A complete classification of real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ with generalized ξ -parallel Jacobi structure Operator

Th. Theofanidis

Abstract

The aim of the present paper is the classification of real hypersurfaces M, whose Jacobi structure Operator is *generalized* ξ –*parallel*. The notion of generalized ξ –parallel Jacobi structure Operator is rather new and much weaker than ξ – parallel Jacobi structure Operator which has been studied so far.

1 Introduction.

An *n* - dimensional Kaehlerian manifold of constant holomorphic sectional curvature *c* is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a projective space $\mathbb{C}P^n$ if c > 0, a hyperbolic space $\mathbb{C}H^n$ if c < 0, or a Euclidean space \mathbb{C}^n if c = 0. The induced almost contact metric structure of a real hypersurface *M* of $M_n(c)$ will be denoted by (ϕ, ξ, η, g) .

Real hypersurfaces in $\mathbb{C}P^n$ which are homogeneous, were classified by R. Takagi ([15]). The same author classified real hypersurfaces in $\mathbb{C}P^n$, with constant principal curvatures in [16], but only when the number k of distinct principal curvatures satisfies k = 3. M. Kimura showed in [10] that if a Hopf real hypersurface M in $\mathbb{C}P^n$ has constant principal curvatures, then the number of distinct principal curvatures of M is 2, 3 or 5. J. Berndt gave the equivalent result for Hopf hypersurfaces in $\mathbb{C}H^n$ ([1]) where he divided real hypersurfaces into

Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 103–113

Received by the editors in June 2015 - In revised form in November 2015. Communicated by J. Fine.

²⁰¹⁰ Mathematics Subject Classification : Primary 53B25; Secondary 53D15.

Key words and phrases : almost contact manifold, real hypersurface, Jacobi structure operator.

four model spaces, named A_0 , A_1 , A_2 and B. Analytic lists of constant principal curvatures can be found in the previously mentioned references as well as in [11], [13]. Real hypersurfaces of type A_1 and A_2 in $\mathbb{C}P^n$ and of type A_0 , A_1 and A_2 in $\mathbb{C}H^n$ are said to be hypersurfaces of *type* A for simplicity and appear quite often in classification theorems. Real hypersurfaces of type A_1 in $\mathbb{C}H^n$ are divided into types $A_{1,0}$ and $A_{1,1}$ ([11]). For more information and examples on real hypersurfaces, we refer to [13].

A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays an important role in the study of differential geometry. It satisfies a well known differential equation which inspires Jacobi operators. For any vector field X, the Jacobi operator is defined by R_X : $R_X(Y) = R(Y, X)X$, where R denotes the curvature tensor and Y is a vector field on M. R_X is a self - adjoint endomorphism in the tangent space of M, and is related to the Jacobi differential equation, which is given by $\nabla_{\dot{\gamma}}(\nabla_{\dot{\gamma}}Y) + R(Y, \dot{\gamma})\dot{\gamma} = 0$ along a geodesic γ on M, where $\dot{\gamma}$ denotes the velocity vector field along γ on M.

In a real hypersurface M of a complex space form $M_n(c)$, $c \neq 0$, the Jacobi operator on M with respect to the structure vector field ξ , is called the structure Jacobi operator and is denoted by $R_{\xi}(X) = R(X, \xi,)\xi$. Conditions including this operator, generate larger classes than the conditions including the Riemannian tensor R(X, Y)Z. So operator $l = R_{\xi}$ has been studied by quite a few authors and under several conditions.

In 2007, Ki, Perez, Santos and Suh ([8]) classified real hypersurfaces in complex space forms with ξ -parallel Ricci tensor and structure Jacobi operator. J. T. Cho and U - H. Ki in [3] classified the real hypersurfaces whose structure Jacobi operator is symmetric along the Reeb flow ξ and commutes with the shape operator *A*.

In the present paper we classify real hypersurfaces *M* satisfying the condition

$$(\nabla_{\xi}l)X = \omega(X)\xi, \tag{1.1}$$

where ω is 1-form and $X \in T_p M$ at a point $p \in M$. This condition is rather new ([17]) and much weaker than the condition $\nabla_{\xi} l = 0$ that has been used so far ([3], [6], [7], [8]). Therefore a larger class is produced.

We also mention that hypersurfaces in $M_2(c)$ have not been studied as thoroughly as the ones in $M_n(c)$, $n \ge 3$. We refer here to [4], [5], [9].

The major part of the paper is to prove M is a Hopf hypersurface, that is ξ is a principal vector field and the classification follows right after that. In particular, the following theorem is proved:

Theorem 1.1. Let M be a real hypersurface of a complex plane $M_2(c)$, $(c \neq 0)$, satisfying (1.1) for every vector field X on M. Then M is a Hopf hypersurface and satisfies $\nabla_{\xi} l = 0$. Furthermore, M is pseudo-Einstein, that is, there exist constants ρ and σ such that for any tangent vector X we have $QX = \rho X + \sigma g(X, \xi)\xi$ where Q is the Ricci tensor. Conversely, every pseudo-Einstein hypersurface in $M_2(c)$ satisfies (1.1) with $\omega = 0$.

As shown in [9] the pseudo-Einstein hypersurfaces, are precisely those that are

• For $M_2(c) = \mathbb{C}P^2$: open subsets of geodesic spheres (type A_1);

- For $M_2(c) = \mathbb{C}H^2$: open subsets of
- 1. horospheres (type A_0);
- 2. geodesic spheres (type $A_{1,0}$);
- 3. tubes around totally geodesic complex hyperbolic lines $\mathbb{C}H^1$ (type $A_{1,1}$);
- Hopf hypersurfaces with $\eta(A\xi) = 0$.

The form ω has no restriction in its values, so it could vanish at some point. Therefore condition (1.1) could be called generalized ξ -parallel Jacobi structure Operator, since it generalizes the notion of ξ -parallel Jacobi structure Operator ($\nabla_{\xi} l = 0$).

2 Preliminaries

In this section, we explain explicitly the notions that were mentioned in section 1, as well as the notions that will appear in the paper. We also give a series of equations that will be our basic tools in our calculations and conclusions.

Let M_n be a Kaehlerian manifold of real dimension 2n, equipped with an almost complex structure J and a Hermitian metric tensor G. Then for any vector fields X and Y on $M_n(c)$, the following relations hold: $J^2X = -X$, G(JX, JY) = G(X, Y), $\widetilde{\nabla}J = 0$, where $\widetilde{\nabla}$ denotes the Riemannian connection of G of M_n .

Let M_{2n-1} be a real (2n - 1)-dimensional hypersurface of $M_n(c)$, and denote by N a unit normal vector field on a neighborhood of a point in M_{2n-1} (from now on we shall write M instead of M_{2n-1}). For any vector field X tangent to M we have $JX = \phi X + \eta(X)N$, where ϕX is the tangent component of JX, $\eta(X)N$ is the normal component, and $\xi = -JN$, $\eta(X) = g(X, \xi)$, $g = G|_M$.

By properties of the almost complex structure *J* and the definitions of η and *g*, the following relations hold ([2]):

$$\phi^2 = -I + \eta \otimes \xi, \qquad \eta \circ \phi = 0, \qquad \phi \xi = 0, \quad \eta(\xi) = 1.$$
(2.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \phi Y) = -g(\phi X, Y).$$
 (2.2)

The above relations define an *almost contact metric structure* on *M* which is denoted by (ϕ, ξ, g, η) . When an almost contact metric structure is defined on *M*, we can define a local orthonormal basis $\{e_1, e_2, ...e_{n-1}, \phi e_1, \phi e_2, ...\phi e_{n-1}, \xi\}$, called a ϕ – *basis*. Furthermore, let *A* be the shape operator in the direction of *N*, and denote by ∇ the Riemannian connection of *g* on *M*. Then, *A* is symmetric and the following equations are satisfied:

$$\nabla_X \xi = \phi A X, \qquad (\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi. \tag{2.3}$$

As the ambient space $M_n(c)$ is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given by:

$$R(X,Y)Z = \frac{c}{4}[g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y$$
(2.4)

$$-2g(\phi X, Y)\phi Z] + g(AY, Z)AX - g(AX, Z)AY,$$

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4}[\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi].$$
 (2.5)

The tangent space T_pM , for every point $p \in M$, is decomposed as following:

$$T_pM=\mathbb{D}^\perp\oplus\mathbb{D},$$

where $\mathbb{D} = ker(\eta) = \{X \in T_p M : \eta(X) = 0\}.$

The subspace $ker(\eta)$ is more usually referred as \mathbb{D} and called the holomorphic distribution of M. Based on the decomposition of T_pM , by virtue of (2.3), we decompose the vector field $A\xi$ in the following way:

$$A\xi = \alpha\xi + \beta U, \tag{2.6}$$

where $\beta = |\phi \nabla_{\xi} \xi|$, α is a smooth function on M and $U = -\frac{1}{\beta} \phi \nabla_{\xi} \xi \in ker(\eta)$, provided that $\beta \neq 0$.

If β vanishes identically, then $A\xi$ is expressed as $A\xi = \alpha\xi$, ξ is a principal vector field and *M* is a Hopf hypersurface.

Finally differentiation of a function f along a vector field X will be denoted by (Xf). All manifolds, vector fields, etc., of this paper are assumed to be connected and of class C^{∞} .

3 Auxiliary relations

Let us assume there exists a point $p \in M$, where $\beta \neq 0$. Then there exists a neighborhood \mathcal{N} of p where $\beta \neq 0$. By putting $X = \xi$ in (1.1), combined with (2.3) and (2.6), we obtain $\beta l \phi U = -\omega(\xi) \xi$. The inner product of the last equation with ξ yields $l\phi U = 0$ which is analyzed from (2.4) and (2.6) giving $(4\alpha A + c)\phi U = 0$. From the last equation it follows that $\alpha \neq 0$ in \mathcal{N} .

Lemma 3.1. Let M be a real hypersurface of a complex plane $M_2(c)$ satisfying (1.1). Then the following relations hold on \mathcal{N} .

$$AU = \left(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}\right)U + \beta\xi, \qquad A\phi U = -\frac{c}{4\alpha}\phi U. \tag{3.1}$$

$$\nabla_{\xi}\xi = \beta\phi U, \ \nabla_{U}\xi = \left(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^{2}}{\alpha}\right)\phi U, \ \nabla_{\phi U}\xi = \frac{c}{4\alpha}U.$$
(3.2)

$$\nabla_{\xi} U = \kappa_1 \phi U, \quad \nabla_U U = \kappa_2 \phi U, \quad \nabla_{\phi U} U = \kappa_3 \phi U - \frac{c}{4\alpha} \xi. \tag{3.3}$$

$$\nabla_{\xi}\phi U = -\kappa_1 U - \beta\xi, \quad \nabla_U\phi U = -\kappa_2 U - \left(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}\right)\xi, \quad (3.4)$$
$$\nabla_{\phi U}\phi U = -\kappa_3 U.$$

where κ_1 , κ_2 , κ_3 are smooth functions on \mathcal{N} .

Proof.

By definition of the vector fields U, ϕU , ξ and due to (1.1), the set $\{U, \phi U, \xi\}$ is an orthonormal basis. From (2.4) we obtain

$$lU = \frac{c}{4}U + \alpha AU - \beta A\xi, \qquad l\phi U = \frac{c}{4}\phi U + \alpha A\phi U. \tag{3.5}$$

The inner products of *lU* with *U* and ϕU yield respectively

$$g(AU, U) = \frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}, \quad g(AU, \phi U) = \frac{\delta}{\alpha}$$
 (3.6)

where $\gamma = g(lU, U)$ and $\delta = g(lU, \phi U)$. So, (3.6) and $g(AU, \xi) = g(A\xi, U) = \beta$, yield

$$AU = \left(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}\right)U + \frac{\delta}{\alpha}\phi U + \beta\xi.$$
(3.7)

We have already shown in the beginning of this section that

$$l\phi U = 0 \Leftrightarrow A\phi U = -\frac{c}{4\alpha}U.$$
(3.8)

From (3.7), (3.8) and the symmetry of A, (3.1) has been proved.

From equations (2.6),(3.1) and relation (2.3) for $X = \xi$, X = U, $X = \phi U$, we obtain (3.2). Next we recall the rule

$$Xg(Y,Z) = g(\nabla_X Y,Z) + g(Y,\nabla_X Z).$$
(3.9)

By virtue of (3.9) for $X = Z = \xi$, Y = U and for $X = \xi$, Y = Z = U, it is shown respectively $\nabla_{\xi}U \perp \xi$ and $\nabla_{\xi}U \perp U$. So $\nabla_{\xi}U = \kappa_1\phi U$, where $\kappa_1 = g(\nabla_{\xi}U, \phi U)$. In a similar way, (3.9) for X = Y = Z = U and X = Z = U, $Y = \xi$ yields-with the aid of (3.2)-respectively $\nabla_U U \perp U$ and $\nabla_U U \perp \xi$. This means that $\nabla_U U = \kappa_2\phi U$, where $\kappa_2 = g(\nabla_U U, \phi U)$. Finally, (3.9) for $X = \phi U$, Y = Z = U and $X = \phi U$, Y = U, $Z = \xi$ -with the aid of (3.2)-yields respectively $\nabla_{\phi U}U \perp U$ and $g(\nabla_{\phi U}U, \xi) = -\frac{c}{4\alpha}$. Therefore $\nabla_{\phi U}U = \kappa_3\phi U - \frac{c}{4\alpha}\xi$ where $\kappa_3 = g(\nabla_{\phi U}U, \phi U)$ and (3.3) has been proved. In order to prove (3.4) we use the second of (2.3) with the following combinations: i $X = \xi$, Y = U, ii X = Y = U, iii $X = \phi U$, Y = U, and make use of (2.6), (3.1), (3.3).

By putting X = U, $Y = \xi$ in (2.5) we obtain $\nabla_U A \xi - A \nabla_U \xi - \nabla_{\xi} A U + A \nabla_{\xi} U = -\frac{c}{4} \phi U$, which is expanded by Lemma 3.1, to give

$$[(U\alpha) - (\xi\beta)]\xi + [(U\beta) - \xi(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha})]U + [\kappa_2\beta + \gamma + \frac{c}{4\alpha}(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) - (\frac{\gamma}{\alpha} + \frac{\beta^2}{\alpha})\kappa_1]\phi U = 0.$$

Since the vector fields $U, \phi U$ and ξ are linearly independent, the above equation gives

$$(U\alpha) = (\xi\beta), \tag{3.10}$$

$$(U\beta) = \xi \left(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}\right), \qquad (3.11)$$

$$\kappa_2\beta + \gamma + \frac{c}{4\alpha}(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) - (\frac{\gamma}{\alpha} + \frac{\beta^2}{\alpha})\kappa_1 = 0.$$
(3.12)

In a similar way, from (2.5) we get $\nabla_{\phi U} A \xi - A \nabla_{\phi U} \xi - \nabla_{\xi} A \phi U + A \nabla_{\xi} \phi U = \frac{c}{4} U$, which is expanded by Lemma 3.1, to give

$$[(\phi U\alpha) - \frac{3\beta c}{4\alpha} - \kappa_1 \beta - \alpha\beta]\xi + [(\phi U\beta) - \frac{c}{4\alpha}(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) - \kappa_1(\frac{\gamma}{\alpha} + \frac{\beta^2}{\alpha}) - \beta^2]U + [\kappa_3\beta - (\frac{c}{4\alpha^2})(\xi\alpha)]\phi U = 0,$$

which leads to

$$(\phi U\alpha) - \frac{3\beta c}{4\alpha} - \kappa_1 \beta - \alpha \beta = 0, \qquad (3.13)$$

$$(\phi U\beta) - \frac{c}{4\alpha}\left(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}\right) - \kappa_1\left(\frac{\gamma}{\alpha} + \frac{\beta^2}{\alpha}\right) - \beta^2 = 0, \qquad (3.14)$$

$$(\xi \alpha) = \frac{4\alpha^2 \beta}{c} \kappa_3. \tag{3.15}$$

Finally, (2.5) yields $\nabla_U A \phi U - A \nabla_U \phi U - \nabla_{\phi U} A U + A \nabla_{\phi U} U = -\frac{c}{2} \xi$, which is expanded by Lemma 3.1, to give

$$\begin{split} [-\phi U\beta + \gamma + \frac{c}{2\alpha}(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) + \kappa_2\beta + \beta^2]\xi + \\ [\beta(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) + \kappa_2(\frac{\beta^2}{\alpha} + \frac{\gamma}{\alpha}) - \phi U(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) - \frac{\beta c}{2\alpha}]U + \\ [\frac{c}{4\alpha^2}(U\alpha) - \kappa_3(\frac{\gamma}{\alpha} + \frac{\beta^2}{\alpha})]\phi U = 0. \end{split}$$

The above relation leads to

$$-\phi U\beta + \gamma + \frac{c}{2\alpha}\left(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}\right) + \kappa_2\beta + \beta^2 = 0, \qquad (3.16)$$

$$\beta(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) + \kappa_2(\frac{\beta^2}{\alpha} + \frac{\gamma}{\alpha}) - \phi U(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) - \frac{\beta c}{2\alpha} = 0, \quad (3.17)$$

$$(U\alpha) = \kappa_3 \frac{4\alpha}{c} (\gamma + \beta^2).$$
(3.18)

From (2.4) we calculate $R(U,\xi)U$, using Lemma 3.1. The result is $R(U,\xi)U = -\gamma\xi$. However, the vector field $R(U,\xi)U$ is also calculated from $R(U,\xi)U = \nabla_U \nabla_{\xi} U - \nabla_{\xi} \nabla_U U - \nabla_{[U,\xi]} U$ using also Lemma 3.1, giving

 $R(U,\xi)U = [(U\kappa_1) - (\xi\kappa_2) + \kappa_3\kappa_1 - \kappa_3(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha})]\phi U + [\kappa_2\beta + \frac{c}{4\alpha}(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) - (\frac{\gamma}{\alpha} + \frac{\beta^2}{\alpha})\kappa_1]\xi.$ Comparing the two expressions of $R(U,\xi)U$ we get

$$(U\kappa_1) - (\xi\kappa_2) = \kappa_3(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha} - \kappa_1).$$
(3.19)

By making use of (1.1) for X = U, we obtain $(\nabla_{\xi} l)U = \omega(U)\xi$, which is expanded with the aid of Lemma 3.1 and (3.5), giving $(\xi\gamma)U + \gamma\kappa_1\phi U = \omega(U)\xi$. Since $U, \phi U, \xi$ are linearly independent, we obtain

$$\gamma \kappa_1 = 0, \quad (\xi \gamma) = 0. \tag{3.20}$$

4 The case $\gamma \neq 0$.

Let us assume there exists a point $p_1 \in \mathcal{N}$ such that $\gamma \neq 0$ in a neighborhood W_1 of p_1 . Then (3.20) yields $\kappa_1 = 0 = (\xi \gamma)$. So, by differentiating (3.12) along ξ , with the aid of (3.10), (3.15), (3.18), (3.19) we have

$$\kappa_3\left[-2\beta\left(\frac{\gamma}{\alpha}-\frac{c}{4\alpha}+\frac{\beta^2}{\alpha}\right)+\kappa_2\frac{4\alpha}{c}(\gamma+\beta^2)+\frac{\beta}{\alpha}(\gamma+\frac{c}{4}+\beta^2)\right]=0.$$
 (4.1)

If we assume that $\kappa_3 \neq 0$ in W_1 then (4.1) will give $-2\beta(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) + \kappa_2 \frac{4\alpha}{c}(\gamma + \beta^2) + \frac{\beta}{\alpha}(\gamma + \frac{c}{4} + \beta^2) = 0$ which is further modified giving

$$\frac{3\beta c}{4\alpha} - \frac{\beta}{\alpha}(\gamma + \beta^2) + \kappa_2 \frac{4\alpha}{c}(\gamma + \beta^2) = 0.$$
(4.2)

Apparently, $\gamma + \beta^2 \neq 0$, otherwise relation (4.2) would yield $\frac{\beta c}{\alpha} = 0$ which is a contradiction. Therefore (4.2) yields

$$\kappa_2 = \frac{\beta c}{4\alpha^2} - \frac{3\beta c^2}{16\alpha^2(\gamma + \beta^2)}.$$
(4.3)

We replace the term κ_2 in (3.12), from (4.3) and then multiply the new relation with $\gamma + \beta^2$. The outcome is

$$(\gamma + \beta^2)(\gamma \alpha^2 + \frac{c\beta^2}{2} + \frac{c}{4}\gamma - \frac{c^2}{16}) - \frac{3\beta^2 c^2}{16} = 0.$$

The above equation is differentiated along ξ , combined with (3.10), (3.15), (3.18), (3.20) leading to

$$\kappa_3(\gamma+\beta^2)[\frac{8\alpha\beta}{c}(\gamma\alpha^2+\frac{c\beta^2}{2}+\frac{c}{4}\gamma-\frac{c^2}{16})+\frac{8\alpha^3\beta\gamma}{c}+4\alpha\beta\gamma+4\alpha\beta^3-\frac{3\alpha\beta c}{2}]=0.$$

Since we have $\kappa_3(\gamma + \beta^2) \neq 0$, the above equation yields

$$\frac{8\alpha^2\gamma}{c} + 4\beta^2 + 3\gamma - c = 0. \tag{4.4}$$

By virtue of (3.10), (3.15), (3.18), (3.20) and $\kappa_3 \neq 0$ we differentiate (4.4) to obtain

$$\frac{8\alpha^2\gamma}{c} + 4\beta^2 + 4\gamma = 0. \tag{4.5}$$

From (4.4) and (4.5) we obtain

$$\beta^2 - 2\alpha^2 = c, \qquad \gamma = -c. \tag{4.6}$$

The differentiation of (4.6) along *U*, with the aid of (3.10), (3.11), (3.15), (3.18), (3.20), (4.6) and $\kappa_3 \neq 0$ leads to

$$(\beta^2 - \frac{3c}{4})\beta^2 - 2\alpha^2(\beta^2 - c) = 0.$$

The term $2\alpha^2$ is replaced from (4.6) in order to acquire $\beta^2 = \frac{4c}{5}$. So β is constant and from (4.6) we have $(\xi \alpha) = 0 \Rightarrow \kappa_3 = 0$ (due to (3.15)) which is a contradiction to our assumption $\kappa_3 \neq 0$.

This means that in W_1 we have $\kappa_3 = 0$ and the Lie brackets $[U, \xi]\alpha$, $[U, \xi]\beta$ are zero, due to (3.10), (3.11), (3.15), (3.18). The same Lie brackets are estimated from $[U, \xi] = \nabla_U \xi - \nabla_{\xi} U$, (3.13), (3.14), $\kappa_1 = 0$ and Lemma 3.1 as following:

$$[U,\xi]\alpha = (\gamma - \frac{c}{4} + \beta^2)(\frac{3c}{4\alpha} + \alpha), \quad [U,\xi]\beta = (\gamma - \frac{c}{4} + \beta^2)[\frac{c}{4\alpha}(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) + \beta^2],$$

which means we have

$$(\gamma - \frac{c}{4} + \beta^2)(\frac{3c}{4\alpha} + \alpha) = 0, \quad (\gamma - \frac{c}{4} + \beta^2)[\frac{c}{4\alpha}(\frac{\gamma}{\alpha} - \frac{c}{4\alpha} + \frac{\beta^2}{\alpha}) + \beta^2] = 0.$$
(4.7)

The term $\gamma - \frac{c}{4} + \beta^2$ can not vanish identically, otherwise the combination of (3.12), (3.17) would imply β is constant, which would violate (3.14). Therefore $\gamma - \frac{c}{4} + \beta^2 \neq 0$ holds in W_1 . Then (4.7), (3.13) and (3.14) yield

$$\alpha^2 = -\frac{3c}{4} \Rightarrow (\phi U\alpha) = 0, \quad \gamma - \frac{c}{4} = 2\beta^2 \Rightarrow (\phi U\beta) = 0.$$
(4.8)

Combining (4.8) with (3.17) we get

$$\kappa_2(3\beta^2 + \frac{c}{4}) + 3\beta^3 - \frac{\beta c}{2} = 0.$$
(4.9)

On the other hand, combining (3.12) with (4.8) we obtain $\kappa_2 = \beta - \frac{\gamma}{\beta}$. The last relation is used with (4.9) and (4.8) to remove the terms κ_2 , γ leading to

$$\beta^2 = -\frac{c}{24}.$$
 (4.10)

Next we calculate $R(\phi U, U)U$ from (2.4), (4.8), (4.10) and Lemma 3.1 to take $R(\phi U, U)U = \frac{23}{24}c\phi U$. We also have $R(\phi U, U)U = \nabla_{\phi U}\nabla_{U}U - \nabla_{U}\nabla_{\phi U}U - \nabla_{[\phi U,U]}U$, which is further developed with the help of Lemma 3.1, (3.18), (4.8), (4.9), (4.10), $\kappa_1 = \kappa_3 = 0$, resulting to $R(\phi U, U)U = \frac{13}{12}c\phi U$. Equalizing the two expressions of $R(\phi U, U)U$ we have c = 0 which is a contradiction in W_1 .

Thus W_1 is the empty set and $\gamma = 0$ holds in \mathcal{N} . However, this implies l = 0 due to Lemma 3.1, (3.5), (3.8) and $l\xi = 0$. Such hypersurfaces do not exist ([5]) and we have a contradiction on \mathcal{N} . Hence M is a Hopf hypersurface.

5 Proof of Theorem 1.1

Since *M* is Hopf, we have $A\xi = \alpha\xi$ and α is constant ([13]). The inner product of $(\nabla_{\xi} l)X = \omega(X)\xi$ with ξ (because of (2.3), (3.9) and $A\xi = \alpha\xi$) yields $\omega(X) = 0$. This means that $\nabla_{\xi} l = 0$.

It is easy to check that $(\nabla_{\xi} l)\xi = 0$ for any Hopf hypersurface. Now consider a vector field $X \in \mathbb{D}$. From the Gauss equation we have $lX = (\alpha A + \frac{c}{4})X$, so that

$$(\nabla_{\xi}l)X = \nabla_{\xi}lX - l\nabla_{\xi}X$$
$$= \nabla_{\xi}(\alpha A + \frac{c}{4})X - (\alpha A + \frac{c}{4})\nabla_{\xi}X$$

since $\nabla_{\tilde{c}} X$ is also in \mathbb{D} . We can simplify this, using the Codazzi equation, to get

$$\begin{aligned} (\nabla_{\xi}l)X &= \alpha(\nabla_{\xi}A)X \\ &= \alpha((\nabla_X A)\xi + \frac{c}{4}\phi X) \\ &= \alpha((\alpha - A)\phi AX + \frac{c}{4}\phi X). \end{aligned}$$

In particular, If *X* is chosen to be a principal vector field, such that $AX = \lambda_1 X$ and $A\phi X = \lambda_2 \phi X$, then the condition $\nabla_{\xi} l = 0$ implies that

$$\alpha(\lambda_1 - \lambda_2) = 0$$

where we have used the well known relation for Hopf hypersurfaces

$$\lambda_1\lambda_2 = \frac{\lambda_1 + \lambda_2}{2}\alpha + \frac{c}{4}.$$

If $\alpha \neq 0$ then $\lambda_1 = \lambda_2$ is locally constant since it satisfies $\lambda_1^2 = \alpha \lambda_1 + \frac{c}{4}$. Therefore, *M* is an open subset of type *A* hypersurface, based on the theorems of Kimura and Berndt and the lists of principal curvatures in [15] and [11]. In case $\alpha = 0$, we have $\lambda_1 \neq \lambda_2$ or $\lambda_1 = \lambda_2$ with $\lambda_1^2 = \frac{c}{4}$ and the classification follows from [9].

Conversely let *M* be of type A_1 in $\mathbb{C}P^2$ or type A_0 , $A_{1,0}$, $A_{1,1}$ in $\mathbb{C}H^2$. Take $X \in \mathbb{D}$ a principal vector field with principal curvature λ , and α the principal curvature of ξ . (2.4) yields $lX = (\alpha A + \frac{c}{4})X$, $\forall X \in \mathbb{D}$. Furthermore, in a real hypersurface of the previously mentioned types, we have $\lambda^2 = \alpha \lambda + \frac{c}{4}$, thus from the last two equations we have $lX = \lambda^2 X$, which is used to show $(\nabla_{\xi} l)X = 0$. The last equation and $(\nabla_{\xi} l)\xi = \nabla_{\xi} l\xi - l\nabla_{\xi}\xi = 0$ show that real hypersurfaces of type A satisfy (1.1) with $\omega = 0$.

If *M* is Hopf with $\alpha = 0$ then (2.4) yields $lX = \frac{c}{4}X$ for every $X \in D$. Therefore $(\nabla_{\xi}l)X = 0$ holds. In addition we have $(\nabla_{\xi}l)\xi = 0$, thus $(\nabla_{\xi}l)X = 0$ holds for every *X*, which means $\omega = 0$.

ACKNOWLEDGEMENT.

The author expresses deeply his gratitude to the referee for his/her patient and thorough examination of the manuscript as well as his/her suggestions which improved significantly the article's final form.

References

- [1] J.Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J Reine Angew Math. 395 (1989) 132 -141.
- [2] D. E. Blair, *Riemannian Geometry of Contact and Symplectic Manifolds*, Progress in Mathematics, Birkhauser, 2002.
- [3] J. T. Cho, U H. Ki, Real hypersurfaces in complex space forms with Reeb flow symmetric structure Jacobi operator, Canad. Math. Bull. 51 (2008), No. 3, 359 -371.
- [4] Thomas A. Ivey, Patrick J. Ryan, Hopf hypersurfaces of small Hopf principal curvature in CH², Geom. Dedic. 141 (2009), 147-161.
- [5] Thomas A. Ivey, Patrick J. Ryan, *The structure Jacobi operator for real hypersurfaces in* $\mathbb{C}P^2$ *and* $\mathbb{C}H^2$, Result. Math. 56 (2009), 473-488.
- [6] U-Hang Ki, Hiroyuki Kurihara, Jacobi operators along the structure flow on real hypersurfaces in non flat complex space form II, Bull. Korean Math. Soc. 48 (2011), No. 6, 1315 - 1327.
- [7] U-Hang Ki, Setsuo Nagai, *The Ricci tensor and structure Jacobi operator of real hypersurfaces in a complex projective space*, J. Geom. 94 (2009), 123 142.
- [8] U Hang Ki, Juan De Dios Perez, Florentino G Santos, Young Jin Suh, *Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator*, J. Korean Math. Soc. 44 (2007), No. 2, 307 326.
- [9] Hyang Sook Kim, Patrick J. Ryan, A classification of pseudo-Einstein hypersurfaces in CP², Differ. Geom. Appl. 26 (2008), 106-112.
- [10] M. Kimura, *Real hypersurfaces and complex submanifolds in complex projective space*, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [11] Maeda, Sadahiro, *Geometry of the horosphere in a complex hyperbolic space*, Differ. Geom. Appl. 29 (2011), No. 1, 246 250.
- [12] S. Montiel and A. Romero, *On some real hypersurfaces of a complex hyperbolic space*, Geom. Dedicata 20 (1986), No. 2, 245 261.
- [13] R. Niebergall, P. J. Ryan, *Real Hypersurfaces in Complex Space Forms*, 233–305, Math. Sci. Res. Inst. Publ., 32, Cambridge Univ. Press, Cambridge, 1997.
- [14] M. Okumura, *On some real hypersurfaces of a complex projective space*, Trans. Amer. Math. Soc. 212 (1975), 355 364.
- [15] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495 - 506.
- [16] R. Takagi, On real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43 - 53.

[17] Th. Theofanidis, Real hypersurfaces of non - flat complex space forms with generalized ξ - parallel Jacobi Structure Operator, to appear in Glasg. Math. J.

School of Second Chance Delta Agiou Georgiou 9, Diavata, Thessaloniki, 54124, Greece. email: onslaught5000@hotmail.com