Non-Archimedean meromorphic solutions of functional equations

Pei-Chu Hu* Yong-Zhi Luan

Abstract

We discuss meromorphic solutions of functional equations over non-Archimedean fields, and prove difference analogues of the Clunie lemma, Malm-quist-type theorems and the Mokhon'ko theorem.

1 Introduction

Value distribution theory established by R. Nevanlinna, also called Nevanlinna theory, is a very useful tool for studying both the growth of meromorphic functions in the complex plane \mathbb{C} and meromorphic solutions of differential equations, see for instance the Clunie lemma (cf. [2],[11]), Malmquist-type theorems (cf. [13],[17]) and the Mokhon'ko theorem (cf. [15]). These theorems also have analogues for meromorphic functions over non-Archimedean fields (cf. [9]). Detailed information about Nevanlinna theory over non-Archimedean fields can be found in [9].

Recently, some authors started studying meromorphic solutions of difference equations based on Nevanlinna theory over C (cf. [4], [5], [12]). In this paper, we obtain difference analogues of the theorems stated above by using Nevanlinna theory over non-Archimedean fields.

[^0]
2 Main Results

Let κ be an algebraically closed field of characteristic zero, which is complete for a non-trivial non-Archimedean absolute value $|\cdot|$. Let $\mathcal{A}(\kappa)$ (resp. $\mathcal{M}(\kappa)$) denote the set of entire (respectively meromorphic) functions over κ. As usual, if R is a ring, we use $R\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ to denote the ring of polynomials over R, depending on the variables $X_{0}, X_{1}, \ldots, X_{n}$. We will make the following assumption (fixing at the same time the notations):
(A) Let n be a positive integer, and take a_{i}, b_{i} in κ such that $\left|a_{i}\right|=1, i=0,1, \ldots, n$, with $a_{0}=1, b_{0}=0$, and such that

$$
L_{i}(z)=a_{i} z+b_{i}(i=0,1, \ldots, n)
$$

are distinct. Let f be a non-constant meromorphic function over κ and write $f_{i}=f \circ L_{i}, i=0,1, \ldots, n$, where $f_{0}=f$. Moreover, consider non-zero elements

$$
B \in \mathcal{M}(\kappa)[X] ; \quad \Omega, \Phi \in \mathcal{M}(\kappa)\left[X_{0}, X_{1}, \ldots, X_{n}\right]
$$

Then, there exist $\left\{b_{0}, \ldots, b_{q}\right\} \subset \mathcal{M}(\kappa)$ with $b_{q} \not \equiv 0$ such that

$$
\begin{equation*}
B(X)=\sum_{k=0}^{q} b_{k} X^{k} \tag{1}
\end{equation*}
$$

Similarly, we can write

$$
\begin{equation*}
\Omega\left(X_{0}, X_{1}, \ldots, X_{n}\right)=\sum_{i \in I} c_{i} X_{0}^{i_{0}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}} \tag{2}
\end{equation*}
$$

where $i=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ are non-negative integer indices, I is a finite set, and $c_{i} \in \mathcal{M}(\kappa)$, and also

$$
\begin{equation*}
\Phi\left(X_{0}, X_{1}, \ldots, X_{n}\right)=\sum_{j \in J} d_{j} X_{0}^{j_{0}} X_{1}^{j_{1}} \cdots X_{n}^{j_{n}} \tag{3}
\end{equation*}
$$

where $j=\left(j_{0}, j_{1}, \ldots, j_{n}\right)$ are non-negative integer indices, J is a finite set, and $d_{j} \in \mathcal{M}(\kappa)$.

In this paper, we will use the usual notations and concepts from Nevanlinna theory, see e.g. [9]. For example, $\mu(r, f)$ denotes the maximum term of the power series for $f \in \mathcal{A}(\kappa)$ and its fractional extension to $\mathcal{M}(\kappa), m(r, f)$ is the compensation (or proximity) function of $f, N(r, f)$ is the valence function of f for poles, and finally,

$$
T(r, f)=m(r, f)+N(r, f)
$$

is the characteristic function of f. Then we can state our results as follows.
Theorem 2.1. Under the assumption (A), if f is a solution of the functional equation

$$
\begin{equation*}
B(f) \Omega\left(f, f_{1}, \ldots, f_{n}\right)=\Phi\left(f, f_{1}, \ldots, f_{n}\right) \tag{4}
\end{equation*}
$$

with $\operatorname{deg} B \geq \operatorname{deg} \Phi$, then

$$
\begin{equation*}
m(r, \Omega) \leq \sum_{i \in I} m\left(r, c_{i}\right)+\sum_{j \in J} m\left(r, d_{j}\right)+l m\left(r, \frac{1}{b_{q}}\right)+l \sum_{j=0}^{q} m\left(r, b_{j}\right) \tag{5}
\end{equation*}
$$

where $l=\max \{1, \operatorname{deg} \Omega\}, \Omega=\Omega\left(f, f_{1}, \ldots, f_{n}\right)$. Furthermore, if Φ is a polynomial of f, we also have

$$
\begin{equation*}
N(r, \Omega) \leq \sum_{i \in I} N\left(r, c_{i}\right)+\sum_{j \in J} N\left(r, d_{j}\right)+O\left(\sum_{j=0}^{q} N\left(r, \frac{1}{b_{j}}\right)\right) . \tag{6}
\end{equation*}
$$

Theorem 2.1 is a difference analogue of the Clunie lemma over non-Archimedean fields (cf. [9]). Halburd and Korhonen [5] obtained a difference analogue of the Clunie lemma over the complex numbers (cf. [2]). Theorem 2.1 has numerous applications in the study of non-Archimedean difference equations, and beyond. In order to state one of its applications, we need the following definition:

Definition 2.2. A solution $f \in \mathcal{M}(\kappa)$ of (4) is said to be admissible if

$$
\begin{equation*}
\sum_{i \in I} T\left(r, c_{i}\right)+\sum_{j \in J} T\left(r, d_{j}\right)+\sum_{k=0}^{q} T\left(r, b_{k}\right)=o(T(r, f)), \tag{7}
\end{equation*}
$$

or equivalently, the coefficients of B, Φ, Ω are slowly moving targets with respect to f.
If c_{i}, d_{j}, b_{k} all are rational functions, then each transcendental meromorphic function f over κ must satisfy (7), which means that each transcendental meromorphic solution f over κ is admissible.

Theorem 2.3. If Φ is of the form

$$
\Phi\left(f, f_{1}, \ldots, f_{n}\right)=\Phi(f)=\sum_{j=0}^{p} d_{j} f^{j},
$$

and if (4) has an admissible non-constant meromorphic solution f, then

$$
q=0, \quad p \leq \operatorname{deg}(\Omega) .
$$

Theorem 2.3 is a difference analogue of a Malmquist-type theorem over nonArchimedean fields (cf. [9]) . Malmquist-type theorems were obtained by Malmquist [14], Gackstatter-Laine [3], Laine [10], Toda [16], Yosida [18] (or see He-Xiao [6]) for meromorphic functions on \mathbb{C}, and Hu-Yang [8] or [7] for several complex variables.

Corollary 2.4. Assume condition (A) to hold such that the coefficients of B, Ω, Φ are rational functions over κ, and Φ has the form as in Theorem 2.3. Then, if (4) has a transcendental meromorphic solution f over κ, it holds that Φ / B is a polynomial in f of degree $\leq \operatorname{deg}(\Omega)$.

Corollary 2.4 is a difference analogue of the non-Archimedean Malmquisttype theorem due to Boutabaa [1].

Theorem 2.5. Let $f \in \mathcal{M}(\kappa)$ be a non-constant admissible solution of

$$
\begin{equation*}
\Omega\left(f, f^{\prime}, \ldots, f^{(n)}\right)=0 \tag{8}
\end{equation*}
$$

where now the solution f is admissible if $\sum_{i \in I} T\left(r, c_{i}\right)=o(T(r, f))$. If a slowly moving target $a \in \mathcal{M}(\kappa)$ with respect to f, that is, $T(r, a)=o(T(r, f))$, does not satisfy the equation (8), then

$$
m\left(r, \frac{1}{f-a}\right)=o(T(r, f))
$$

Theorem 2.5 is an analogue of a result due to Mokhon'ko and Mokhon'ko [15] over non-Archimedean fields, which also has a difference analogue as follows:

Theorem 2.6. Assume the condition (A) to hold and let $f \in \mathcal{M}(\kappa)$ be a non-constant admissible solution of

$$
\begin{equation*}
\Omega\left(f, f_{1}, \ldots, f_{n}\right)=0 \tag{9}
\end{equation*}
$$

If a slowly moving target $a \in \mathcal{M}(\kappa)$ with respect to f does not satisfy the equation (9), then

$$
m\left(r, \frac{1}{f-a}\right)=o(T(r, f))
$$

A version of Theorem 2.6 over the complex numbers can be found in [5].

3 A difference analogue of a lemma on logarithmic derivation

Take $a(\neq 0), b \in \mathcal{\kappa}$ and consider the linear transformation

$$
L(z)=a z+b
$$

over κ. For a positive integer m, put

$$
\Delta_{L} f=f \circ L-f, \Delta_{L}^{m} f=\Delta_{L}\left(\Delta_{L}^{m-1} f\right)
$$

Lemma 3.1. Take $f \in \mathcal{A}(\kappa)$ and assume $|a| \leq 1$. When $r>|b| /|a|$, we have

$$
\mu(r, f \circ L) \leq \mu(r, f)
$$

Moreover, we obtain

$$
\mu\left(r, \frac{f \circ L}{f}\right) \leq 1, \mu\left(r, \frac{\Delta_{L}^{m} f}{f}\right) \leq 1
$$

Proof. We can write

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

since $f \in \mathcal{A}(\kappa)$. Therefore

$$
f(L(z))=\sum_{n=0}^{\infty} a_{n}(a z+b)^{n}
$$

First of all, we take $r \in|\kappa|$, that is, $r=|z|$ for some $z \in \kappa$. When $r>|b| /|a|$, we find (cf. [9])
$\mu(r, f \circ L)=|f(L(z))| \leq \max _{n \geq 0}\left|a_{n}\right||a z+b|^{n}=\max _{n \geq 0}\left|a_{n}\right||a z|^{n} \leq \max _{n \geq 0}\left|a_{n}\right||z|^{n}=\mu(r, f)$.
In particular,

$$
\mu\left(r, \frac{f \circ L}{f}\right)=\frac{\mu(r, f \circ L)}{\mu(r, f)} \leq 1
$$

and hence

$$
\mu\left(r, \frac{\Delta_{L} f}{f}\right)=\frac{\mu(r, f \circ L-f)}{\mu(r, f)} \leq \frac{1}{\mu(r, f)} \max \{\mu(r, f \circ L), \mu(r, f)\} \leq 1
$$

By induction, we can prove that

$$
\mu\left(r, \frac{\Delta_{L}^{m} f}{f}\right) \leq 1 .
$$

Since $|\kappa|$ is dense in $\mathbb{R}_{+}=[0, \infty)$, by using continuity we easily see that these inequalities hold for all $r>|b| /|a|$.

Note that (cf. [9])

$$
\begin{equation*}
m(r, f)=\log ^{+} \mu(r, f)=\max \{0, \log \mu(r, f)\} . \tag{10}
\end{equation*}
$$

Lemma 3.1 immediately implies the following difference analogue of the lemma on the logarithmic derivation:
Corollary 3.2. Take $f \in \mathcal{A}(\kappa)$ and assume $|a| \leq 1$. When $r>|b| /|a|$, we have

$$
m\left(r, \frac{f \circ L}{f}\right)=0, m\left(r, \frac{\Delta_{L}^{m} f}{f}\right)=0 .
$$

Lemma 3.3. Take $f \in \mathcal{M}(\kappa) \backslash\{0\}$ and assume $|a|=1$. When $r>|b|$, we have that

$$
\begin{equation*}
\mu(r, f \circ L)=\mu(r, f) . \tag{11}
\end{equation*}
$$

Moreover, we obtain

$$
\mu\left(r, \frac{f \circ L}{f}\right)=1, \mu\left(r, \frac{\Delta_{L}^{m} f}{f}\right) \leq 1 .
$$

Proof. Since $f \in \mathcal{M}(\kappa) \backslash\{0\}$, there exist $g, h(\neq 0) \in \mathcal{A}(\kappa)$ with $f=\frac{g}{h}$. Hence (cf. [9])

$$
\begin{equation*}
\mu(r, f \circ L)=\frac{\mu(r, g \circ L)}{\mu(r, h \circ L)} . \tag{12}
\end{equation*}
$$

Take $r \in|\kappa|$. Since $|a|=1$, we have

$$
|L(z)|=|a z+b|=|z|=r
$$

when $r>|b|$, and so

$$
\mu(r, g \circ L)=\mu(r, g) .
$$

Similarly, we have $\mu(r, h \circ L)=\mu(r, h)$. Thus the formula (11) holds. By using continuity we easily see that the inequality holds for all $r>|b|$.
Corollary 3.4. Take $f \in \mathcal{M}(\kappa) \backslash\{0\}$ and assume $|a|=1$. When $r>|b|$, we have

$$
m\left(r, \frac{f \circ L}{f}\right)=0, m\left(r, \frac{\Delta_{L}^{m} f}{f}\right)=0 .
$$

4 Proof of Theorem 2.1

In order to prove (5), take $z \in \kappa$ with

$$
\begin{gathered}
f(z) \neq 0, \infty ; \quad b_{k}(z) \neq 0, \infty \quad(0 \leq k \leq q) \\
c_{i}(z) \neq 0, \infty \quad(i \in I) ; \quad d_{j}(z) \neq 0, \infty \quad(j \in J) .
\end{gathered}
$$

Write

$$
b(z)=\max _{0 \leq k<q}\left\{1,\left(\frac{\left|b_{k}(z)\right|}{\left|b_{q}(z)\right|}\right)^{\frac{1}{q-k}}\right\} .
$$

If $|f(z)|>b(z)$, we have

$$
\left|b_{k}(z)\right||f(z)|^{k} \leq\left|b_{q}(z)\right| b(z)^{q-k}|f(z)|^{k}<\left|b_{q}(z)\right||f(z)|^{q}
$$

and hence

$$
|B(f)(z)|=\left|b_{q}(z)\right||f(z)|^{q} .
$$

Then

$$
\begin{aligned}
&\left|\Omega\left(f, f_{1}, \ldots, f_{n}\right)(z)\right|=\frac{\left|\Phi\left(f, f_{1}, \ldots, f_{n}\right)(z)\right|}{|B(f)(z)|} \leq \\
& \qquad \frac{1}{\left|b_{q}(z)\right|} \max _{j \in J}\left|d_{j}(z)\right|\left|\frac{f_{1}(z)}{f(z)}\right|^{j_{1}} \cdots\left|\frac{f_{n}(z)}{f(z)}\right|^{j_{n}}
\end{aligned}
$$

If $|f(z)| \leq b(z)$,

$$
\left|\Omega\left(f, f_{1}, \ldots, f_{n}\right)(z)\right| \leq b(z)^{\operatorname{deg}(\Omega)} \max _{i \in I}\left|c_{i}(z)\right|\left|\frac{f_{1}(z)}{f(z)}\right|^{i_{1}} \cdots\left|\frac{f_{n}(z)}{f(z)}\right|^{i_{n}}
$$

Therefore, in any case, the inequality

$$
\begin{aligned}
& \mu(r, \Omega) \leq \max _{j \in J, i \in I}\left\{\frac{\mu\left(r, d_{j}\right)}{\mu\left(r, b_{q}\right)} \prod_{k=1}^{n} \mu\left(r, \frac{f_{k}}{f}\right)^{j_{k}},\right. \\
&\left.\mu\left(r, c_{i}\right) \prod_{k=1}^{n} \mu\left(r, \frac{f_{k}}{f}\right)^{i_{k}} \max _{0 \leq k<q}\left\{1, \mu\left(r, \frac{b_{k}}{b_{q}}\right)^{\frac{\operatorname{deg}(\Omega)}{q-k}}\right\}\right\}
\end{aligned}
$$

holds where $r=|z|$, which also holds for all $r>0$ by continuity of the functions μ. By using Lemma 3.3, we find

$$
\mu(r, \Omega) \leq \max _{j \in J, i \in I}\left\{\frac{\mu\left(r, d_{j}\right)}{\mu\left(r, b_{q}\right)}, \mu\left(r, c_{i}\right) \cdot \max _{0 \leq k<q}\left\{1, \mu\left(r, \frac{b_{k}}{b_{q}}\right)^{\frac{\operatorname{deg}(\Omega)}{q-k}}\right\}\right\}
$$

whence (5) follows from this inequality. Similarly as in the proof of (4.9) in [9], we then easily obtain the inequality (6).

5 Proof of Theorem 2.3

By using the algorithm of division, we have

$$
\Phi(f)=\Phi_{1}(f) B(f)+\Phi_{2}(f)
$$

with $\operatorname{deg}\left(\Phi_{2}\right)<q$. Thus, the equation (4) can be rewritten as follows:

$$
\begin{equation*}
\Omega\left(f, f_{1}, \ldots, f_{n}\right)-\Phi_{1}(f)=\frac{\Phi_{2}(f)}{B(f)} \tag{13}
\end{equation*}
$$

Applying Theorem 2.1 to this equation, we obtain

$$
\begin{aligned}
& m\left(r, \Omega-\Phi_{1}\right)=o(T(r, f)), \\
& N\left(r, \Omega-\Phi_{1}\right)=o(T(r, f)),
\end{aligned}
$$

and hence

$$
T\left(r, \Omega-\Phi_{1}\right)=o(T(r, f))
$$

Then [9, Theorem 2.12] implies

$$
T\left(r, \Omega-\Phi_{1}\right)=T\left(r, \frac{\Phi_{2}}{B}\right)=q T(r, f)+o(T(r, f)),
$$

whence it follows that $q=0$, and (4) takes the form

$$
\Omega\left(f, f_{1}, \ldots, f_{n}\right)=\Phi(f)
$$

Thus, [9, Theorem 2.12] implies that

$$
\begin{equation*}
T(r, \Omega)=T(r, \Phi)=p T(r, f)+o(T(r, f)) \tag{14}
\end{equation*}
$$

On other hand, it is easy to find the estimate

$$
\begin{equation*}
N(r, \Omega) \leq \operatorname{deg}(\Omega) N(r, f)+\sum_{i \in I} N\left(r, c_{i}\right) . \tag{15}
\end{equation*}
$$

Obviously, we also have

$$
\begin{equation*}
m(r, \Omega) \leq \operatorname{deg}(\Omega) m(r, f)+\max _{i \in I}\left\{m\left(r, c_{i}\right)+\sum_{\alpha=1}^{n} i_{\alpha} m\left(r, \frac{f_{\alpha}}{f}\right)\right\} \tag{16}
\end{equation*}
$$

By Lemma 3.3, we then obtain

$$
\begin{equation*}
T(r, \Omega) \leq \operatorname{deg}(\Omega) T(r, f)+\sum_{i \in I} T\left(r, c_{i}\right)+O(1) \tag{17}
\end{equation*}
$$

and finally, our result follows from (14) and (17).

6 Proof of Theorems 2.5 and 2.6

Substitution of $f=g+a$ into (8) yields $\Psi+P=0$, where

$$
\Psi\left(g, g^{\prime}, \ldots, g^{(n)}\right)=\sum_{i} C_{i} g^{i_{0}}\left(g^{\prime}\right)^{i_{1}} \cdots\left(g^{(n)}\right)^{i_{n}}
$$

is a differential polynomial of g such that all of its terms are at least of degree one, and

$$
T(r, P)=o(T(r, f))
$$

Also $P \not \equiv 0$, since a does not satisfy (8). Now, take $z \in \kappa$ with

$$
g(z) \neq 0, \infty ; C_{i}(z) \neq \infty ; P(z) \neq 0, \infty
$$

and put $r=|z|$. If $|g(z)| \geq 1$, then

$$
m\left(r, \frac{1}{g}\right)=\max \left\{0, \log \frac{1}{|g(z)|}\right\}=0
$$

It is therefore sufficient to consider only the case $|g(z)|<1$. But then,

$$
\begin{aligned}
\left|\frac{\Psi\left(g(z), g^{\prime}(z), \ldots, g^{(n)}(z)\right)}{g(z)}\right| & =\frac{1}{|g(z)|}\left|\sum_{i} C_{i}(z) g(z)^{i_{0}} g^{\prime}(z)^{i_{1}} \cdots g^{(n)}(z)^{i_{n}}\right| \\
& \leq \max _{i}\left|C_{i}(z)\right|\left|\frac{g^{\prime}(z)}{g(z)}\right|^{i_{1}} \cdots\left|\frac{g^{(n)}(z)}{g(z)}\right|^{i_{n}}
\end{aligned}
$$

since $i_{0}+\cdots i_{n} \geq 1$ for all i. Therefore,

$$
\begin{aligned}
m\left(r, \frac{1}{g}\right) & =\log \frac{1}{|g(z)|}=\log \frac{|P(z)|}{|g(z)|}+\log \frac{1}{|P(z)|} \\
& =\log \frac{\left|\Psi\left(g(z), g^{\prime}(z), \ldots, g^{(n)}(z)\right)\right|}{|g(z)|}+\log \frac{1}{|P(z)|} \\
& \leq \sum_{i}\left\{m\left(r, C_{i}\right)+i_{1} m\left(r, \frac{g^{\prime}}{g}\right)+\cdots+i_{n} m\left(r, \frac{g^{(n)}}{g}\right)\right\}+m\left(r, \frac{1}{P}\right) \\
& =o(T(r, f)) .
\end{aligned}
$$

Since $g=f-a$, the assertion follows.
Obviously, following the method above, we can also prove Theorem 2.6 in a similar way.

7 Final notes

Let us now adopt the following assumption:
(B) Let n be a positive integer, and take a_{i}, b_{i} in κ such that $\left|a_{i}\right|=1$ for each $i=1, \ldots, n$, and such that

$$
L_{i}(z)=a_{i} z+b_{i}(i=1, \ldots, n)
$$

satisfies $L_{i}(z) \neq z$ for each $i=1, \ldots, n$. Let f be a non-constant meromorphic function over κ and let $\left\{f_{1}, \ldots, f_{m}\right\}$ be a finite set consisting of the forms $\Delta_{L_{i}}^{j} f$. Take

$$
B \in \mathcal{M}(\kappa)[f] ; \Omega, \Phi \in \mathcal{M}(\kappa)\left[f, f_{1}, \ldots, f_{m}\right] .
$$

According to the methods described in this paper, we can easily prove the following results.

Theorem 7.1. Under the condition (B), if f is a solution of the equation

$$
\begin{equation*}
B(f) \Omega\left(f, f_{1}, \ldots, f_{m}\right)=\Phi\left(f, f_{1}, \ldots, f_{m}\right) \tag{18}
\end{equation*}
$$

with $\operatorname{deg} B \geq \operatorname{deg} \Phi$, then

$$
\begin{equation*}
m(r, \Omega) \leq \sum_{i \in I} m\left(r, c_{i}\right)+\sum_{j \in J} m\left(r, d_{j}\right)+l m\left(r, \frac{1}{b_{q}}\right)+l \sum_{j=0}^{q} m\left(r, b_{j}\right) \tag{19}
\end{equation*}
$$

where $l=\max \{1, \operatorname{deg} \Omega\}, \Omega=\Omega\left(f, f_{1}, \ldots, f_{m}\right)$. Further, if Φ is a polynomial of f, we also have that

$$
\begin{equation*}
N(r, \Omega) \leq \sum_{i \in I} N\left(r, c_{i}\right)+\sum_{j \in J} N\left(r, d_{j}\right)+O\left(\sum_{j=0}^{q} N\left(r, \frac{1}{b_{j}}\right)\right) . \tag{20}
\end{equation*}
$$

Theorem 7.2. If Φ is of the form

$$
\Phi\left(f, f_{1}, \ldots, f_{m}\right)=\Phi(f)=\sum_{j=0}^{p} d_{j} f^{j}
$$

and if (18) has an admissible non-constant meromorphic solution f, then

$$
q=0, \quad p \leq \operatorname{deg}(\Omega)
$$

Theorem 7.3. Assume the condition (B) to hold, and let $f \in \mathcal{M}(\kappa)$ be a non-constant admissible solution of

$$
\begin{equation*}
\Omega\left(f, f_{1}, \ldots, f_{m}\right)=0 \tag{21}
\end{equation*}
$$

where the solution f is called admissible if

$$
\sum_{i \in I} T\left(r, c_{i}\right)=o(T(r, f)) .
$$

If a slowly moving target $a \in \mathcal{M}(\kappa)$ with respect to f does not satisfy the equation (21), then

$$
m\left(r, \frac{1}{f-a}\right)=o(T(r, f)) .
$$

References

[1] Boutabaa, A., Applications de la théorie de Nevanlinna p-adique, Collect. Math. 42(1991), 75-93.
[2] Clunie, J., On integral and meromorphic functions, J. Lond. Math. Soc. 37(1962), 17-27.
[3] Gackstatter, F. and Laine, I., Zur Theorie der gewöhnlichen Differentialgleichungen im Komplexen, Ann. Polon. Math. 38(1980), 259-287.
[4] Huang, Z.-B. and Chen, Z.-X., A Clunie lemma for difference and q-difference polynomials, Bull. Aust. Math. Soc. 81(2010), 23-32.
[5] Halburd, R. G. and Korhonen, R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314(2006), 477-487.
[6] He, Y. Z. and Xiao, X. Z., Algebroid functions and ordinary differential equations (Chinese), Science Press, Beijing, 1988.
[7] Hu, P. C. and Yang, C. C., The Second Main Theorem for algebroid functions of several complex variables, Math. Z. 220(1995), 99-126.
[8] Hu, P. C. and Yang, C. C., Further results on factorization of meromorphic solutions of partial differential equations, Results Math. 30(1996), 310-320.
[9] Hu, P. C. and Yang, C. C., Meromorphic functions over non-Archimedean fields, Mathematics and Its Applications 522, Kluwer Academic Publishers, 2000.
[10] Laine, I., Admissible solutions of some generalized algebraic differential equations, Publ. Univ. Joensuu, Ser. B 10(1974).
[11] Laine, I., Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics 15, Walter de Gruyter \& Co., Berlin, 1993.
[12] Laine, I. and Yang, C. C., Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. (2) 76(2007), 556-566.
[13] Malmquist, J., Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre, Acta Math. 36(1913), 297-343.
[14] Malmquist, J., Sur les fonctions à un nombre fini de branches satisfaisant à une équation différentielle du premier ordre, Acta Math. 42(1920), 317-325.
[15] Mokhon'ko, A. Z. and Mokhon'ko, V. D., Estimates for the Nevanlinna characteristics of some classes of meromorphic functions and their applications to differential equations, Sib. Math. J. 15(1974), 921-934.
[16] Toda, N., On the growth of meromorphic solutions of an algebraic differential equation, Proc. Japan Acad., Ser. A 60(1984), 117-120.
[17] Yosida, K., A generalization of a Malmquist's theorem, Jpn. J. Math. 9(1933), 253-256.
[18] Yosida, K., On algebroid-solutions of ordinary differential equations, Jpn. J. Math. 10(1934), 199-208.

School of Mathematics
Shandong University
Jinan, 250100, China
E-mails: pchu@sdu.edu.cn, luanyongzhi@gmail.com

[^0]: *The work of first named author was partially supported by National Natural Science Foundation of China (Grant No. 11271227), and supported partially by PCSIRT (IRT1264).

 Received by the editors in April 2014 - In revised form in January 2016.
 Communicated by H. De Schepper.
 2010 Mathematics Subject Classification : Primary 11S80, 12H25; Secondary 30D35.
 Key words and phrases : meromorphic solutions, functional equations, Nevanlinna theory.

