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Abstract

We discuss meromorphic solutions of functional equations over non-Archi-
medean fields, and prove difference analogues of the Clunie lemma, Malm-
quist-type theorems and the Mokhon’ko theorem.

1 Introduction

Value distribution theory established by R. Nevanlinna, also called Nevanlinna
theory, is a very useful tool for studying both the growth of meromorphic func-
tions in the complex plane C and meromorphic solutions of differential equa-
tions, see for instance the Clunie lemma (cf. [2],[11]), Malmquist-type theorems
(cf. [13],[17]) and the Mokhon’ko theorem (cf. [15]). These theorems also have
analogues for meromorphic functions over non-Archimedean fields (cf. [9]).
Detailed information about Nevanlinna theory over non-Archimedean fields can
be found in [9].

Recently, some authors started studying meromorphic solutions of difference
equations based on Nevanlinna theory over C (cf. [4], [5], [12]). In this paper, we
obtain difference analogues of the theorems stated above by using Nevanlinna
theory over non-Archimedean fields.
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2 Main Results

Let x be an algebraically closed field of characteristic zero, which is complete for
a non-trivial non-Archimedean absolute value | - |. Let A(x) (resp. M (x)) denote
the set of entire (respectively meromorphic) functions over x. As usual, if R is a
ring, we use R[Xy, X, ..., X, to denote the ring of polynomials over R, depending
on the variables Xy, X3, ..., X;;. We will make the following assumption (fixing at
the same time the notations):

(A) Let n be a positive integer, and take a;, b; in x such that |4;| =1,i =0,1,...,n,
with ag = 1,by = 0, and such that

Li(z) =aiz+b; (i=0,1,..,n)
are distinct. Let f be a non-constant meromorphic function over x and write
fi = folL;i=0,1,..,n where fy = f. Moreover, consider non-zero ele-

ments
Be M®x)[X]; Q@& e M(x)[Xo,X1,..., Xul.

Then, there exist {by, ..., by} C M (k) with b; # 0 such that

q
B(X) = Y_ b X" 1)
k=0
Similarly, we can write
Q (X0, X1,y Xn) = Y e XPXI -+ X, )
icl
where i = (ig,i1,...,in) are non-negative integer indices, I is a finite set, and
¢; € M(x), and also
D (Xo, X1, oy Xn) = Y d;XPXI - X, 3)
i€l
where j = (jo,j1,..,jn) are non-negative integer indices, | is a finite set, and

d]' € M(K)

In this paper, we will use the usual notations and concepts from Nevanlinna
theory, see e.g. [9]. For example, j(r, f) denotes the maximum term of the power
series for f € A(x) and its fractional extension to M(x), m(r, f) is the compen-
sation (or proximity) function of f, N(7, f) is the valence function of f for poles,
and finally,

T(r,f) = m(r, f) + N(r, f),

is the characteristic function of f. Then we can state our results as follows.

Theorem 2.1. Under the assumption (A), if f is a solution of the functional equation

B(A)QAS, f1s 0 fu) = @(f, f1ooos fr) 4



Non-Archimedean meromorphic solutions of functional equations 375
with deg B > deg ®, then

m(r,Q) <Y m(r,c;) + Y m(r,d;) +1m (V’blq) +1 i)m(r,bj), 5)
j=

iel j€J]

where | = max{1,degQ}, QO = Q(f, f1,..., fu). Furthermore, if ® is a polynomial of
f, we also have

N(r,Q) <2Nrc —|—2Nrd +O<ZN< ;)) (6)
]

iel j€J ]

Theorem 2.1 is a difference analogue of the Clunie lemma over non-Archime-
dean fields (cf. [9]). Halburd and Korhonen [5] obtained a difference analogue of
the Clunie lemma over the complex numbers (cf. [2]). Theorem 2.1 has numerous
applications in the study of non-Archimedean difference equations, and beyond.
In order to state one of its applications, we need the following definition:

Definition 2.2. A solution f € M(x) of (4) is said to be admissible if

Y T(rci)+) T(r.d)) ZT@,bk):o(T(r,f)), 7)
k=0

i€l j€]
or equivalently, the coefficients of B, ®, () are slowly moving targets with respect to f.

If ¢;,dj, by all are rational functions, then each transcendental meromorphic
function f over x must satisfy (7), which means that each transcendental mero-
morphic solution f over « is admissible.

Theorem 2.3. If ® is of the form

D(f, frs s fr) = Zd]f]

and if (4) has an admissible non-constant meromorphic solution f, then

g=0, p<deg(Q).

Theorem 2.3 is a difference analogue of a Malmquist-type theorem over non-
Archimedean fields (cf. [9]) . Malmquist-type theorems were obtained by Malm-
quist [14], Gackstatter-Laine [3], Laine [10], Toda [16], Yosida [18] (or see He-Xiao
[6]) for meromorphic functions on C, and Hu-Yang [8] or [7] for several complex
variables.

Corollary 2.4. Assume condition (A) to hold such that the coefficients of B, ), ® are
rational functions over x, and O has the form as in Theorem 2.3 . Then, if (4) has a
transcendental meromorphic solution f over x, it holds that ®/B is a polynomial in f of
degree < deg(Q).

Corollary 2.4 is a difference analogue of the non-Archimedean Malmquist-
type theorem due to Boutabaa [1].
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Theorem 2.5. Let f € M(x) be a non-constant admissible solution of

O ( £ f e f(”)> —0, ®)

where now the solution f is admissible if Y ;c; T(r,c;) = o(T(r, f)). If a slowly moving
target a € M(x) with respect to f, that is, T(r,a) = o(T(r, f)), does not satisfy the
equation (8), then

m (r’fia> =o(T(r,f))-

Theorem 2.5 is an analogue of a result due to Mokhon’ko and Mokhon’ko [15]
over non-Archimedean fields, which also has a difference analogue as follows:

Theorem 2.6. Assume the condition (A) to hold and let f € M (k) be a non-constant
admissible solution of

Q(f, fi, ... fn) = 0. )
If a slowly moving target a € M (k) with respect to f does not satisfy the equation (9),

then
i (r 5y ) =0T )

A version of Theorem 2.6 over the complex numbers can be found in [5].

3 A difference analogue of a lemma on logarithmic derivation
Take a(# 0),b € x and consider the linear transformation
L(z) =az+Db
over . For a positive integer m, put
Buf = foL—f, Ay = By (A)'f).
Lemma 3.1. Take f € A(x) and assume |a| < 1. When r > |b|/|a|, we have

p(r, fol) < pul(r, f).

Moreover, we obtain

Proof. We can write

since f € A(x). Therefore
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First of all, we take r € |x|, thatis, r = |z| for some z € x. When r > |b|/|a|,
we find (cf. [9])

u(r, fol) =|f(L(z))| < max|ay||laz+Db[" = max|a,|[az]" < max|an||z|" = u(r, f).
n>0 n>0 n>0

In particular,
p y(rfoL):y(r,foL)<1
" f ui f) =
and hence
rALf :y(r,foL—f) 1 e o r
”(’ f ) W ) S iy mxiuln fo L) u(r fy < 1.

By induction, we can prove that

() o

Since |«| is dense in Ry = [0, 0), by using continuity we easily see that these
inequalities hold for all ¥ > |b|/|a|. ]

Note that (cf. [9])
m(r, f) =log™ p(r, f) = max{0,log u(r, f)}. (10)

Lemma 3.1 immediately implies the following difference analogue of the lemma
on the logarithmic derivation:

Corollary 3.2. Take f € A(x) and assume |a| < 1. When r > |b|/|a|, we have

(o L58) o) o

Lemma 3.3. Take f € M (x) \ {0} and assume |a| = 1. When r > |b|, we have that
plr, foL) = u(r, f). (11)

(5 ) o

Proof. Since f € M(x) \ {0}, there exist g, h(# 0) € A(x) with f = §. Hence
(cf. [9])

Moreover, we obtain

_ u(r,gol)
u(r,fol) = m. (12)

Take r € |k|. Since |a| = 1, we have
IL(z)| = laz + b] = [z| =7
when r > |b|, and so
u(r,gol)=p(rg).

Similarly, we have u(r,ho L) = u(r,h). Thus the formula (11) holds. By using
continuity we easily see that the inequality holds for all » > |b|. n

Corollary 3.4. Take f € M(x) \ {0} and assume |a| = 1. When r > |b|, we have

(e E58) o) o
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4 Proof of Theorem 2.1

In order to prove (5), take z € x with
f(z) #0,00; by(z) #0,00 (0<k<g);

ci(z) 0,00 (i€D); di(z) #0,00 (j€]J)

_ be(2)] 77
v = {1' <|b:(2)|> } '
If |f(z)| > b(z), we have

Be(2)[1 £ (2)I* < [bg(2) ()" FIf ()€ < [bg(2)]If (2)1",

Write

and hence
[B(f)(2)] = [bg(2)[|f(2)]".
Then
_ (S, frs e fu) (2)]
’Q(f/fll'“/fﬂ) (Z)’ - |B(f)(Z)| < | |
Lmax , Jﬁh , fa(2) |
EILAUOl S I
If |£(z)] < b(2),
e A@|T | fa2)|”
|Q(f/f1/“'/f71)(z)’ < b(z)d 8(0) IIZ,1€a‘IX|Ci(Z)| fl(Z) f(Z)

Therefore, in any case, the inequality

u(r,Q) < max {V(r,dj) ﬁy(ﬂ%)]‘",

5 by L4

n IAY b\ T
. _k _k 7
]/L(T,CI)IEV (r, f) orgi?i(q{l'y (r' bq) }}

holds where r = |z|, which also holds for all » > 0 by continuity of the functions
. By using Lemma 3.3, we find

deg(Q)
u(r, Q) < max 4 M0 ) ma w(n%) Tt
" jegier | p(r,by)’ 0<k<g by

whence (5) follows from this inequality. Similarly as in the proof of (4.9) in [9],
we then easily obtain the inequality (6).
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5 Proof of Theorem 2.3

By using the algorithm of division, we have

(f) = @1(f)B(f) + P2(f)

with deg(®,) < g. Thus, the equation (4) can be rewritten as follows:

QA o fi) = 0r(f) = B 13)

Applying Theorem 2.1 to this equation, we obtain
m(r,QQ—®1) =o(T(r, f)),

N(r,Q—®q1) =o(T(r, f)),

and hence
T(r,QQ—®1) =0(T(r,f)).

Then [9, Theorem 2.12] implies

10,0 @) =T (1, ) =470, ) +o(T0. 1),
whence it follows that g = 0, and (4) takes the form
Q(f, frs s fn) = P(f).
Thus, [9, Theorem 2.12 ] implies that
T(r,Q) =T(r,®) = pT(r, f) +o(T(r, f)). (14)
On other hand, it is easy to find the estimate

N(r,Q) < deg(Q)N(r,f) + Y N(r,ci). (15)

icl
Obviously, we also have
- f
m(r,Q)) < deg(Q)m(r, f) —|—malx m(r,c;) + Y igm (r, 7“) . (16)
1€ a=1
By Lemma 3.3, we then obtain

T(r,Q) < deg(Q)T(r, f) +)_T(r,ci) + O(1), (17)

i€l

and finally, our result follows from (14) and (17).
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6 Proof of Theorems 2.5 and 2.6

Substitution of f = g 4 a into (8) yields ¥ + P = 0, where
N4 (g, g/, ) g(n)> — Z Clglo (g/)ll . (g(n))l”
i
is a differential polynomial of ¢ such that all of its terms are at least of degree one,

and
T(r,P) =o(T(r, f)).
Also P # 0, since a does not satisfy (8). Now, take z € x with
g(z) # 0,00 Ci(z) # o0; P(2) # 0,9,
and putr = |z|. If |g(z)| > 1, then

m (r, é) = max {O,log’g(%”}

It is therefore sufficient to consider only the case |g(z)| < 1. But then,

0.

¥ (8(2),8(2), - 8" (2) |
- o >’ T | Z @0 @) g )
ewE@ g
= GBI ' 3G
since ig + - - - i, > 1 for all i. Therefore,
I RO S 4 C)| BTN S
<'g) 8 Te@l ~ 8152 T8 R
@@ @)
-8 2(2)] 8 1P(2)]
) +iim rg—/ oot iym rg(n) mrl
< lZ{m(r,Cl)+1 (,g)+ + iy ,g>}+ (P)
= o(T(r, f))-

Since ¢ = f — a, the assertion follows.

Obviously, following the method above, we can also prove Theorem 2.6 in a
similar way.
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7 Final notes

Let us now adopt the following assumption:

(B) Let n be a positive integer, and take a;, b; in « such that |a;| = 1 for each
i =1,...,n,and such that

Li(z) =a;z+b; (i=1,..,n)

satisfies L;(z) # z for eachi = 1, ..., n. Let f be a non-constant meromorphic

function over x and let { f1, ..., fi } be a finite set consisting of the forms A]Li f.
Take
B € M(x)[f]; Q,® € M(x)f, f1,-s fm)-

According to the methods described in this paper, we can easily prove the
following results.

Theorem 7.1. Under the condition (B), if f is a solution of the equation

B(f)Q(f/flrrfm) :q)(f'flrlfM) (18)
with deg B > deg ®, then

q
m(r,Q) <Y m(r,c;)+ Y m(r,d;) +1m (V’blq) +1Y m(r,b)), (19)
=0

iel j€J

where | = max{1,degQ}, QO = Q(f, f1, ..., fm). Further, if O is a polynomial of f, we
also have that

d 1

N(r,Q) < 2N(r,ci) +ZN(r,dj) +0 <ZN <rb—>> (20)
iel j€] j=0 J

Theorem 7.2. If ® is of the form

P
¢UfuwﬁJ=¢U)ZX¥J5
=

and if (18) has an admissible non-constant meromorphic solution f, then

q=0, p<deg(Q).

Theorem 7.3. Assume the condition (B) to hold, and let f € M (x) be a non-constant
admissible solution of

Q(f/flz---/fm):()/ (21)
where the solution f is called admissible if
ZT(;’, ci) =o(T(r, f)).
i€l
If a slowly moving target a € M (k) with respect to f does not satisfy the equation (21),
then

—a

(1725 ) = o109



382 P-C. Hu - Y.-Z. Luan

References

[1] Boutabaa, A., Applications de la théorie de Nevanlinna p-adique, Collect.
Math. 42(1991), 75-93.

[2] Clunie, J., On integral and meromorphic functions, J. Lond. Math. Soc.
37(1962), 17-27.

[3] Gackstatter, F. and Laine, I., Zur Theorie der gewthnlichen Differentialgle-
ichungen im Komplexen, Ann. Polon. Math. 38(1980), 259-287.

[4] Huang, Z.-B. and Chen, Z.-X.,, A Clunie lemma for difference and
g-difference polynomials, Bull. Aust. Math. Soc. 81(2010), 23-32.

[5] Halburd, R. G. and Korhonen, R. J., Difference analogue of the lemma on
the logarithmic derivative with applications to difference equations, J. Math.
Anal. Appl. 314(2006), 477-487.

[6] He, Y. Z. and Xiao, X. Z., Algebroid functions and ordinary differential equa-
tions (Chinese), Science Press, Beijing, 1988.

[7] Hu, P. C. and Yang, C. C., The Second Main Theorem for algebroid functions
of several complex variables, Math. Z. 220(1995), 99-126.

[8] Hu, P. C. and Yang, C. C., Further results on factorization of meromorphic
solutions of partial differential equations, Results Math. 30(1996), 310-320.

[9] Hu, P. C. and Yang, C. C., Meromorphic functions over non-Archimedean
tields, Mathematics and Its Applications 522, Kluwer Academic Publishers,
2000.

[10] Laine, I, Admissible solutions of some generalized algebraic differential
equations, Publ. Univ. Joensuu, Ser. B 10(1974).

[11] Laine, I., Nevanlinna theory and complex differential equations, de Gruyter
Studies in Mathematics 15, Walter de Gruyter & Co., Berlin, 1993.

[12] Laine, I. and Yang, C. C., Clunie theorems for difference and g-difference
polynomials, J. Lond. Math. Soc. (2) 76(2007), 556-566.

[13] Malmquist, ]., Sur les fonctions a un nombre fini de branches définies par les
équations différentielles du premier ordre, Acta Math. 36(1913), 297-343.

[14] Malmquist, ]J., Sur les fonctions a un nombre fini de branches satisfaisant a
une équation différentielle du premier ordre, Acta Math. 42(1920), 317-325.

[15] Mokhon’ko, A. Z. and Mokhon’ko, V. D., Estimates for the Nevanlinna char-
acteristics of some classes of meromorphic functions and their applications
to differential equations, Sib. Math. J. 15(1974), 921-934.

[16] Toda, N., On the growth of meromorphic solutions of an algebraic differen-
tial equation, Proc. Japan Acad., Ser. A 60(1984), 117-120.



Non-Archimedean meromorphic solutions of functional equations 383

[17] Yosida, K., A generalization of a Malmquist’s theorem, Jpn. J. Math. 9(1933),
253-256.

[18] Yosida, K., On algebroid-solutions of ordinary differential equations, Jpn.
J. Math. 10(1934), 199-208.

School of Mathematics

Shandong University

Jinan, 250100, China

E-mails: pchu@sdu.edu.cn, luanyongzhi@gmail.com



