
µ
n−1 and An = 1

n K−n
n−1(a2b2, a3b3, · · ·, anbn).

Proof. By applying Corollary 2.9 for ( f ∗ Θ)(z) = z + ∑n≥2 anbnzn and using
Corollary 2.10, we have the result.

Lemma 2.12. Assume that u(z) and v(z) are analytic in the unit disk U with u(0) =
v(0) = 0, |u(z)| < 1, |v(z)| < 1, and suppose that

u(z) = z(p1 +
∞

∑
n=2

pnzn−1) and v(z) = z(q1 +
∞

∑
n=2

qnzn−1) (z ∈ U). (2.13)

Then

|p1| ≤ 1, |pn| ≤ 1 − |p1|2, |q1| ≤ 1, |qn| ≤ 1 − |q1|2, n = 2, 3, · · ·. (2.14)

Proof. For proof see [22, Page 172].

Lemma 2.13. Let f ∈ Hλ,µ
Σ (ϕ; Θ). Then

Fn−1(a2b2, a3b3, · · ·, anbn) =
n−1

∑
k=1

BkDk
n−1(p1, p2, · · ·, pn−1), (2.15)

and

Fn−1(A2, A3, · · ·, An) =
n−1

∑
k=1

BkDk
n−1(q1, q2, · · ·, qn−1), (2.16)

where Fn−1 =
(

µ+(n−1)λ
µ

)

K
µ
n−1 and An = 1

n K−n
n−1(a2b2, a3b3, · · ·, anbn).

Proof. By Definition 2.1, since f ∈ Hλ,µ
Σ (ϕ; Θ), there are two Schwarz functions

u, v : U → U with u(0) = v(0) = 0, as in (2.13), so that

(1 − λ)

(

f ∗ Θ(z)

z

)µ

+ λ( f ∗ Θ)′(z)
(

f ∗ Θ(z)

z

)µ−1

= ϕ(u(z)), (2.17)

and

(1 − λ)

(

( f ∗ Θ)−1(w)

w

)µ

+ λ(( f ∗ Θ)−1)′(w)

(

( f ∗ Θ)−1(w)

w

)µ−1

= ϕ(v(w)).

(2.18)
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Now by using (2.1) and (2.5) we have,

ϕ(u(z)) = 1 + B1u(z) + B2(u(z))
2 + · · · = 1 + B1p1z + (B1p2 + B2p2

1)z
2 + · · ·

= 1 +
∞

∑
n=1

n

∑
k=1

BkDk
n(p1, p2, · · ·, pn)z

n, (2.19)

and

ϕ(v(w)) = 1 + B1v(z) + B2(v(z))
2 + · · · = 1 + B1q1w + (B1q2 + B2q2

1)w
2 + · · ·

= 1 +
∞

∑
n=1

n

∑
k=1

BkDk
n(q1, q2, · · ·, qn)w

n. (2.20)

Comparing the corresponding coefficients of (2.8), (2.17) and (2.19) we get (2.15).
Similarly, from (2.12), (2.18) and (2.20) we obtain (2.16).

Our first theorem introduces an upper bound for the coefficients |an| of func-

tions in the class Hλ,µ
Σ (ϕ; Θ).

3 Main Results

In this section, first we obtain estimates of coefficients |an| where n ≥ 3, of an-

alytic bi-univalent functions in the subclasses Hλ,µ
Σ (ϕ; Θ). Next, we obtain esti-

mates of coefficients |a2| and |a3| of functions in this subclass which are improve-
ments on the bounds found by Bulut [8].

Theorem 3.1. For λ ≥ 1 and µ ≥ 0, let f ∈ Hλ,µ
Σ (ϕ; Θ) be given by (1.1). If ak = 0

for 2 ≤ k ≤ n − 1, then

|an| ≤
B1

[µ + (n − 1)λ]bn
, n ≥ 3. (3.1)

Proof. Note that ak = 0 for 2 ≤ k ≤ n− 1, so we have An = −anbn and p1 = · · · =
pn−2 = 0, q1 = · · · = qn−2 = 0. From (2.15)-(2.16), we have

[µ + (n − 1)λ]anbn = B1pn−1, (3.2)

and

−[µ + (n − 1)λ]anbn = B1qn−1. (3.3)

Now, by solving either of the equations (3.2) and (3.3) for an and applying
|pn−1| ≤ 1 − |p1|2 ≤ 1, |qn−1| ≤ 1 − |q1|2 ≤ 1, it yields

|an| =
B1|pn−1|

[µ + (n − 1)λ]bn
=

B1|qn−1|
[µ + (n − 1)λ]bn

≤ B1

[µ + (n − 1)λ]bn
,

which gives the bound as asserted in (3.1) and this completes the proof.
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If we take Θ(z) = z
1−z and

ϕ(z) =
1 + (1 − 2β)z

1 − z
= 1 + 2(1 − β)z + 2(1 − β)z2 + · · · (0 ≤ β < 1, z ∈ U),

then, B1 = B2 = 2(1 − β), in Theorem 3.1, and we have the following corollary
which generalizes the results obtained by Bulut, see formula (27) in [8].

Corollary 3.2. For λ ≥ 1 and µ ≥ 0, let f ∈ Hλ,µ
Σ (ϕ; Θ) be given by (1.1). If ak = 0

for 2 ≤ k ≤ n − 1, then

|an| ≤
2(1 − β)

µ + (n − 1)λ
, n ≥ 3.

Remark 3.3. If we take λ = 1 and µ = 1 in Corollary 3.2, the estimates of Jahangiri
et al. [16, Theorem 1] and Jahangiri et al. [18, Theorem 2.1] are obtained.

Corollary 3.4. For λ ≥ 1, µ ≥ 0 and 0 < α ≤ 1, let f ∈ Hλ,µ
Σ

((

1+z
1−z

)α
; Θ
)

be given

by (1.1). If ak = 0 for 2 ≤ k ≤ n − 1, then

|an| ≤
2α

[µ + (n − 1)λ]bn
, n ≥ 3.

Proof. Since

ϕ(z) =

(

1 + z

1 − z

)α

= 1 + 2αz + 2α2z2 + · · · ,

then B1 = 2α, now by using (3.1), we have result.

In what follows, we give refinements of inequalities (2.3) and (2.4) for class

Hλ,µ
Σ (ϕ; Θ).

Theorem 3.5. Let f ∈ Hλ,µ
Σ (ϕ; Θ) be given by (1.1), λ ≥ 1 and µ ≥ 0, with Θ is

given by (2.2). Then

|a2| ≤
1

b2
min







l(λ, µ),
B1

√
2B1

√

[

2B1(λ + µ)2 + |B2
1(2λ + µ)(µ + 1)− 2B2(λ + µ)2|

]







,

(3.4)
and

|a3| ≤
1

b3
min {k(λ, µ), h(λ, µ)} , (3.5)

where

l(λ, µ) =







√

2|B1|
(2λ+µ)(µ+1)

|B2| ≤ B1
√

2|B2|
(2λ+µ)(µ+1)

|B2| > B1,
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k(λ, µ) =















B1
(2λ+µ)

, B1 ≤ (λ+µ)2

2λ+µ

B1|B2
1(2λ+µ)(µ+1)−2B2(λ+µ)2|+2(2λ+µ)B3

1

[2B1(λ+µ)2+|B2
1(2λ+µ)(µ+1)−2B2(λ+µ)2|](2λ+µ)

, B1 >
(λ+µ)2

2λ+µ .

and

h(λ, µ) =















B1[(µ+3)+|1−µ|]
2(2λ+µ)(µ+1)

+ 2(|B2|−B1)
(2λ+µ)(µ+1)

|B2| > B1

B1[(µ+3)+|1−µ|]
2(2λ+µ)(µ+1)

|B2| ≤ B1.

Proof. From equations (2.15) and (2.16) respectively for n = 2 and n = 3, we
have that

(λ + µ)a2b2 = B1p1, (3.6)

(µ + 2λ)a3b3 + (µ − 1)
(

λ +
µ

2

)

a2
2b2

2 = B1p2 + B2p2
1, (3.7)

−(λ + µ)a2b2 = B1q1, (3.8)

and

−(µ + 2λ)a3b3 + (µ + 3)
(

λ +
µ

2

)

a2
2b2

2 = B1q2 + B2q2
1. (3.9)

From (3.6) and (3.8), we get

p1 = −q1. (3.10)

By using (3.7), (3.9), and (3.10), it yields

(2λ + µ)(µ + 1)a2
2b2

2 = B1(p2 + q2) + 2B2p2
1. (3.11)

From (3.11) and (3.6), we have

B2
1(2λ + µ)(µ + 1)a2

2b2
2 − 2B2(λ + µ)2a2

2b2
2 = B3

1(p2 + q2).

By (2.14) and (3.6), we get

|B2
1(2λ + µ)(µ + 1)− 2B2(λ + µ)2b2

2|a2|2 ≤ B3
1(|p2|+ |q2|)

≤ 2B3
1(1 − |p1|2) = 2B3

1 − 2B1(λ + µ)2b2
2|a2|2.

Therefore,

|a2| ≤
B1

√
2B1

√

[

2B1(λ + µ)2 + |B2
1(2λ + µ)(µ + 1)− 2B2(λ + µ)2|

]

b2
2

(3.12)

Also, by (2.14) and (3.11),

(2λ + µ)(µ + 1)b2
2|a2

2| ≤ B1(|p2|+ |q2|) + 2|B2||p2
1|

≤ 2B1(1 − |p1|2) + 2|B2||p1|2
= 2B1 + 2|p1|2(|B2| − B1)

≤







2|B1| |B2| ≤ B1

2|B2| |B2| > B1.
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Consequently,

|a2| ≤























√

2|B1|
(2λ+µ)(µ+1)b2

2
|B2| ≤ B1

√

2|B2|
(2λ+µ)(µ+1)b2

2
|B2| > B1.

(3.13)

Hence, the desired estimate on the coefficient |a2| as asserted in (3.4) is obtained
from (3.12) and (3.13).

Next, in order to find the bound on the coefficient |a3|, by subtracting (3.9)
from (3.7), and using (3.10), we get

2(2λ + µ)b3a3 = B1(p2 − q2) + 2(2λ + µ)a2
2b2

2. (3.14)

From (2.14), (3.11) and (3.14), we have

b3a3 =
B1(p2 − q2)

2(2λ + µ)
+

B1(p2 + q2) + 2B2p2
1

(2λ + µ)(µ + 1)

=
B1[(µ + 3)p2 + (1 − µ)q2] + 4B2p2

1

2(2λ + µ)(µ + 1)

Therefore,

|a3| ≤ B1[(µ + 3)|p2|+ |1 − µ||q2|] + 4|B2||p1|2
2(2λ + µ)(µ + 1)b3

≤ B1[(µ + 3)(1 − |p1|2) + |1 − µ|(1 − |p1|2)] + 4|B2||p1|2
2(2λ + µ)(µ + 1)b3

=
B1(1 − |p1|2)[(µ + 3) + |1 − µ|] + 4|B2||p1|2

2(2λ + µ)(µ + 1)b3

=
B1[(µ + 3) + |1 − µ|] + 4|B2||p1|2 − B1|p1|2[(µ + 3) + |1 − µ|]

2(2λ + µ)(µ + 1)b3
.

Thus for µ ≥ 0, we conclude that

|a3| ≤ B1[(µ + 3) + |1 − µ|] + 4|B2||p1|2 − 4B1|p1|2
2(2λ + µ)(µ + 1)b3

(3.15)

=
B1[(µ + 3) + |1 − µ|] + 4|p1|2(|B2| − B1)

2(2λ + µ)(µ + 1)b3
. (3.16)

Consequently,

|a3| ≤ 1

b3















B1[(µ+3)+|1−µ|]
2(2λ+µ)(µ+1)

+ 2(|B2|−B1)
(2λ+µ)(µ+1)

|B2| > B1

B1[(µ+3)+|1−µ|]
2(2λ+µ)(µ+1)

|B2| ≤ B1.

(3.17)



Faber Polynomial Coefficient Estimates 499

On the other hand, by using (2.14) and (3.10) for (3.14), we have

2(2λ + µ)b3|a3| ≤ B1(|p2|+ |q2|) + 2(2λ + µ)|a2|2b2
2

≤ 2B1(1 − |p1|2) + 2(2λ + µ)|a2|2b2
2.

From (3.6), we get that

B1(2λ + µ)b3|a3| ≤ [(2λ + µ)B1 − (λ + µ)2]|a2|2b2
2 + B2

1

Now, from (3.12), we have

B1(2λ + µ)b3|a3| ≤ [(2λ + µ)B1 − (λ + µ)2]

× 2B3
1

2B1(λ + µ)2 + |B2
1(2λ + µ)(µ + 1)− 2B2(λ + µ)2| + B2

1.

Thus, we get

|a3| ≤
B1

(2λ + µ)b3

[

1 +
2B1

[

B1(2λ + µ)− (λ + µ)2
]

2B1(λ + µ)2 +
∣

∣B2
1 (µ + 1) (2λ + µ)− 2B2(λ + µ)2

∣

∣

]

.

(3.18)
Hence, from (3.17) and (3.18), we obtain the desired estimate on |a3| given in
(3.5). This completes the proof.

Remark 3.6. Theorem 3.5 is an improvement of the estimates obtained by Bulut
[8] in Theorem 2.2. It is easy to see that, for the coefficient |a2|,

B1

√
2B1

√

[

2B1(λ + µ)2 + |B2
1(2λ + µ)(µ + 1)− 2B2(λ + µ)2|

]

≤ B1

√
2B1

√

2B1(λ + µ)2

=
B1

λ + µ
,

B1

√
2B1

√

[

2B1(λ + µ)2 + |B2
1(2λ + µ)(µ + 1)− 2B2(λ + µ)2|

]

≤ B1

√
2B1

√

∣

∣B2
1(2λ + µ)(µ + 1)− 2(B2 − B1)(λ + µ)2

∣

∣

,

and if |B2| ≤ B1 or |B2| > B1, then

l(λ, µ) ≤
√

2(B1 + |B2 − B1|)
(2λ + µ)(µ + 1)

.

Also, for the coefficient |a3|, we make the following cases

(i) If B1 ≤ (λ+µ)2

2λ+µ , then

B1

2λ + µ
≤ B1

2λ + µ
+

2B3
1

√

∣

∣B2
1(2λ + µ)(µ + 1)− 2(B2 − B1)(λ + µ)2

∣

∣

,
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and

B1

2λ + µ
≤ B2

1

(λ + µ)2
+

B1

2λ + µ
.

(ii) If B1 >
(λ+µ)2

2λ+µ , then

2B3
1 (2λ + µ) + B1

∣

∣B2
1 (µ + 1) (2λ + µ)− 2B2(λ + µ)2

∣

∣

(2λ + µ)
[

2B1(λ + µ)2 +
∣

∣B2
1 (µ + 1) (2λ + µ)− 2B2(λ + µ)2

∣

∣

]

=
2B3

1

2B1(λ + µ)2 +
∣

∣B2
1 (µ + 1) (2λ + µ)− 2B2(λ + µ)2

∣

∣

+
B1

∣

∣B2
1 (µ + 1) (2λ + µ)− 2B2(λ + µ)2

∣

∣

(2λ + µ)
[

2B1(λ + µ)2 +
∣

∣B2
1 (µ + 1) (2λ + µ)− 2B2(λ + µ)2

∣

∣

]

≤ 2B3
1

2B1(λ + µ)2
+

B1|B2
1(2λ + µ)(µ + 1)− 2B2(λ + µ)2|

(2λ + µ)
∣

∣B2
1 (µ + 1) (2λ + µ)− 2B2(λ + µ)2

∣

∣

≤ B2
1

(λ + µ)2
+

B1

2λ + µ
.

(iii) If |B2| ≤ B1 or |B2| > B1, then

h(λ, µ) ≤ B1[(µ + 3) + |1 − µ|]
2(µ + 1)(2λ + µ)

+
2|B2 − B1|

(2λ + µ)(µ + 1)
.

Remark 3.7. With similar argument of Remark 3.6 in Theorem 3.5,

(1) If we take Θ(z) = z
1−z , then we obtain improvement of the estimates

obtained by Tang et al. [25, Theorem 2.1].

(2) If we set λ = µ = 1 and Θ(z) = z
1−z , we get improvement of the estimates

obtained by Ali et al. [4, Theorem 2.1].

(3) By taking µ = 1, λ ≥ 1 and Θ(z) = z
1−z , we obtain improvement of the

estimates obtained by Kumar et al. [20, Theorem 2.2].

Taking ϕ(z) =
(

1+z
1−z

)α
in Theorem 3.5, then we have the following result.

Corollary 3.8. Let f ∈ Hλ,µ
Σ (ϕ; Θ) be given by (1.1), λ ≥ 1 and µ ≥ 0. Then

|a2| ≤
1

b2
min

{
√

4α

(2λ + µ)(µ + 1)
,

2α
√

(λ + µ)2 + α|µ + 2λ − λ2|

}

,

and

|a3| ≤
1

b3
min

{

k(λ, µ),
α[(µ + 3) + |1 − µ|]
(2λ + µ)(µ + 1)

}

,
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where

k(λ, µ) =















2α
(2λ+µ)

, 0 < α ≤ (λ+µ)2

2(2λ+µ)

2α2|µ+2λ−λ2|+4α2(2λ+µ)
[(λ+µ)2+α|µ+2λ−λ2|](2λ+µ)

,
(λ+µ)2

2(2λ+µ)
< α ≤ 1.

Remark 3.9. With similar argument of Remark 3.6 in Corollary 3.8,

(1) If µ = 1, then we have improvement of the estimates which were given by
El-Ashwah [11, Theorem 1].

(2) If λ = 1 and Θ(z) = z
1−z , then we have improvement of the estimates which

were given by Prema and Keerthi [23, Theorem 2.2].

(3) If Θ(z) = z
1−z , then we obtain the same estimate |a3| and improvement of

the estimates which were given by Çağlar et al. [9, Theorem 2.2].

(4) If µ = λ = 1 and Θ(z) = z
1−z , then we have improvement of the estimates

which were given by Srivastava et al, [24, Theorem 1].

(5) If µ = 1 and Θ(z) = z
1−z , then we have improvement of the estimates which

were given by Frasin and Aouf [12, Theorem 2.2].

(6) If µ = 1 and Θ(z) = z + ∑
∞
n=2

(a1)n−1···(aq)n−1

(b1)n−1···(bs)n−1

1
n! z

n, then we have improve-

ment of the estimates which were given by Aouf et al. [5, Theorem 4].

(7) If λ = 1, µ = 0 and Θ(z) = z
1−z , then we have improvement of the estimates

which were given by Brannan and Taha [7].

By choosing ϕ(z) = 1+(1−2β)z
1−z , in Theorem 3.1, then we have the following

result.

Corollary 3.10. Let f ∈ Hλ,µ
Σ (ϕ; Θ) be given by (1.1), λ ≥ 1 and µ ≥ 0. Then

|a2| ≤
1

b2
min

{
√

4(1 − β)

(2λ + µ)(µ + 1)
,

2(1 − β)
√

(λ + µ)2 + |(1 − β)(2λ + µ)(µ + 1)− (λ + µ)2|

}

,

and

|a3| ≤
1

b3
min

{

k(λ, µ),
(1 − β)[(µ + 3) + |1 − µ|]

2(2λ + µ)(µ + 1)

}

,

where

k(λ, µ) =























2(1−β)
(2λ+µ)

,
2(2λ+µ)−(λ+µ)2

2(2λ+µ)
≤ β < 1

2(1−β)|(1−β)(2λ+µ)(µ+1)−(λ+µ)2|+4(2λ+µ)(1−β)2

[(λ+µ)2+|(1−β)(2λ+µ)(µ+1)−(λ+µ)2|](2λ+µ)
, 0 ≤ β <

2(2λ+µ)−(λ+µ)2

2(2λ+µ)
.
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Remark 3.11. With similar argument of Remark 3.6, in Corollary 3.10,

(1) If µ = 1, then we have improvement of the estimates which were given by
El-Ashwah [11, Theorem 2].

(2) If λ = 1 and Θ(z) = z
1−z , then we have improvement of the estimates which

were given by Prema and Keerthi [23, Theorem 3.2].

(3) If Θ(z) = z
1−z , then we obtain the same estimate of |a3| and improvement

of the estimates which were given by Çağlar et al. [9, Theorem 3.1].

(4) If µ = λ = 1 and Θ(z) = z
1−z , then we have improvement of the estimates

which were given by Srivastava et al, [24, Theorem 2].

(5) If µ = 1 and Θ(z) = z
1−z , then we have improvement of the estimates which

were given by Frasin and Aouf [12, Theorem 3.2].

(6) If µ = 1 and Θ(z) = z + ∑
∞
n=2

(a1)n−1···(aq)n−1

(b1)n−1···(bs)n−1

1
n! z

n, then we have improve-

ment of the estimates which were given by Aouf et al. [5, Theorem 8].

(7) If λ = 1, µ = 0 and Θ(z) = z
1−z , then we have improvement of the estimates

which were given by Brannan and Taha [7].

(8) If µ = 1 and Θ(z) = z
1−z , then we have improvement of the estimates which

were given by Jahangiri et al. [16, Theorem 2].

(9) If Θ(z) = z
1−z , then we have improvement of the estimates which were

given by Bulut [8, Theorem 2].

(10) If Θ(z) = z
1−z , then we have improvement of the estimates which were

given by Jahangiri et al. [18, Theorem 2.2].
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analytic bi-Bazilevič functions, Matematicki Vesnik., 67 (2015) 123-129.

[19] A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ.
Mariae Curie-Sk lodowska Sect. A., 39 (1985) 77-81.

[20] S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coeffi-
cients of bi-univalent functions, Tamsui Oxf. J. Math. Sci., 29 (2013) 487-504.

[21] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer.
Math. Soc., 18 (1967) 63-68.

[22] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.

[23] S. Prema and B. S. Keerthi, Coefficient bounds for certain subclasses of ana-
lytic functions, J. Math. Anal., 4 (2013) 22-27.

[24] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of ana-
lytic and biunivalent functions, Appl. Math. Lett., 23 (2010) 1188-1192.

[25] H. Tang, G.-T. Deng, and S.-H. Li, Coefficient estimates for new subclasses
of Ma-Minda bi-univalent functions. J. Inequal. Appl., (2013) Art. 317, 10
Pages.

[26] P. G. Todorov, On the Faber polynomials of the univalent functions of class
Σ, J. Math. Anal. Appl., 162 (1991) 268-276.

Department of Mathematics, Shahrood University of Technology,
P.O.Box 316-36155, Shahrood, Iran
emails: azireh@gmail.com, e−analoei@ymail.com

Kocaeli University, Faculty of Aviation and Space Sciences,
Arslanbey Campus,
41285 Kartepe, Kocaeli, Turkey
e-mail: serap.bulut@kocaeli.edu.tr


