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Pascual Lucas∗ José Antonio Ortega-Yagües

Abstract

In this paper, we study the surfaces whose geodesics are slant curves.
We show that a unit speed curve γ in the 3-dimensional Euclidean space
is a slant helix if and only if it is a geodesic of a helix surface. We prove
that the striction line of a helix surface is a general helix; as a consequence,
slant helices are characterized as geodesics of the tangent surface of a general
helix. Finally, we provide two methods for constructing slant helices in helix
surfaces.

1 Introduction

The study of curves of constant slope is a well established topic in differential
geometry. Two families of curves of constant slope stand out above the rest:
general helices and slant helices. Recall that general helices are defined by the
property that their tangent makes a constant angle with a fixed direction in every
point. In a similar way, slant helices are defined by the property that their prin-
cipal normals make a constant angle with a fixed direction. The term slant helix
was introduced by Izumiya and Takeuchi, [13]; however, examples of this kind
of curves were studied in the past (see e.g. Salkowski curves, [22, 19], or curves
of constant precession, [23]). General helices and slant helices are deeply interre-
lated; observe that the principal normal lines of a general helix are perpendicular
to a fixed direction, so that a general helix is also a slant helix. On the other
hand, it is well known that the tangent indicatrix and the binormal indicatrix of
a slant helix are spherical helices, [13, 12]. Another beautiful relation between
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general and slant helices is given in [17], by using the concept of the successor
transformation of Frenet curves: in this transformation, the tangent vector of the
first curve plays the role of principal normal vector of the second curve. General
helices are the successor curves of plane curves, and slant helices are the succes-
sor curves of general helices.

A classical result stated by M.A. Lancret in 1802 and first proved by
B. De Saint Venant in 1845 (see [24]) is that a unit speed curve α is a general
helix if and only if τα/κα is constant, where κα and τα stand for the curvature and
torsion of α. It is shown in [13] a similar result for slant helices: a necessary and
sufficient condition for a curve α with κα > 0 to be a slant helix is that the function

σ =
κ2

α

(κ2
α + τ2

α )
3/2

(
τα

κα

)′

be constant. Observe that σ ≡ 0 implies that α is a general helix. Somehow, |σ|
measures how much the curve moves away from being a general helix, and |σ′|
measures how much the curve moves away from being a slant helix.

General helices have a nice characterization as geodesics of cylinders (and for
this reason they are also called cylindrical helices). In fact, it can be proved that
every geodesic of a cylinder shaped over a plane curve is a general helix, and that
every general helix can be obtained in this way. In other words, cylinders are the
surfaces whose geodesics are general helices.

A topic that has attracted the interest of many mathematicians in recent years
is the surfaces of constant slope or helix surfaces. They were introduced in [3]
as the surfaces in S2 × R for which the unit normal makes a constant angle with
the tangent direction to R. Later, this kind of surfaces have been extended to
other ambient spaces (see e.g. [5, 18, 6, 9, 21, 20, 4]). Although these surfaces
are interesting from a mathematical point of view, this kind of surfaces have also
been studied in other areas. For example, the applications of these surfaces in the
theory of liquid crystals and of layered fluids were considered in [2]; and these
surfaces are of interest in the shape-from-shading problem (see [14]), which arises
when recovering a shape from a single image (this is a classical problem in com-
puter vision, [25, 8]). Related with this, the isophotic curves play an important
role in visual psychophysics and vision theory, [11, 15]. Isophotic curves on a
surface can be identified with the curves such that the surface normals along the
curve make a constant angle with a fixed direction, [16]. Then isophotic curves
are related with slant helices, [10]. The concept of constant angle surface has been
extended to higher dimensions in [7], where the authors define the helix subman-
ifolds as those whose tangent spaces make a constant angle with a fixed direction.

This paper is organized as follows. In section 2 we give some preliminaries
and basic facts about Frenet curves and helix surfaces in R

3; in particular, every
helix surface is a ruled surface. In section 3 we study the relation between slant
helices and helix surfaces, and prove that a curve γ in R3 is a slant helix if and
only if γ is a geodesic of a helix surface (Theorem 3). As an application of this
result we obtain the following characterization of the curves of constant preces-
sion: a curve γ in R

3 is a curve of constant precession if and only if it is a geodesic
with linear slope of a helix surface generated by an epicycloid or hypocycloid. In
section 4 we prove that the striction line of a helix surface is a general helix, and
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the helix surface is nothing but the tangent surface of this general helix. Conse-
quently, a curve γ in R3 is a slant helix if and only if γ is a geodesic of the tangent
surface of a general helix (Theorem 7). We finish this section giving two methods
to construct slant helices in helix surfaces.

2 Preliminaries

Let α : I → R3 be a differentiable curve parametrized by an arbitrary parameter t.
At each point of α where α′(t)× α′′(t) 6= 0, the Frenet frame {Tα(t), Nα(t), Bα(t)}
is defined by

Tα =
α′

||α′|| , Nα =
α′ × α′′

||α′ × α′′|| × Tα, Bα =
α′ × α′′

||α′ × α′′|| .

The geometry of the curve α is essentially encoded in its invariants, curvature κα

and torsion τα , which can be computed by

κα =
||α′ × α′′||
||α′||3 and τα =

〈α′ × α′′, α′′′〉
||α′ × α′′||2 ,

where 〈, 〉 denotes the usual inner product of R3. These invariants represent
basically the rate of change of the tangent vector and the osculating plane,
respectively. When α is parametrized by the arclength s, the variation of the
Frenet frame is described by the usual Frenet-Serret equations:

T′
α(s) = ∇0

Tα
Tα(s) = κα(s) Nα(s),

N′
α(s) = ∇0

Tα
Nα(s) = −κα(s) Tα(s) + τα(s) Bα(s), (1)

B′
α(s) = ∇0

Tα
Bα(s) = −τα(s) Nα(s),

where ∇0 denotes the Levi-Civita connection on R3.
A submanifold M of a Euclidean space Rn is said to be a helix submanifold if

there is a fixed direction u ∈ Rn such that the tangent space of the submanifold
makes a constant angle with u, [7]. In the case of hypersurfaces with unit normal
vector N, this definition is equivalent to the fact that the angle ϕ between N and
u is a constant function along M. A helix hypersurface M ⊂ Rn of angle ϕ will
be denoted by Mϕ. Without loss of generality, we can assume ϕ ∈ [0, π/2].

The construction of the Euclidean helix hypersurfaces is made in [7]. Let
H ⊂ Rn−1 ⊂ Rn = Rn−1 × R be an orientable hypersurface and let η be a
unit normal vector field. Let u = (0, . . . , 0, 1) and define the vector field T(x) =
cos ϕ η(x) + sin ϕ u, where x ∈ H and ϕ ∈ R is constant. For an appropriate
small ε, define an immersion fϕ : M = H × (−ε, ε) → Rn by fϕ(x, z) = x+ z T(x).
Then we have the following result (theorems 2.4 and 2.7 of [7]): The immersed
hypersurface fϕ(M) is a helix hypersurface of angle ϕ, and each helix hypersurface
Mϕ ⊂ R

n is locally obtained in this way.

Take a unit speed plane curve β : I ⊂ R → R2 ⊂ R3 = R2 × R, with curva-
ture κβ(t) and Frenet frame {Tβ(t), Nβ(t)}. Then we have the Frenet equations of
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the curve β,

T′
β(t) = κβ(t) Nβ(t),

N′
β(t) = −κβ(t) Tβ(t).

The helix surface M = Mϕ built on the curve β is parametrized by

X(t, z) = β(t) + z (cos ϕ Nβ(t) + sin ϕ u).

To emphasize the dependence of both the angle ϕ and the curve β, sometimes we
will use the notation Mβ,ϕ.

The tangent frame is given by

Xt(t, z) = (1 − cos ϕ κβ(t) z)Tβ(t),

Xz(t, z) = cos ϕ Nβ(t) + sin ϕ u,

and then the unit normal vector field is given by

N(t, z) =
Xt × Xz

||Xt × Xz||
= − sin ϕ Nβ(t) + cos ϕ u. (2)

The shape operator A(t, z) = −dN(t, z) at a point X(t, z) is given by

A(t, z) =




sin ϕ κβ(t)

1 − cos ϕ κβ(t) z
0

0 0


 .

Hence the Gaussian and mean curvatures (K and H) of the helix surface are given
by

K = 0 and H =
sin ϕ κβ(t)

2(1 − cos ϕ κβ(t) z)
.

3 Slant helices and helix surfaces

In this section we study the geodesics γ(s) of a helix surface Mϕ. We have two
distinguished cases according to the angle ϕ:

(i) ϕ = 0. Then Mϕ is a plane (or an open piece of a plane), and γ is a straight
line.

(ii) ϕ = π/2. Then Mϕ is a cylinder, and γ is a general helix (or cylindrical
helix).

Without loss of generality, from now on we assume that ϕ ∈ (0, π/2).
Let γ(s) = X(t(s), z(s)) be a unit speed geodesic in Mϕ, with κγ > 0, then the

unit tangent is given by

Tγ(s) = t′(s)(1 − cos ϕ κβ(t(s)) z(s))Tβ(t(s)) + z′(s)(cos ϕ Nβ(t(s)) + sin ϕ u).
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Then there is a differentiable function θ(s) such that

t′(s)(1 − cos ϕ κβ(t(s)) z(s)) = sin θ(s),

z′(s) = cos θ(s).

The function θ(s), called the slope function of the geodesic, is nothing but the
angle function between the geodesic and the director vector at γ(s). From the
Frenet equations of γ, (1), we deduce

κγ(s)Nγ(s) = cos θ(s) (θ′(s)− cos ϕ t′(s) κβ(t(s))) Tβ(t(s))

+ sin θ(s) (t′(s) κβ(t(s)) − cos ϕ θ′(s)) Nβ(t(s)) (3)

− sin ϕ θ′(s) sin θ(s) u.

Since γ(s) is a geodesic, then Nγ(s) is orthogonal to the surface M, so we can
assume

Nγ(s) = N(t(s), z(s)). (4)

(The case Nγ(s) = −N(t(s), z(s)) is similar.) From the equations (2) and (3) we
get

cos θ(s) (θ′(s)− cos ϕ t′(s) κβ(t(s))) = 0, (5)

sin θ(s) (t′(s) κβ(t(s)) − cos ϕ θ′(s)) = − sin ϕ κγ(s), (6)

− sin ϕ θ′(s) sin θ(s) = cos ϕ κγ(s). (7)

From (5) we deduce
θ′(s)− cos ϕ t′(s) κβ(t(s)) = 0; (8)

otherwise, cos θ(s) = 0 and then the function θ(s) is constant. Hence (7) yields
cos ϕ κγ(s) = 0, a contradiction.

It is easy to see that the binormal vector Bγ(s) is given by

Bγ(s) = Tγ(s)× Nγ(s) =

cos θ(s) Tβ(t(s)) − cos ϕ sin θ(s) Nβ(t(s)) − sin ϕ sin θ(s) u. (9)

By taking covariant derivative in (4) we get

N′
γ(s) = sin ϕ t′(s) κβ(t(s)) Tβ(t(s)). (10)

Now, again from the Frenet equations of γ, and bearing (9) in mind, we obtain

N′
γ(s) = −κγ(s) Tγ(s) + τγ(s) Bγ(s)

= (−κγ(s) sin θ(s) + τγ(s) cos θ(s)) Tβ(t(s))

− cos ϕ (κγ(s) cos θ(s) + τγ(s) sin θ(s)) Nβ(t(s)) (11)

− sin ϕ (κγ(s) cos θ(s) + τγ(s) sin θ(s)) u.

From (10) and (11) we get

−κγ(s) sin θ(s) + τγ(s) cos θ(s) = sin ϕ t′(s) κβ(t(s)), (12)

κγ(s) cos θ(s) + τγ(s) sin θ(s) = 0. (13)
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Finally, from (7), (8) and (13) we deduce that the curvature and torsion of the
geodesic γ(s) are given by

κγ(s) = −t′(s) sin ϕ sin θ(s) κβ(t(s)) = − tan ϕ θ′(s) sin θ(s), (14)

τγ(s) = t′(s) sin ϕ cos θ(s) κβ(t(s)) = tan ϕ θ′(s) cos θ(s). (15)

We have proved the following result.

Proposition 1 A unit speed curve γ(s) = X(t(s), z(s)), with κγ > 0, is a geodesic in
the helix surface Mϕ if and only if there is a differentiable function θ(s) such that

t′(s)(1 − cos ϕ κβ(t(s)) z(s)) = sin θ(s), (16)

z′(s) = cos θ(s), (17)

cos ϕ t′(s) κβ(t(s)) = θ′(s). (18)

Moreover, the curvature and torsion of γ are given by (14) and (15), respectively.

Example 1 (Geodesics of a circular cone) If κβ(t) is a nonzero constant κ0, then
β is a circle of radius 1/κ0, Mϕ is a circular cone, and the geodesics γ of Mϕ are
rectifying curves, [1, 13]. We obtain the exact parametrizations of these curves by
using Proposition 1.

Since β(t) = 1
κ0
(cos(κ0t), sin(κ0t), 0), the parametrization of the cone Mϕ is

given by

X(t, z) =
(( 1

κ0
− z cos ϕ

)
cos(κ0t),

( 1

κ0
− z cos ϕ

)
sin(κ0t), z sin ϕ

)
.

By using Proposition 1, γ(s) = X(t(s), z(s)) is a geodesic of the cone Mϕ if and
only

t(s) =
1

κ0 cos ϕ

(
arccot(as + b)− t0

)
,

z(s) =
1

a

√
(as + b)2 + 1 +

1

κ0 cos ϕ
,

where a, b and t0 are constants. Therefore, the coordinates of the curve
γ(s) = (γ1(s), γ2(s), γ3(s)) are given by

γ1(s) = −1

a
cos ϕ

√
(as + b)2 + 1 cos

(
sec ϕ (arccot(as + b)− t0)

)
,

γ2(s) = −1

a
cos ϕ

√
(as + b)2 + 1 sin

(
sec ϕ (arccot(as + b)− t0)

)
,

γ3(s) =
1

a
sin ϕ

√
(as + b)2 + 1 +

tan ϕ

κ0
.

From (14) and (15), the curvature and torsion of γ are given by

κγ(s) = a tan ϕ ((as + b)2 + 1)−3/2,

τγ(s) = −a tan ϕ (as + b) ((as + b)2 + 1)−3/2,

and therefore τγ/κγ = −(as + b), i.e. γ(s) is a rectifying curve, [1].



Slant helices in the Euclidean 3-space revisited 139

The curve γ is a slant helix if the principal normal lines of γ make a constant
angle ϕ with a fixed direction, [13]. The case ϕ = π/2 corresponds with the
general helices. In Example 1, we provide examples of geodesics in a circular
cone, that are at the same time rectifying curves and slant helices.

The curvature and torsion of a slant helix (not a general helix) can be described
in a nice way.

Proposition 2 (cf. [17]) Let γ(s) be a unit speed curve fully in R3 and suppose it is
not a general helix. Then γ is a slant helix if and only if, up to reflections, there exist a
nonzero constant λ and a differentiable non-constant function θ(s) such that

κγ(s) = −λ θ′(s) sin θ(s),

τγ(s) = λ θ′(s) cos θ(s).

It is well known that the geodesics γ(s) of Mϕ are slant helices, [21]. In fact,
from (4) and (2) we obtain that 〈Nγ(s), u〉 = cos ϕ is a nonzero constant, where u
is a unit vector normal to R

2. This shows that γ is a slant helix.

We now prove the converse.

Theorem 3 Let γ(s) be a unit speed curve fully in R3 and suppose it is not a general
helix. If γ is a slant helix, then there is a plane curve β and an angle ϕ ∈ (0, π/2) such
that γ is (congruent to) a geodesic of the helix surface Mβ,ϕ.

Proof. Let γ(s) be an arclength parametrized slant helix (not a general helix),
with κγ > 0. Let λ and θ(s) be the nonzero constant and the non-constant differ-
entiable function given in Proposition 2. Define ϕ = arctan(λ) and let z(s) be a
solution of (17). We distinguish two cases:

Case 1: θ′ z + sin θ = 0. By using (17) we deduce

θ′′ sin θ − 2 θ′2 cos θ = 0,

and then θ(s) = − arccot(a(s + b)), for certain constants a and b. This implies
that τγ/κγ is a linear function on the arclength parameter s, i.e. γ is a geodesic of
a cone, [13].

Case 2: θ′ z + sin θ 6= 0. Let t(s) be a solution of the differential equation

t′(s) = θ′(s) z(s) + sin θ(s) 6= 0.

Define the function

κ(u) =
1

cos ϕ

(
θ′

t′
(t−1(u)

)
,

and consider a plane curve β with curvature κ. Now we can construct a helix
surface Mβ,ϕ parametrized by X(t, z) = β(t) + z (cos ϕ Nβ(t) + sin ϕ u). It is a
straightforward computation to show that the curve γ̃(s) = X(t(s), z(s)) is a
geodesic in Mβ,ϕ whose curvature and torsion are precisely κγ(s) and τγ(s). This
shows that γ and γ̃ are congruent.
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Example 2 (Curves of constant precession) Let β(u) = (x(u), y(u)) be the curve
in R2 defined by

x(u) = (a + b) cos u − b cos
( a + b

b
u
)

,

y(u) = (a + b) sin u − b sin
( a + b

b
u
)

,

for two nonzero constants a and b, [24, pp. 27–28]. If ab > 0, then β is an epicy-
cloid; otherwise, β is a hypocycloid. The curve is closed when a/b is rational.

The arc-length parameter t is given by

t = t(u) =
4b(a + b)

a
cos

( au

2b

)
,

and the curvature of β is computed as

κβ(t) =
a + 2b

4b(a + b)

1√
1 −

(
at

4b(a+b)

)2
.

To find geodesics γ(s) in a helix surface Mβ,ϕ (and so slant helices) we need to
solve the ODE system given in Proposition 1. It is not difficult to check that if we
define

µ =
a

2b(a + b)
and ϕ = arccos

(
a

a + 2b

)
,

then a solution of (16)–(18) is given by the following functions:

θ(s) = µs, t(s) = − 2

µ
cos(µs), z(s) =

1

µ
sin(µs). (19)

In this case, the curvature and torsion of these slant helices can be computed by
using (14) and (15):

κγ(s) = −µ tan(ϕ) sin(µs), τγ(s) = µ tan(ϕ) cos(µs).

Hence, γ(s) is a curve of constant precession, [23]. See Figure 1.
Conversely, every curve of constant precession is a geodesic of a helix sur-

face Mβ,ϕ, β being an epicycloid or a hypocycloid. In fact, let γ(s) be a curve of
constant precession; then there exist two nonzero constants ω and µ such that
κγ(s) = −ω sin(µs) and τγ(s) = ω cos(µs), [23]. Take ϕ = arctan(ω/µ) and
define a and b by

a =
2

µ
cot2(ϕ), b =

cos ϕ

µ(1 + cos ϕ)
.

Let β be the corresponding epicycloid or hypocycloid, according to the sign of ab.
It is a straightforward computation to check that γ(s) is congruent to the geodesic
of the surface Mβ,ϕ determined by (19). Hence we have proved the following
characterization of curves of constant precession.

Proposition 4 Let γ(s) be a unit speed curve fully in R3. Then γ is a curve of con-
stant precession if and only if there is an epicycloid or hypocycloid β and an angle
ϕ ∈ (0, π/2), such that γ is (congruent to) a geodesic with linear slope of the helix
surface Mβ,ϕ.
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Figure 1: Curve of constant precession as geodesic of a helix surface constructed
on an epicycloid. At the left, the epicycloid of radii a = 2, b = 1; at the right, the
epicycloid in red, the helix surface of angle ϕ = π/3 in pink, and the curve of

constant precession with ω =
√

3/3 and µ = 1/3 in blue.

4 A natural parametrization for the helix surfaces

When a ruled surface is noncylindrical (i.e. its rulings are always changing direc-
tion), one may find a natural parametrization:

Y(u, v) = α(u) + v d(u),

for which d × d′ 6= 0, ||d|| = 1 and 〈α′, d′〉 = 0. The curve α is called the striction
curve. What is the natural parametrization of a helix surface Mβ,ϕ?

Take a unit speed plane curve β : I ⊂ R → R2 ⊂ R3, an angle ϕ ∈ (0, π/2),
and consider the ruled surface M = Mβ,ϕ parametrized by

X(t, z) = β(t) + z (cos ϕ Nβ(t) + sin ϕ u).

When κβ is constant (i.e. β is a circle), M is a cone and its striction line reduces
to a single point (the vertex of the cone). In this case, as we have seen above, the
geodesics of M are conical geodesics or rectifying curves (see [1], [13]). Assume
without loss of generality that κ′β 6= 0.

A straightforward computation shows that the striction line of Mβ,ϕ is given
by

α(t) = β(t) +
1

cos ϕ κβ(t)
(cos ϕ Nβ(t) + sin ϕ u),

with velocity vector

α′(t) = −
κ′β(t)

cos ϕ κ2
β(t)

(cos ϕ Nβ(t) + sin ϕ u).

Hence the arclength parameter of α is u(t) = 1/(cos ϕ κβ(t)) and the unit tangent
vector is Tα(t) = cos ϕ Nβ(t) + sin ϕ u. Then 〈Tα(t), u〉 = sin ϕ is constant, and
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this shows that α(t) is a general helix with axis u and τα/κα = λ, for a nonzero
constant λ. Hence, the natural parametrization of M is

Y(u, v) = α(u) + v Tα(u), v 6= 0,

that is, Mβ,ϕ is the tangent surface of α (also called the tangential developable),
[24, p. 64]. An alternative (and equivalent) parametrization of the tangent sur-
face, sometimes more convenient, is the following:

Ỹ(u, v) = α(u) + (v − u) Tα(u), v 6= u.

We have shown in Theorem 3 that slant helices are the geodesics of helix surfaces.
How are these curves represented in (u, v)-coordinates?

Let γ(s) = Ỹ(u(s), v(s)) be a unit speed geodesic of the ruled surface M. Then

Tγ(s) = u′(s) (v(s) − u(s)) κα(u(s)) Nα(u(s)) + v′(s) Tα(u(s)),

so that there is a differentiable function ω(s) such that

u′(s) (v(s) − u(s)) κα(u(s)) = sin ω(s),

v′(s) = cos ω(s).

The function ω(s) represents the angle between the geodesic γ and the base curve
α. Bearing in mind the Frenet equations of γ, (1), we obtain

κγ(s) Nγ(s) = − sin ω(s) (u′(s) κα(u(s)) + ω′(s)) Tα(u(s))

+ cos ω(s) (ω′(s) + u′(s) κα(u(s)) Nα(u(s))

+ sin ω(s) u′(s) τα(u(s)) Bα(u(s)),

and by using, without loss of generality, that Nγ(s) = N(u(s), v(s)) = −Bα(u(s)),
we deduce

ω′(s) = −u′(s) κα(u(s)).

This yields the following equations for the curvature and torsion of the geodesic:

κγ(s) = − sin ω(s) u′(s) τα(u(s)) = λ ω′(s) sin ω(s), (20)

τγ(s) = cos ω(s) u′(s) τα(u(s)) = −λ ω′(s) cos ω(s). (21)

Hence, we have shown the following result.

Proposition 5 A unit speed curve γ(s) = Ỹ(u(s), v(s)), with κγ > 0, is a geodesic of
M if and only if there is a differentiable function ω(s) such that

u′(s) (v(s) − u(s)) κα(u(s)) = sin ω(s), (22)

v′(s) = cos ω(s), (23)

u′(s) κα(u(s)) = −ω′(s). (24)

Moreover, the curvature and torsion of γ are given by (20) and (21), respectively.
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Eliminating the function ω(s) in equations (22)–(24), the Proposition 5 can be
rewritten as follows. The proof is straightforward and is left to the reader.

Proposition 6 Let γ(s) = Ỹ(u(s), v(s)), with κγ > 0, be a unit speed curve in the
tangent surface M, and suppose it is not a general helix nor a rectifying curve. Then γ is
a geodesic of M if and only if the following conditions hold:

a) u(s) =
(v2)′′(s)− 2

2 v′′(s)
,

b) |v′(s)| < 1,

c)
v′(s)√

1 − v′(s)2
is not a linear function,

d) κα(t) =
v′′

u′
√

1 − v′2
(
u−1(t)

)
.

In [13], the authors show that if S is a developable surface and γ ⊂ S is a
slant helix and a geodesic transversal to rulings, which is not a general helix nor
a conical geodesic (rectifying curve), then necessarily S is the tangent surface of a
general helix. The following result states that all slant helices, except general he-
lices and rectifying curves, can be obtained in this way. It can be proved similarly
to Theorem 3.

Theorem 7 Let γ(s) be a unit speed curve fully in R3, and suppose it is not a general
helix nor a rectifying curve. Then γ is a slant helix if and only if there is a general helix
α such that γ is (congruent to) a geodesic of the tangent surface of α.

This result was shown by Salkowski [22] for a special class of slant helices. We
present this family of curves in the next example.

Example 3 (The Salkowski curves) Salkowski introduced in [22, p. 538] a spe-
cial family of curves, with constant curvature but non-constant torsion. Recently,
Monterde [19] has shown that these curves are characterized as the only slant
curves with constant curvature and non-constant torsion. The family of Salkowski
curves can be described as follows:

γm(t) =
1√

1 + m2

(
− 1 − n

4(1 + 2n)
sin((1 + 2n)t)− 1 + n

4(1 − 2n)
sin((1 − 2n)t) − 1

2
sin t,

1 − n

4(1 + 2n)
cos((1 + 2n)t) +

1 + n

4(1 − 2n)
cos((1 − 2n)t) +

1

2
cos t,

1

4m
cos(2nt)

)
,

for m 6= 0,±
√

3/3, and n = m√
1+m2

, n 6= 0,±1/2. Salkowski showed that these

curves are the geodesics of the tangent surfaces to the following general helices,
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[22, p. 539]:

αm(u) =
3n

4
√

1 + m2

(
sin(1 + 2n)u

1 + 2n
− sin(1 − 2n)u

1 − 2n
,

− cos(1 + 2n)u

1 + 2n
+

cos(1 − 2n)u

1 − 2n
,

cos 2nu

mn
+

2

3mn

)
.

These general helices are characterized by the equation κ = mτ. Note that the
projection of αm into the xy-plane is either an epicycloid or a hypocycloid (see
Example 2), according to the constants a and b given by

a =
3n2

√
1 − n2

1 − 4n2
and b =

3n
√

1 − n2

4(1 + 2n)
.

Note that to obtain exactly the curve defined in Example 2 it is necessary, after
projecting the general helix αm into the xy-plane, to make a positive rotation of
angle π/2.

Salkowski observed that the curves γm(t) lie in a quadratic surface Q1(n)
given by

A(x2 + y2)− C(z + D)2 = B,

where the constants A, B, C, D are defined by

A = 1 + m2
> 0, B =

27n4

4(1 − n2)(1 − 4n2)2
> 0,

C =
4n2

(1 − 4n2)(1 − n2)
, D =

1 + 2n2

4n
> 0,

and the general helices αm(u) also lie in another quadratic surface Q2(n) defined
by

Ã(x2 + y2)− C̃(z + D̃)2 = B̃,

where the constants Ã, B̃, C̃, D̃ are given by

Ã =
16(1 + m2)

9n2
> 0, B̃ =

4

(1 − 4n2)2
> 0,

C̃ = −64m2(1 + m2)

9(1 − 4n2)
, D̃ = −1 − n2

2n
< 0.

When n < 1/2, then Q1(n) is a hyperboloid and Q2(n) is an ellipsoid; otherwise,
i.e. when n > 1/2, Q1(n) is an ellipsoid and Q2(n) is a hyperboloid.

5 Examples

5.1 A method for constructing slant helices

We now present a method for constructing slant helices γ as geodesics of a helix
surface, based on Proposition 6.
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Let v(s), s ∈ I, be a differentiable function such that

|v′(s)| < 1 and
v′(s)√

1 − v′(s)2
is not a linear function.

Define the following functions

u(s) =
(v2)′′(s)− 2

2v′′(s)
=

v(s)v′′(s) + v′(s)2 − 1

v′′(s)
,

κ(t) =
v′′

u′
√

1 − v′2
(
u−1(t)

)
.

Given a nonzero constant λ, let α be a general helix with curvature κ and torsion

λκ, and consider the tangent surface of α, parametrized by Ỹ(u, v). A straight-
forward computation shows that equations in Proposition 6 are satisfied, and so

γ(s) = Ỹ(u(s), v(s)) is a slant helix with curvature and torsion given by (20) and
(21), respectively.

Now, we give several examples where we use the above method to find slant
helices.

Example 4 Let v be the function defined by v(s) = cs2 + 1
8c , c 6= 0, that we con-

sider defined on the interval I = (− 1
2|c| ,

1
2|c| ). Following the above method, define

the functions

u(s) = 3cs2 − 3

8c
,

κ(t) =
4c

3

1√
1 −

(
8ct
3

)2
.

Let α be a general helix with curvature κ and torsion λκ, where λ is a nonzero

constant, and consider the tangent surface of α, parametrized by Ỹ(u, v). Then

γ(s) = Ỹ(u(s), v(s)) is a slant helix whose curvature and torsion are given by

κγ(s) = −2cλ and τγ(s) =
4c2λs√

1 − 4c2s2
.

Note that γ is a curve with constant curvature but non-constant torsion. In par-
ticular, if we choose λ = −1/(2c), then γ is congruent to the Salkowski curve
γm, with m = 2c. The general helix α projects on an epicycloid or hypocycloid
according to the following values of a and b (see Example 3),

a =
3

2c

1

(λ2 − 3)
√

λ2 + 1
and b =

3

8c

1

λ2 + 1 + 2
√

λ2 + 1
.

Some pictures for different values of the parameter c are given in Figure 2.
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c = 1/12 c = 1/16 c = 1/20

Figure 2: Some slant helices (in red) for v(s) = cs2 + 1
8c . The blue curves are the

projected epicycloids in the xy-plane. The pink surfaces are the quadratic surfaces
where the slant helices lie (see Example 3)

Example 5 Let v be the function v(s) = a
√

s, a 6= 0, that we consider defined on

the interval I = ( a2

4 ,+∞). Following the above method, define the functions

u(s) =
4

a
s3/2,

κ(t) =
−a

3t
√
(2at)2/3 − a2

.

Let α be a general helix with curvature κ and torsion λκ, where λ is a nonzero

constant, and consider the tangent surface of α, parametrized by Ỹ(u, v). Then

γ(s) = Ỹ(u(s), v(s)) is a slant helix whose curvature and torsion are given by

κγ(s) =
aλ

4s3/2
and τγ(s) = − a2λ

4s3/2
√

4s − a2
.

Some pictures for a = 1 and different values of the parameter λ are shown in
Figure 3.

Example 6 Let v be the function v(s) = b eas, with a, b > 0, that we consider
defined on the interval I = (−∞,− ln(ab)/a). Define the following functions:

u(s) = 2b eas − 1

a2b
e−as,

κ(t) =
2ah(t)

(8 + h(t))
√

16 − h(t)
, where h(t) = (at +

√
a2t2 + 8)2.
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λ = 20 λ = 40 λ = 100

Figure 3: Some slant helices for v(s) =
√

s

Let α be a general helix with curvature κ and torsion λκ, where λ is a nonzero

constant, and consider the tangent surface of α, parametrized by Ỹ(u, v). Then

γ(s) = Ỹ(u(s), v(s)) is a slant helix whose curvature and torsion are given by

κγ(s) = −λa2b eas,

τγ(s) =
λa3b2 e2as

√
1 − a2b2 e2as

,

5.2 Another method for constructing slant helices

We now present a second method for constructing slant helices γ living in the
tangent surface of a general helix.

Let α = α(u) be a general helix with curvature function κα(u), and define a
function g as follows:

g(x) = −
∫ x

x0

κα(u) du, (25)

where x0 is a constant. By Proposition 5 we easily deduce that γ(s) = Ỹ(u(s), v(s)),
with κγ > 0, is a geodesic of the helix surface M if and only if the function u(s) is
a solution of the following ODE:

u′(s)−
(

sin g(u(s))

u′(s) g′(u(s))

)′
= cos g(u(s)),

which is equivalent to

u′(s) sin g(u(s)) =

(
sin2 g(u(s))

u′(s) g′(u(s))

)′
. (26)

Given a solution u(s) of this ODE we find that

v(s) = u(s)− sin g(u(s))

u′(s) g′(u(s))
+ c,
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c being a constant. We illustrate this method in the following example.

Example 7 (Slant curves in the tangent surface of a helix) Let α(u) be the circu-
lar helix of radius r and pitch 2πh, which is parameterized by

α(u) =

(
r cos

( u

R

)
, r sin

( u

R

)
,

hu

R

)
, R =

√
r2 + h2.

The curvature and torsion are given by

κα =
r

R2
and τα =

h

R2
,

and then the function g, defined in (25), is given by g(x) = −καx + a, a being a
constant. A straightforward computation shows that the solution of (26) is given
by

u(s) =
R2

r

(
a − arccos

(
b ± a(s + s0)

√
a2(s + s0)2 + b2 − 1

a2(s + s0)2 + b2

))
,

b and s0 being constants, and therefore the function v(s) is given by

v(s) = ±1

a

√
a2(s + s0)2 + b2 − 1+

R2

r

(
a − arccos

(
b ± a(s + s0)

√
a2(s + s0)2 + b2 − 1

a2(s + s0)2 + b2

))
+ c.

The tangent surface of α can be parameterized by

Ỹ(u, v) =

(
r cos

( u

R

)
− r(v − u)

R
sin
( u

R

)
, r sin

( u

R

)
+

r(v − u)

R
cos

( u

R

)
,

hv

R

)
.

By using the functions u(s) and v(s) computed above, we have explicit parame-

terizations Ỹ(u(s), v(s)) of the slant curves γ(s) lying in the tangent surface of a
circular helix, where the constants a, b, c and s0 depend on the initial conditions
of the geodesic γ.

The interval I, where the curve γ is defined, depends on the constant b.

If b2
> 1 then I = R; otherwise, I = (−∞,−s0 −

√
(1 − b2)/a2) ∪

(−s0 +
√
(1 − b2)/a2,+∞), i.e. γ has two branches.

Some pictures for different values of the parameters a and b are shown in
Figure 4.
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b = 2 (red), 3 (orange), 4 (blue) a = 2 (red), 4 (orange), 6 (blue) a = 1 (red), 1.5 (orange), 2 (blue)

a = 1 b = 3 b = 0.5

Figure 4: The top row shows the slant helices in the tangential surface of the
circular helix of radius r = 1 and pitch h = 0.5. The second row shows the
projected curves in the xy-plane. The corresponding values of the parameters a
and b are shown in the last row (c = s0 = 0 in all cases).
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