A complete classification of real hypersurfaces in $\mathbb{C} P^{2}$ and $\mathbb{C} H^{2}$ with generalized ξ-parallel Jacobi structure Operator

Th. Theofanidis

Abstract

The aim of the present paper is the classification of real hypersurfaces M, whose Jacobi structure Operator is generalized ξ-parallel. The notion of generalized ξ-parallel Jacobi structure Operator is rather new and much weaker than ξ - parallel Jacobi structure Operator which has been studied so far.

1 Introduction.

An n - dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}(c)$. A complete and simply connected complex space form is a projective space $\mathbb{C} P^{n}$ if $c>0$, a hyperbolic space $\mathbb{C} H^{n}$ if $c<0$, or a Euclidean space \mathbb{C}^{n} if $c=0$. The induced almost contact metric structure of a real hypersurface M of $M_{n}(c)$ will be denoted by (ϕ, ξ, η, g).

Real hypersurfaces in $\mathbb{C P}^{n}$ which are homogeneous, were classified by R. Takagi ([15]). The same author classified real hypersurfaces in $\mathbb{C} P^{n}$, with constant principal curvatures in [16], but only when the number k of distinct principal curvatures satisfies $k=3$. M. Kimura showed in [10] that if a Hopf real hypersurface M in $\mathbb{C} P^{n}$ has constant principal curvatures, then the number of distinct principal curvatures of M is 2,3 or 5 . J. Berndt gave the equivalent result for Hopf hypersurfaces in CH^{n} ([1]) where he divided real hypersurfaces into

[^0]four model spaces, named A_{0}, A_{1}, A_{2} and B. Analytic lists of constant principal curvatures can be found in the previously mentioned references as well as in [11], [13]. Real hypersurfaces of type A_{1} and A_{2} in $\mathbb{C} P^{n}$ and of type A_{0}, A_{1} and A_{2} in $\mathbb{C} H^{n}$ are said to be hypersurfaces of type A for simplicity and appear quite often in classification theorems. Real hypersurfaces of type A_{1} in $\mathbb{C} H^{n}$ are divided into types $A_{1,0}$ and $A_{1,1}$ ([11]). For more information and examples on real hypersurfaces, we refer to [13].

A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays an important role in the study of differential geometry. It satisfies a well known differential equation which inspires Jacobi operators. For any vector field X, the Jacobi operator is defined by $R_{X}: R_{X}(Y)=R(Y, X) X$, where R denotes the curvature tensor and Y is a vector field on $M . R_{X}$ is a self - adjoint endomorphism in the tangent space of M, and is related to the Jacobi differential equation, which is given by $\nabla_{\hat{\gamma}}\left(\nabla_{\dot{\gamma}} Y\right)+R(Y, \dot{\gamma}) \dot{\gamma}=0$ along a geodesic γ on M, where $\dot{\gamma}$ denotes the velocity vector field along γ on M.

In a real hypersurface M of a complex space form $M_{n}(c), c \neq 0$, the Jacobi operator on M with respect to the structure vector field ξ, is called the structure Jacobi operator and is denoted by $R_{\xi}(X)=R(X, \xi,) \xi$. Conditions including this operator, generate larger classes than the conditions including the Riemannian tensor $R(X, Y) Z$. So operator $l=R_{\xi}$ has been studied by quite a few authors and under several conditions.

In 2007, Ki, Perez, Santos and Suh ([8]) classified real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator. J. T. Cho and $\mathrm{U}-\mathrm{H} . \mathrm{Ki}$ in [3] classified the real hypersurfaces whose structure Jacobi operator is symmetric along the Reeb flow ξ and commutes with the shape operator A.

In the present paper we classify real hypersurfaces M satisfying the condition

$$
\begin{equation*}
\left(\nabla_{\xi} l\right) X=\omega(X) \mathcal{\xi}, \tag{1.1}
\end{equation*}
$$

where ω is 1 -form and $X \in T_{p} M$ at a point $p \in M$. This condition is rather new ([17]) and much weaker than the condition $\nabla_{\xi} l=0$ that has been used so far ([3], [6], [7], [8]). Therefore a larger class is produced.

We also mention that hypersurfaces in $M_{2}(c)$ have not been studied as thoroughly as the ones in $M_{n}(c), n \geq 3$. We refer here to [4], [5], [9].

The major part of the paper is to prove M is a Hopf hypersurface, that is ξ is a principal vector field and the classification follows right after that. In particular, the following theorem is proved:

Theorem 1.1. Let M be a real hypersurface of a complex plane $M_{2}(c),(c \neq 0)$, satisfying (1.1) for every vector field X on M. Then M is a Hopf hypersurface and satisfies $\nabla_{\xi} l=0$. Furthermore, M is pseudo-Einstein, that is, there exist constants ρ and σ such that for any tangent vector X we have $Q X=\rho X+\sigma g(X, \xi) \xi$ where Q is the Ricci tensor. Conversely, every pseudo-Einstein hypersurface in $M_{2}(c)$ satisfies (1.1) with $\omega=0$.

As shown in [9] the pseudo-Einstein hypersurfaces, are precisely those that are

- For $M_{2}(c)=\mathbb{C} P^{2}$: open subsets of geodesic spheres (type A_{1});
- For $M_{2}(c)=\mathbb{C H}$: open subsets of

1. horospheres (type A_{0});
2. geodesic spheres (type $A_{1,0}$);
3. tubes around totally geodesic complex hyperbolic lines $\mathbb{C} H^{1}$ (type $A_{1,1}$);

- Hopf hypersurfaces with $\eta(A \xi)=0$.

The form ω has no restriction in its values, so it could vanish at some point. Therefore condition (1.1) could be called generalized ξ-parallel Jacobi structure Operator, since it generalizes the notion of ξ-parallel Jacobi structure Operator $\left(\nabla_{\xi} l=0\right)$.

2 Preliminaries

In this section, we explain explicitly the notions that were mentioned in section 1 , as well as the notions that will appear in the paper. We also give a series of equations that will be our basic tools in our calculations and conclusions.

Let M_{n} be a Kaehlerian manifold of real dimension $2 n$, equipped with an almost complex structure J and a Hermitian metric tensor G. Then for any vector fields X and Y on $M_{n}(c)$, the following relations hold: $J^{2} X=-X, \quad G(J X, J Y)=$ $G(X, Y), \quad \widetilde{\nabla} J=0$, where $\widetilde{\nabla}$ denotes the Riemannian connection of G of M_{n}.

Let $M_{2 n-1}$ be a real ($2 n-1$)-dimensional hypersurface of $M_{n}(c)$, and denote by N a unit normal vector field on a neighborhood of a point in $M_{2 n-1}$ (from now on we shall write M instead of $M_{2 n-1}$). For any vector field X tangent to M we have $J X=\phi X+\eta(X) N$, where ϕX is the tangent component of $J X, \eta(X) N$ is the normal component, and $\xi=-J N, \quad \eta(X)=g(X, \xi), \quad g=\left.G\right|_{M}$.

By properties of the almost complex structure J and the definitions of η and g, the following relations hold ([2]):

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta \circ \phi=0, \quad \phi \xi=0, \quad \eta(\xi)=1 . \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \phi Y)=-g(\phi X, Y) . \tag{2.2}
\end{gather*}
$$

The above relations define an almost contact metric structure on M which is denoted by (ϕ, ξ, g, η). When an almost contact metric structure is defined on M, we can define a local orthonormal basis $\left\{e_{1}, e_{2}, \ldots e_{n-1}, \phi e_{1}, \phi e_{2}, \ldots \phi e_{n-1}, \xi\right\}$, called a ϕ-basis. Furthermore, let A be the shape operator in the direction of N, and denote by ∇ the Riemannian connection of g on M. Then, A is symmetric and the following equations are satisfied:

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X, \quad\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{2.3}
\end{equation*}
$$

As the ambient space $M_{n}(c)$ is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given by:

$$
\begin{equation*}
R(X, Y) Z=\frac{c}{4}[g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{2.4}
\end{equation*}
$$

$$
\begin{gather*}
-2 g(\phi X, Y) \phi Z]+g(A Y, Z) A X-g(A X, Z) A Y \\
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\frac{c}{4}[\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi] . \tag{2.5}
\end{gather*}
$$

The tangent space $T_{p} M$, for every point $p \in M$, is decomposed as following:

$$
T_{p} M=\mathbb{D}^{\perp} \oplus \mathbb{D}
$$

where $\mathbb{D}=\operatorname{ker}(\eta)=\left\{X \in T_{p} M: \eta(X)=0\right\}$.
The subspace $\operatorname{ker}(\eta)$ is more usually referred as \mathbb{D} and called the holomorphic distribution of M. Based on the decomposition of $T_{p} M$, by virtue of (2.3), we decompose the vector field $A \xi$ in the following way:

$$
\begin{equation*}
A \xi=\alpha \xi+\beta U \tag{2.6}
\end{equation*}
$$

where $\beta=\left|\phi \nabla_{\xi} \xi\right|, \alpha$ is a smooth function on M and $U=-\frac{1}{\beta} \phi \nabla_{\xi} \xi \in \operatorname{ker}(\eta)$, provided that $\beta \neq 0$.

If β vanishes identically, then $A \xi$ is expressed as $A \xi=\alpha \xi, \xi$ is a principal vector field and M is a Hopf hypersurface.

Finally differentiation of a function f along a vector field X will be denoted by $(X f)$. All manifolds, vector fields, etc., of this paper are assumed to be connected and of class C^{∞}.

3 Auxiliary relations

Let us assume there exists a point $p \in M$, where $\beta \neq 0$. Then there exists a neighborhood \mathcal{N} of p where $\beta \neq 0$. By putting $X=\xi$ in (1.1), combined with (2.3) and (2.6), we obtain $\beta l \phi U=-\omega(\xi) \xi$. The inner product of the last equation with ξ yields $l \phi U=0$ which is analyzed from (2.4) and (2.6) giving $(4 \alpha A+c) \phi U=0$. From the last equation it follows that $\alpha \neq 0$ in \mathcal{N}.

Lemma 3.1. Let M be a real hypersurface of a complex plane $M_{2}(c)$ satisfying (1.1). Then the following relations hold on \mathcal{N}.

$$
\begin{gather*}
A U=\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) U+\beta \xi, \quad A \phi U=-\frac{c}{4 \alpha} \phi U . \tag{3.1}\\
\nabla_{\xi} \tilde{\xi}=\beta \phi U, \nabla_{U} \xi=\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) \phi U, \nabla_{\phi U} \tilde{\xi}=\frac{c}{4 \alpha} U . \tag{3.2}\\
\nabla_{\xi} U=\kappa_{1} \phi U, \quad \nabla_{U} U=\kappa_{2} \phi U, \quad \nabla_{\phi U} U=\kappa_{3} \phi U-\frac{c}{4 \alpha} \xi . \tag{3.3}\\
\nabla_{\xi} \phi U=-\kappa_{1} U-\beta \xi, \quad \nabla_{U} \phi U=-\kappa_{2} U-\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) \xi, \tag{3.4}\\
\nabla_{\phi U} \phi U=-\kappa_{3} U .
\end{gather*}
$$

where $\kappa_{1}, \kappa_{2}, \kappa_{3}$ are smooth functions on \mathcal{N}.
Proof.
By definition of the vector fields $U, \phi U, \xi$ and due to (1.1), the set $\{U, \phi U, \xi\}$ is an orthonormal basis. From (2.4) we obtain

$$
\begin{equation*}
l U=\frac{c}{4} U+\alpha A U-\beta A \xi, \quad l \phi U=\frac{c}{4} \phi U+\alpha A \phi U . \tag{3.5}
\end{equation*}
$$

The inner products of $l U$ with U and ϕU yield respectively

$$
\begin{equation*}
g(A U, U)=\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}, \quad g(A U, \phi U)=\frac{\delta}{\alpha} \tag{3.6}
\end{equation*}
$$

where $\gamma=g(l U, U)$ and $\delta=g(l U, \phi U)$.
So, (3.6) and $g(A U, \xi)=g(A \xi, U)=\beta$, yield

$$
\begin{equation*}
A U=\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) U+\frac{\delta}{\alpha} \phi U+\beta \xi \tag{3.7}
\end{equation*}
$$

We have already shown in the beginning of this section that

$$
\begin{equation*}
l \phi U=0 \Leftrightarrow A \phi U=-\frac{c}{4 \alpha} U . \tag{3.8}
\end{equation*}
$$

From (3.7), (3.8) and the symmetry of A, (3.1) has been proved.
From equations (2.6),(3.1) and relation (2.3) for $X=\xi, X=U, X=\phi U$, we obtain (3.2). Next we recall the rule

$$
\begin{equation*}
X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) . \tag{3.9}
\end{equation*}
$$

By virtue of (3.9) for $X=Z=\xi, Y=U$ and for $X=\xi, Y=Z=U$, it is shown respectively $\nabla_{\xi} U \perp \xi$ and $\nabla_{\xi} U \perp U$. So $\nabla_{\xi} U=\kappa_{1} \phi U$, where $\kappa_{1}=g\left(\nabla_{\xi} U, \phi U\right)$. In a similar way, (3.9) for $X=Y=Z=U$ and $X=Z=U, Y=\xi$ yields-with the aid of (3.2)-respectively $\nabla_{U} U \perp U$ and $\nabla_{U} U \perp \xi$. This means that $\nabla_{U} U=\kappa_{2} \phi U$, where $\kappa_{2}=g\left(\nabla_{U} U, \phi U\right)$. Finally, (3.9) for $X=\phi U, Y=Z=U$ and $X=\phi U, Y=U$, $Z=\xi$-with the aid of (3.2)-yields respectively $\nabla_{\phi U} U \perp U$ and $g\left(\nabla_{\phi U} U, \xi\right)=-\frac{c}{4 \alpha}$. Therefore $\nabla_{\phi U} U=\kappa_{3} \phi U-\frac{c}{4 \alpha} \xi$ where $\kappa_{3}=g\left(\nabla_{\phi U} U, \phi U\right)$ and (3.3) has been proved. In order to prove (3.4) we use the second of (2.3) with the following combinations: i) $X=\xi, Y=U$, ii) $X=Y=U$, iii) $X=\phi U, Y=U$, and make use of (2.6), (3.1), (3.3).

By putting $X=U, Y=\xi$ in (2.5) we obtain $\nabla_{U} A \xi-A \nabla_{U} \xi-\nabla_{\xi} A U+A \nabla_{\xi} U=$ $-\frac{c}{4} \phi U$, which is expanded by Lemma 3.1, to give

$$
\begin{gathered}
{[(U \alpha)-(\xi \beta)] \xi+\left[(U \beta)-\xi\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)\right] U+} \\
{\left[\kappa_{2} \beta+\gamma+\frac{c}{4 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)-\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}\right) \kappa_{1}\right] \phi U=0 .}
\end{gathered}
$$

Since the vector fields $U, \phi U$ and ξ are linearly independent, the above equation gives

$$
\begin{gather*}
(U \alpha)=(\xi \beta) \tag{3.10}\\
(U \beta)=\xi\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right) \tag{3.11}\\
\kappa_{2} \beta+\gamma+\frac{c}{4 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)-\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}\right) \kappa_{1}=0 . \tag{3.12}
\end{gather*}
$$

In a similar way, from (2.5) we get $\nabla_{\phi U} A \xi-A \nabla_{\phi U} \xi-\nabla_{\xi} A \phi U+A \nabla_{\xi} \phi U=$ $\frac{c}{4} U$, which is expanded by Lemma 3.1, to give

$$
\begin{gathered}
{\left[(\phi U \alpha)-\frac{3 \beta c}{4 \alpha}-\kappa_{1} \beta-\alpha \beta\right] \xi+} \\
{\left[(\phi U \beta)-\frac{c}{4 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)-\kappa_{1}\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}\right)-\beta^{2}\right] U+} \\
{\left[\kappa_{3} \beta-\left(\frac{c}{4 \alpha^{2}}\right)(\xi \alpha)\right] \phi U=0,}
\end{gathered}
$$

which leads to

$$
\begin{gather*}
(\phi U \alpha)-\frac{3 \beta c}{4 \alpha}-\kappa_{1} \beta-\alpha \beta=0 \tag{3.13}\\
(\phi U \beta)-\frac{c}{4 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)-\kappa_{1}\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}\right)-\beta^{2}=0 \tag{3.14}\\
(\xi \alpha)=\frac{4 \alpha^{2} \beta}{c} \kappa_{3} . \tag{3.15}
\end{gather*}
$$

Finally, (2.5) yields $\nabla_{U} A \phi U-A \nabla_{U} \phi U-\nabla_{\phi U} A U+A \nabla_{\phi U} U=-\frac{c}{2} \xi$, which is expanded by Lemma 3.1, to give

$$
\begin{gathered}
{\left[-\phi U \beta+\gamma+\frac{c}{2 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+\kappa_{2} \beta+\beta^{2}\right] \xi+} \\
{\left[\beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+\kappa_{2}\left(\frac{\beta^{2}}{\alpha}+\frac{\gamma}{\alpha}\right)-\phi U\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)-\frac{\beta c}{2 \alpha}\right] U+} \\
{\left[\frac{c}{4 \alpha^{2}}(U \alpha)-\kappa_{3}\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}\right)\right] \phi U=0 .}
\end{gathered}
$$

The above relation leads to

$$
\begin{gather*}
-\phi U \beta+\gamma+\frac{c}{2 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+\kappa_{2} \beta+\beta^{2}=0 \tag{3.16}\\
\beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+\kappa_{2}\left(\frac{\beta^{2}}{\alpha}+\frac{\gamma}{\alpha}\right)-\phi U\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)-\frac{\beta c}{2 \alpha}=0, \tag{3.17}\\
(U \alpha)=\kappa_{3} \frac{4 \alpha}{c}\left(\gamma+\beta^{2}\right) . \tag{3.18}
\end{gather*}
$$

From (2.4) we calculate $R(U, \xi) U$, using Lemma 3.1. The result is $R(U, \xi) U=-\gamma \xi$. However, the vector field $R(U, \xi) U$ is also calculated from $R(U, \xi) U=\nabla_{U} \nabla_{\xi} U-\nabla_{\xi} \nabla_{U} U-\nabla_{[U, \xi]} U$ using also Lemma 3.1, giving
$R(U, \xi) U=\left[\left(U \kappa_{1}\right)-\left(\xi \kappa_{2}\right)+\kappa_{3} \kappa_{1}-\kappa_{3}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)\right] \phi U+\left[\kappa_{2} \beta+\frac{c}{4 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\right.\right.$ $\left.\left.\frac{\beta^{2}}{\alpha}\right)-\left(\frac{\gamma}{\alpha}+\frac{\beta^{2}}{\alpha}\right) \kappa_{1}\right] \xi$. Comparing the two expressions of $R(U, \xi) U$ we get

$$
\begin{equation*}
\left(U \kappa_{1}\right)-\left(\xi \kappa_{2}\right)=\kappa_{3}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}-\kappa_{1}\right) . \tag{3.19}
\end{equation*}
$$

By making use of (1.1) for $X=U$, we obtain $\left(\nabla_{\xi} l\right) U=\omega(U) \xi$, which is expanded with the aid of Lemma 3.1 and (3.5), giving $(\xi \gamma) U+\gamma \kappa_{1} \phi U=\omega(U) \xi$. Since $U, \phi U, \xi$ are linearly independent, we obtain

$$
\begin{equation*}
\gamma \kappa_{1}=0, \quad(\xi \gamma)=0 . \tag{3.20}
\end{equation*}
$$

4 The case $\gamma \neq 0$.

Let us assume there exists a point $p_{1} \in \mathcal{N}$ such that $\gamma \neq 0$ in a neighborhood W_{1} of p_{1}. Then (3.20) yields $\kappa_{1}=0=(\xi \gamma)$. So, by differentiating (3.12) along ξ, with the aid of (3.10), (3.15), (3.18), (3.19) we have

$$
\begin{equation*}
\kappa_{3}\left[-2 \beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+\kappa_{2} \frac{4 \alpha}{c}\left(\gamma+\beta^{2}\right)+\frac{\beta}{\alpha}\left(\gamma+\frac{c}{4}+\beta^{2}\right)\right]=0 . \tag{4.1}
\end{equation*}
$$

If we assume that $\kappa_{3} \neq 0$ in W_{1} then (4.1) will give $-2 \beta\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+$ $\kappa_{2} \frac{4 \alpha}{c}\left(\gamma+\beta^{2}\right)+\frac{\beta}{\alpha}\left(\gamma+\frac{c}{4}+\beta^{2}\right)=0$ which is further modified giving

$$
\begin{equation*}
\frac{3 \beta c}{4 \alpha}-\frac{\beta}{\alpha}\left(\gamma+\beta^{2}\right)+\kappa_{2} \frac{4 \alpha}{c}\left(\gamma+\beta^{2}\right)=0 \tag{4.2}
\end{equation*}
$$

Apparently, $\gamma+\beta^{2} \neq 0$, otherwise relation (4.2) would yield $\frac{\beta c}{\alpha}=0$ which is a contradiction. Therefore (4.2) yields

$$
\begin{equation*}
\kappa_{2}=\frac{\beta c}{4 \alpha^{2}}-\frac{3 \beta c^{2}}{16 \alpha^{2}\left(\gamma+\beta^{2}\right)} . \tag{4.3}
\end{equation*}
$$

We replace the term κ_{2} in (3.12), from (4.3) and then multiply the new relation with $\gamma+\beta^{2}$. The outcome is

$$
\left(\gamma+\beta^{2}\right)\left(\gamma \alpha^{2}+\frac{c \beta^{2}}{2}+\frac{c}{4} \gamma-\frac{c^{2}}{16}\right)-\frac{3 \beta^{2} c^{2}}{16}=0 .
$$

The above equation is differentiated along ξ, combined with (3.10), (3.15), (3.18), (3.20) leading to

$$
\kappa_{3}\left(\gamma+\beta^{2}\right)\left[\frac{8 \alpha \beta}{c}\left(\gamma \alpha^{2}+\frac{c \beta^{2}}{2}+\frac{c}{4} \gamma-\frac{c^{2}}{16}\right)+\frac{8 \alpha^{3} \beta \gamma}{c}+4 \alpha \beta \gamma+4 \alpha \beta^{3}-\frac{3 \alpha \beta c}{2}\right]=0 .
$$

Since we have $\kappa_{3}\left(\gamma+\beta^{2}\right) \neq 0$, the above equation yields

$$
\begin{equation*}
\frac{8 \alpha^{2} \gamma}{c}+4 \beta^{2}+3 \gamma-c=0 \tag{4.4}
\end{equation*}
$$

By virtue of (3.10), (3.15), (3.18), (3.20) and $\kappa_{3} \neq 0$ we differentiate (4.4) to obtain

$$
\begin{equation*}
\frac{8 \alpha^{2} \gamma}{c}+4 \beta^{2}+4 \gamma=0 \tag{4.5}
\end{equation*}
$$

From (4.4) and (4.5) we obtain

$$
\begin{equation*}
\beta^{2}-2 \alpha^{2}=c, \quad \gamma=-c \tag{4.6}
\end{equation*}
$$

The differentiation of (4.6) along U, with the aid of (3.10), (3.11), (3.15), (3.18), (3.20), (4.6) and $\kappa_{3} \neq 0$ leads to

$$
\left(\beta^{2}-\frac{3 c}{4}\right) \beta^{2}-2 \alpha^{2}\left(\beta^{2}-c\right)=0
$$

The term $2 \alpha^{2}$ is replaced from (4.6) in order to acquire $\beta^{2}=\frac{4 c}{5}$. So β is constant and from (4.6) we have $(\xi \alpha)=0 \Rightarrow \kappa_{3}=0$ (due to (3.15)) which is a contradiction to our assumption $\kappa_{3} \neq 0$.

This means that in W_{1} we have $\kappa_{3}=0$ and the Lie brackets $[U, \xi] \alpha,[U, \xi] \beta$ are zero, due to (3.10), (3.11), (3.15), (3.18). The same Lie brackets are estimated from $[U, \xi]=\nabla_{U} \xi-\nabla_{\xi} U,(3.13),(3.14), \kappa_{1}=0$ and Lemma 3.1 as following:
$[U, \xi] \alpha=\left(\gamma-\frac{c}{4}+\beta^{2}\right)\left(\frac{3 c}{4 \alpha}+\alpha\right), \quad[U, \xi] \beta=\left(\gamma-\frac{c}{4}+\beta^{2}\right)\left[\frac{c}{4 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+\beta^{2}\right]$,
which means we have

$$
\begin{equation*}
\left(\gamma-\frac{c}{4}+\beta^{2}\right)\left(\frac{3 c}{4 \alpha}+\alpha\right)=0, \quad\left(\gamma-\frac{c}{4}+\beta^{2}\right)\left[\frac{c}{4 \alpha}\left(\frac{\gamma}{\alpha}-\frac{c}{4 \alpha}+\frac{\beta^{2}}{\alpha}\right)+\beta^{2}\right]=0 \tag{4.7}
\end{equation*}
$$

The term $\gamma-\frac{c}{4}+\beta^{2}$ can not vanish identically, otherwise the combination of (3.12), (3.17) would imply β is constant, which would violate (3.14). Therefore $\gamma-\frac{c}{4}+\beta^{2} \neq 0$ holds in W_{1}. Then (4.7), (3.13) and (3.14) yield

$$
\begin{equation*}
\alpha^{2}=-\frac{3 c}{4} \Rightarrow(\phi U \alpha)=0, \quad \gamma-\frac{c}{4}=2 \beta^{2} \Rightarrow(\phi U \beta)=0 \tag{4.8}
\end{equation*}
$$

Combining (4.8) with (3.17) we get

$$
\begin{equation*}
\kappa_{2}\left(3 \beta^{2}+\frac{c}{4}\right)+3 \beta^{3}-\frac{\beta c}{2}=0 . \tag{4.9}
\end{equation*}
$$

On the other hand, combining (3.12) with (4.8) we obtain $\kappa_{2}=\beta-\frac{\gamma}{\beta}$. The last relation is used with (4.9) and (4.8) to remove the terms κ_{2}, γ leading to

$$
\begin{equation*}
\beta^{2}=-\frac{c}{24} . \tag{4.10}
\end{equation*}
$$

Next we calculate $R(\phi U, U) U$ from (2.4), (4.8), (4.10) and Lemma 3.1 to take $R(\phi U, U) U=\frac{23}{24} c \phi U$. We also have $R(\phi U, U) U=\nabla_{\phi U} \nabla_{U} U-\nabla_{U} \nabla_{\phi U} U-$ $\nabla_{[\phi U, U]} U$, which is further developed with the help of Lemma 3.1, (3.18), (4.8), (4.9), (4.10), $\kappa_{1}=\kappa_{3}=0$, resulting to $R(\phi U, U) U=\frac{13}{12} c \phi U$. Equalizing the two expressions of $R(\phi U, U) U$ we have $c=0$ which is a contradiction in W_{1}.

Thus W_{1} is the empty set and $\gamma=0$ holds in \mathcal{N}. However, this implies $l=0$ due to Lemma 3.1, (3.5), (3.8) and $l \xi=0$. Such hypersurfaces do not exist ([5]) and we have a contradiction on \mathcal{N}. Hence M is a Hopf hypersurface.

5 Proof of Theorem 1.1

Since M is Hopf, we have $A \xi=\alpha \xi$ and α is constant ([13]). The inner product of $\left(\nabla_{\xi} l\right) X=\omega(X) \xi$ with ξ (because of (2.3), (3.9) and $A \xi=\alpha \xi$) yields $\omega(X)=0$. This means that $\nabla_{\xi} l=0$.

It is easy to check that $\left(\nabla_{\xi} l\right) \xi=0$ for any Hopf hypersurface. Now consider a vector field $X \in \mathbb{D}$. From the Gauss equation we have $l X=\left(\alpha A+\frac{c}{4}\right) X$, so that

$$
\begin{gathered}
\left(\nabla_{\xi} l\right) X=\nabla_{\xi} l X-l \nabla_{\xi} X \\
=\nabla_{\xi}\left(\alpha A+\frac{c}{4}\right) X-\left(\alpha A+\frac{c}{4}\right) \nabla_{\xi} X,
\end{gathered}
$$

since $\nabla_{\xi} X$ is also in \mathbb{D}. We can simplify this, using the Codazzi equation, to get

$$
\begin{aligned}
\left(\nabla_{\xi} l\right) X & =\alpha\left(\nabla_{\xi} A\right) X \\
& =\alpha\left(\left(\nabla_{X} A\right) \xi+\frac{c}{4} \phi X\right) \\
& =\alpha\left((\alpha-A) \phi A X+\frac{c}{4} \phi X\right) .
\end{aligned}
$$

In particular, If X is chosen to be a principal vector field, such that $A X=\lambda_{1} X$ and $A \phi X=\lambda_{2} \phi X$, then the condition $\nabla_{\tilde{\xi}} l=0$ implies that

$$
\alpha\left(\lambda_{1}-\lambda_{2}\right)=0
$$

where we have used the well known relation for Hopf hypersurfaces

$$
\lambda_{1} \lambda_{2}=\frac{\lambda_{1}+\lambda_{2}}{2} \alpha+\frac{c}{4} .
$$

If $\alpha \neq 0$ then $\lambda_{1}=\lambda_{2}$ is locally constant since it satisfies $\lambda_{1}^{2}=\alpha \lambda_{1}+\frac{c}{4}$. Therefore, M is an open subset of type A hypersurface, based on the theorems of Kimura and Berndt and the lists of principal curvatures in [15] and [11]. In case $\alpha=0$, we have $\lambda_{1} \neq \lambda_{2}$ or $\lambda_{1}=\lambda_{2}$ with $\lambda_{1}^{2}=\frac{c}{4}$ and the classification follows from [9].

Conversely let M be of type A_{1} in $\mathbb{C} P^{2}$ or type $A_{0}, A_{1,0}, A_{1,1}$ in $\mathbb{C} H^{2}$. Take $X \in \mathbb{D}$ a principal vector field with principal curvature λ, and α the principal curvature of ξ. (2.4) yields $l X=\left(\alpha A+\frac{c}{4}\right) X, \forall X \in \mathbb{D}$. Furthermore, in a real hypersurface of the previously mentioned types, we have $\lambda^{2}=\alpha \lambda+\frac{c}{4}$, thus from the last two equations we have $l X=\lambda^{2} X$, which is used to show $\left(\nabla_{\xi} l\right) X=0$. The last equation and $\left(\nabla_{\xi} l\right) \xi=\nabla_{\xi} l \xi-l \nabla_{\xi} \xi=0$ show that real hypersurfaces of type A satisfy (1.1) with $\omega=0$.

If M is Hopf with $\alpha=0$ then (2.4) yields $l X=\frac{c}{4} X$ for every $X \in D$. Therefore $\left(\nabla_{\xi} l\right) X=0$ holds. In addition we have $\left(\nabla_{\xi} l\right) \xi=0$, thus $\left(\nabla_{\xi} l\right) X=0$ holds for every X, which means $\omega=0$.

ACKNOWLEDGEMENT.

The author expresses deeply his gratitude to the referee for his/her patient and thorough examination of the manuscript as well as his/her suggestions which improved significantly the article's final form.

References

[1] J.Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J Reine Angew Math. 395 (1989) 132-141.
[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Birkhauser, 2002.
[3] J. T. Cho, U - H. Ki, Real hypersurfaces in complex space forms with Reeb flow symmetric structure Jacobi operator, Canad. Math. Bull. 51 (2008), No. 3, 359 371.
[4] Thomas A. Ivey, Patrick J. Ryan, Hopf hypersurfaces of small Hopf principal curvature in CH^{2}, Geom. Dedic. 141 (2009), 147-161.
[5] Thomas A. Ivey, Patrick J. Ryan, The structure Jacobi operator for real hypersurfaces in $\mathbb{C} P^{2}$ and $\mathbb{C} H^{2}$, Result. Math. 56 (2009), 473-488.
[6] U-Hang Ki, Hiroyuki Kurihara, Jacobi operators along the structure flow on real hypersurfaces in non flat complex space form II, Bull. Korean Math. Soc. 48 (2011), No. 6, 1315-1327.
[7] U-Hang Ki, Setsuo Nagai, The Ricci tensor and structure Jacobi operator of real hypersurfaces in a complex projective space, J. Geom. 94 (2009), 123-142.
[8] U - Hang Ki, Juan De Dios Perez, Florentino G Santos, Young Jin Suh, Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44 (2007), No. 2, 307-326.
[9] Hyang Sook Kim, Patrick J. Ryan, A classification of pseudo-Einstein hypersurfaces in CP ${ }^{2}$, Differ. Geom. Appl. 26 (2008), 106-112.
[10] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[11] Maeda, Sadahiro, Geometry of the horosphere in a complex hyperbolic space, Differ. Geom. Appl. 29 (2011), No. 1, 246-250.
[12] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), No. 2, 245-261.
[13] R. Niebergall, P. J. Ryan, Real Hypersurfaces in Complex Space Forms, 233-305, Math. Sci. Res. Inst. Publ., 32, Cambridge Univ. Press, Cambridge, 1997.
[14] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[15] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
[16] R. Takagi, On real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43-53.
[17] Th. Theofanidis, Real hypersurfaces of non - flat complex space forms with generalized ξ - parallel Jacobi Structure Operator, to appear in Glasg. Math. J.

School of Second Chance Delta
Agiou Georgiou 9, Diavata,
Thessaloniki, 54124, Greece.
email: onslaught5000@hotmail.com

[^0]: Received by the editors in June 2015 - In revised form in November 2015.
 Communicated by J. Fine.
 2010 Mathematics Subject Classification : Primary 53B25; Secondary 53D15.
 Key words and phrases : almost contact manifold, real hypersurface, Jacobi structure operator.

