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Abstract

We prove that for any separable Banach space X, there exists a
compact metric space which is homeomorphic to the Cantor space
and whose Lipschitz-free space contains a complemented subspace
isomorphic to X. As a consequence we give an example of a compact
metric space which is homeomorphic to the Cantor space and whose
Lipschitz-free space fails the approximation property and we prove
that there exists an uncountable family of topologically equivalent dis-
tances on the Cantor space whose free spaces are pairwise non iso-
morphic. We also prove that the free space over a countable compact
metric space has the Schur property. These results answer questions
by G. Godefroy.

1 Introduction

Let (M, d) be a metric space equipped with a distinguished point denoted 0.
We denote by Lip0(M) the Banach space of all real-valued Lipschitz func-
tions on M that vanish at 0 endowed with its natural norm:

∀ f ∈ Lip0(M), ‖ f‖Lip = sup

{

| f (x)− f (y)|

d(x, y)
, x, y ∈ M, x 6= y

}

.
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The Dirac map δ : M → Lip0(M)∗ defined by 〈 f , δ(x)〉 = f (x) for
f ∈ Lip0(M) and x ∈ M is an isometric embedding from M into Lip0(M)∗.
The closed linear span of {δ(x), x ∈ M} in Lip0(M)∗ is denoted F (M) and
called the Lipschitz-free space over M (free space in short). The space F (M)
is an isometric predual of Lip0(M). The fundamental property of the free
spaces is that any Lipschitz function between metric spaces extends, via the
δ maps, to a continuous linear map between the corresponding free spaces
(see [8], [12] or [16]). This feature makes it very natural to study the linear
structure of the free spaces. This direction of research, which has become
very active, was initiated in a paper by G. Godefroy and N. Kalton [8], and
soon after was continued in an article by N. Kalton [12]. In [8], the authors
concentrated on the study of F (X), when X is a Banach space. In that sit-
uation, there is another fundamental object, namely the barycenter map β,
which is defined to be the unique bounded linear map from F (X) onto X
such that for all x ∈ X, βδ(x) = x. Note that ‖β‖ = 1. One of the main re-
sults in [8] is that if X is a separable Banach space, then there exists a linear
isometry U : X → F (X) such that βU = IdX. Let us point out that it readily
follows that P = Uβ is a non expansive projection from F (X) onto U(X).
Let us now recall that a Banach space X has the approximation property
(AP in short) if for any compact subset K of X and any ε > 0, there exists
a bounded finite rank operator T on X such that ‖T(x) − x‖ ≤ ε for all
x ∈ K. For λ ≥ 1, X has the λ-bounded approximation property (λ-BAP) if
for any compact subset K of X and any ε > 0, there exists a bounded finite
rank operator T on X such that ‖T‖ ≤ λ and ‖T(x)− x‖ ≤ ε for all x ∈ K.
We say that X has the bounded approximation property (BAP) if it has the
λ-BAP for some λ ≥ 1 and that it has the metric approximation property
(MAP) if it has the 1-BAP. Another important result of [8] is that a Banach
space X has the λ-BAP if and only if F (X) has the λ-BAP. It follows that
the BAP is stable under Lipschitz isomorphisms. It is then natural to study
these approximation properties for free spaces over other metric spaces and
in particular over compact metric spaces. Let us summarize what is known
on this subject. G. Godefroy and N. Ozawa proved in [9] that there exists a
compact convex subset K of a Banach space X such that F (K) fails the AP.
It is proved in [13] that the free space over a doubling metric space has the
BAP. In [3] A. Dalet showed that the free space over a countable compact
metric space has the MAP (see also [4] for the extension of this result to the
case of countable proper metric spaces). In [14], R. Smith and the third au-
thor proved, in particular, that the free space of a compact convex subset
of a finite dimensional normed space has the MAP. Finally, let us mention
that M. Cúth and M. Doucha recently obtained in [1] that the free space of a
separable ultrametric space has the MAP.

In [9], G. Godefroy and N. Ozawa also proved that if K is a “small Cantor
set”, then F (K) has the MAP. Then G. Godefroy raised the question whether
the free space over a perfect totally disconnected compact metric space (or
equivalently a metric space homeomorphic to the Cantor space C) has the
BAP [7] (this question was already mentioned in [1]). In section 2 we prove
the existence of a compact metric space K, which is homeomorphic to C
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and such that F (K) fails the AP. Our proof is based on an adaptation of the
construction of a linear isometric lifting of the barycenter map β when X is
a separable Banach space (see [8] for the original proof). We will follow the
elementary approach given in [6]. This construction will also allow us to
build an uncountable family of compact metric spaces, all homeomorphic
to the Cantor space, but whose free spaces are pairwise non isomorphic.

Let us finally recall that a Banach space X is weakly sequentially com-
plete if a sequence (xn)∞

n=0 in X is weakly converging whenever the
sequences (x∗(xn))∞

n=0 are converging in R for all x∗ ∈ X∗. Then X has the
Schur property if every weakly converging sequence in X is norm converg-
ing. Clearly, a Banach space with the Schur property is weakly sequentially
complete. Recently, M. Cúth, M. Doucha and P. Wojtaszczyk proved that
F (Rn) is weakly sequentially complete. Among other questions, G. Gode-
froy proposed to study the weak sequential completeness of free spaces
over compact metric spaces and specifically asked whether the free space
over a countable compact metric space is weakly sequentially complete.
In section 3, we address this question and show that the free space of any
countable compact (or even proper) metric space has the Schur property.

2 Free spaces over Cantor sets

We start by stating the main result of this section.

Theorem 2.1. Let X be a separable Banach space and ε > 0. Then there exists a
compact subset K of X such that K is homeomorphic to the Cantor space C, a linear
embedding R from X into F (K) such that ‖R‖ ‖R−1‖ ≤ 1 + ε and a projection P
from F (K) onto R(X) with ‖P‖ ≤ 1 + ε.

As an immediate Corollary, we obtain:

Corollary 2.2. There exists a compact metric space K homeomorphic to the Cantor
space C such that F (K) fails the approximation property.

Proof. Let X be a separable Banach space failing the approximation prop-
erty. The existence of such a space was proved by P. Enflo in [5]. Then
Theorem 2.1 insures the existence of a compact subset K of X so that K is
homeomorphic to C and X is isomorphic to a complemented subspace of
F (K). Therefore F (K) fails the approximation property.

Proof of Theorem 2.1. The idea of the proof is to build a “very fat spanning
Cantor set” in any separable Banach space. So let X be a separable Banach
space and ε > 0. We choose a small enough η ∈ (0, 1/2). The choice of η
will be made precise along our construction. It follows from the work of I.
Singer [15] (see also [10] Corollary 1.26 page 12) that there exists (xn)∞

n=1 in
X and (x∗n)

∞
n=1 in X∗ such that the linear span of {xn, n ≥ 1} is dense in X

and so that for all n ≥ 1, ‖xn‖ = 2−n = x∗n(xn), ‖x∗n‖ ≤ 1+ η and for n 6= m,
x∗m(xn) = 0.
We now pick a sequence (an)∞

n=1 in (0, 1) such that an ≤ η2−n for all n ≥ 1,
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and ∏
∞
n=1(1 − an) = Π ≥ 1 − η.

For all n ≥ 1, we choose a subset Cn of [0, 1] which is homeomorphic to the
Cantor space C and such that its Lebesgue measure satisfies λ(Cn) = 1− an.
We also ask that {0, 1} ⊂ Cn.
For N ≥ 1 and 1 ≤ n ≤ N, we denote An

N = {k 6= n, 1 ≤ k ≤ N} and

DN =
N

∏
k=1

Ck, Dn
N = ∏

k∈An
N

Ck, ΠN =
N

∏
k=1

(1 − ak) and Πn
N = ∏

k∈An
N

(1 − ak).

We also denote λN the Lebesgue measure on [0, 1]N and λn
N the Lebesgue

measure on [0, 1]A
n
N .

Then we define f : [0, 1]N → X by f (t) = ∑
∞
n=1 tnxn, for t = (tn)∞

n=1 ∈
[0, 1]N. Note that f is one to one and continuous. It follows that
K = f (∏∞

n=1 Cn) is homeomorphic to C. We will show that, with the right
choice of η, K will provide us with the desired example.

For N ≥ 1, we denote EN the linear span of {x1, .., xN} and define RN to
be the linear map from EN to F (K) such that

∀n ≤ N RN(xn) =
1

Πn
N

∫

Dn
N

(

δ(xn + ∑
k∈An

N

tkxk)− δ( ∑
k∈An

N

tkxk)
)

dλn
N(t).

Note that for all x ∈ EN , βRN(x) = x and for all n ≤ N, ‖RN(xn)‖ ≤ ‖xn‖.
Then we consider SN : EN → F (K) to be the linear map such that

∀n ≤ N SN(xn) = Πn
NRN(xn)

and UN : EN → F (X) to be the linear map such that

∀n ≤ N UN(xn) =
∫

[0,1]A
n
N

(

δ(xn + ∑
k∈An

N

tkxk)− δ( ∑
k∈An

N

tkxk)
)

dλn
N(t).

By the choice of (an)∞
n=1,

∀n ≤ N, ‖ΠNRN(xn)− SN(xn)‖ = |ΠN − Πn
N| ‖RN(xn)‖ ≤ η2−n‖xn‖.

(2.1)
Consider now x = ∑

N
n=1 αnxn ∈ EN. Note that for all n ≤ N, x∗n(x) = αn2−n,

which implies that |αn| ≤ 2n(1 + η)‖x‖. Then, we deduce from (2.1) that

‖ΠNRN(x)− SN(x)‖ ≤
N

∑
n=1

|αn|η2−n‖xn‖ ≤ η(1 + η)‖x‖ ≤ 2η‖x‖. (2.2)

We have shown that ‖ΠNRN − SN‖ ≤ 2η.
Assume now that f ∈ Lip0(X) is such that its restriction to EN , that we

denote fN , is continuously differentiable. Let x = ∑
N
n=1 αnxn ∈ EN. Then

〈 f , SN(x)〉 −
∫

DN

〈∇ fN

(

N

∑
k=1

tkxk

)

, x〉 dλN(t) =
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N

∑
n=1

αn

∫

Dn
N

(

∫

[0,1]\Cn

〈∇ fN

(

N

∑
k=1

tkxk

)

, xn〉 dtn

)

dλn
N(t).

It follows that

∣

∣〈 f , SN(x)〉 −
∫

DN

〈∇ fN

(

N

∑
k=1

tkxk

)

, x〉 dλN(t)
∣

∣ ≤
N

∑
n=1

an|αn| ‖ f‖Lip‖xn‖

≤ (1 + η)‖ f‖Lip‖x‖
N

∑
n=1

an ≤ η(1 + η)‖ f‖Lip‖x‖ ≤ 2η‖ f‖Lip‖x‖.

We also have that

∣

∣

∫

[0,1]N
〈∇ fN

(

N

∑
k=1

tkxk

)

, x〉 dλN(t)−
∫

DN

〈∇ fN

(

N

∑
k=1

tkxk

)

, x〉 dλN(t)
∣

∣

≤ (1 − ΠN)‖ f‖Lip‖x‖ ≤ η‖ f‖Lip‖x‖.

Hence

∣

∣〈 f , SN(x)〉 −
∫

[0,1]N
〈∇ fN

(

N

∑
k=1

tkxk

)

, x〉 dλN(t)
∣

∣ ≤ 3η‖ f‖Lip‖x‖. (2.3)

Then we can use a now classical approximation argument, using the convo-
lution by a smooth approximation of unity in EN, as it is presented in [6], to
deduce from (2.3) that ‖SN −UN‖ ≤ 3η and therefore that ‖ΠNRN −UN‖ ≤
5η. Since we know from [8] that UN is an isometry, we get that

‖RN‖ ≤
1 + 5η

ΠN
≤

1 + 5η

1 − η
≤ 1 + ε,

if η was initially chosen small enough.
The last step of the proof is to define R as a “limit” of the sequence

(RN)
∞
N=1. Indeed, for all n ≤ N:

RN+1(xn) =
1

Πn
N+1

∫

Dn
N+1

(

δ(xn + ∑
k∈An

N+1

tkxk)− δ( ∑
k∈An

N+1

tkxk)
)

dλn
N+1(t)

and

RN(xn) =
1

Πn
N

∫

Dn
N

(

δ(xn + ∑
k∈An

N

tkxk)− δ( ∑
k∈An

N

tkxk)
)

dλn
N(t)

=
1

Πn
N+1

∫

Dn
N+1

(

δ(xn + ∑
k∈An

N

tkxk)− δ( ∑
k∈An

N

tkxk)
)

dλn
N+1(t).

We deduce that

‖RN+1(xn)− RN(xn)‖ ≤ 2‖xN+1‖ ≤ 2−N.
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It follows that for any x ∈ EN , the sequence (Rl(x))
∞
l=N is norm convergent

in F (K). We denote R(x) its limit. Then R extends to a bounded linear map
R : X → F (K) such that ‖R‖ ≤ 1 + ε and for all x ∈ X, βR(x) = x. Since
‖β‖ ≤ 1, we obtain that R is a linear embedding from X into F (K) such that

∀x ∈ X, ‖x‖ ≤ ‖R(x)‖ ≤ (1 + ε)‖x‖.

Denote now βK the restriction of β to F (K). It is easily checked that
P = RβK is a bounded projection from F (K) onto R(X), with ‖P‖ ≤ 1 + ε.
This concludes our proof.

Let us denote ω1 the first uncountable ordinal. As another application
of Theorem 2.1 we obtain the following result.

Corollary 2.3. There exists a family (Xα)α<ω1
of separable Banach spaces and a

family (Kα)α<ω1
such that

(i) For all α < ω1, Kα is a compact subset of Xα which is homeomorphic to the
Cantor space C.

(ii) For all α < ω1, Xα is isomorphic to a complemented subspace of F (Kα).

(iii) For all β < α < ω1, Xα is not isomorphic to a complemented subspace of
F (Kβ).

In particular, for any α 6= β ∈ [1, ω1), F (Kα) and F (Kβ) are non isomorphic.

Proof. This construction will be done by transfinite induction. Let X1 be any
separable Banach space (set X1 = c0 for instance). By Theorem 2.1, there
exists a compact subset K1 of X1 which is homeomorphic to C and such that
X1 is isomorphic to a complemented subspace of F (K1). We now use the
work of Johnson and Szankowski [11], who showed that there is no separa-
ble Banach space that is complementably universal (see also Theorem 2.11
in [10]). Therefore, there exists a separable Banach space X2 such that X2 is
not isomorphic to a complemented subspace of F (K1). Then, we use Theo-
rem 2.1 to find a compact subset K2 of X2 homeomorphic to C and such that
X2 is isomorphic to a complemented subspace of F (K2).
Assume now that (Xγ)γ<α and (Kγ)γ<α have been constructed for some
α < ω1 and satisfy properties (i), (ii) and (iii).
If α = β + 1 is a successor ordinal, Johnson and Szankowski’s theorem in-
sures the existence of a separable Banach space Y such that Y is not isomor-
phic to a complemented subspace of F (Kβ). Then we set Xβ+1 = Xβ ⊕ Y.
So Xβ+1 is not isomorphic to a complemented subspace of F (Kβ). It also
follows from our induction hypothesis that for all γ < β, Xβ+1 is not iso-
morphic to a complemented subspace of F (Kγ). Then, by Theorem 2.1,
there exists a compact subset Kβ+1 of Xβ+1 homeomorphic to C such that
Xβ+1 is isomorphic to a complemented subspace of F (Kβ+1).
Finally, if α is a limit ordinal, we set Xα = (∑γ<α Xγ)ℓ1

. Let β < α, then Xα

contains a complemented copy of Xγ, for all γ ∈ (β, α). Therefore it follows
from our induction hypothesis that for all β < α, Xα is not isomorphic to
a complemented subspace of F (Kβ). Finally, we use again Theorem 2.1 to
produce a compact subset Kα of Xα such that Xα is isomorphic to a comple-
mented subspace of F (Kα). This concludes the transfinite induction.
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Remark. Using this idea and the isometric lifting property of separable
Banach spaces established in the original paper by Godefroy and Kalton
[8], one can build a family of separable Banach spaces (Yα)α<ω1

such that
the spaces F (Yα) are pairwise non isomorphic. As well, using the construc-
tion of Godefroy and Ozawa [9], one can build a family of compact convex
subsets of separable Banach spaces (Cα)α<ω1

such that the spaces F (Cα) are
pairwise non isomorphic.

3 Schur property and free spaces over countable compact

spaces

In [9] Godefroy and Ozawa showed that for any separable Banach space X
there is a compact convex subset K of X such that X is isometric to a com-
plemented subspace of F (K). Since weak sequential completeness passes
to subspaces , this implies the existence of a compact convex subset of c0

whose free space is not weakly sequentially complete. Similarly, Theorem
2.1 yields the existence of a compact metric space homeomorphic to the
Cantor space whose free space is not weakly sequentially complete. We will
show, that like for the approximation property, the situation is completely
different for countable compact spaces.

Theorem 3.1. Let K be a countable compact metric space. Then F (K) has the
Schur property.

Before we proceed with the proof, we need to recall a very useful de-
composition due to N. Kalton (Lemmas 4.1 and 4.2 in [12]). If M is a pointed
metric space and k < l ∈ Z, let Mk = {x ∈ M, d(x, 0) ≤ 2k},
Ak,l = {0} ∪ {x ∈ M, 2k ≤ d(x, 0) ≤ 2l} and Ck = Ak−1,k+1. Then Kalton
proved the following two results.

Lemma 3.2. Suppose r1 < s1 < .. < rn < sn belong to Z. Then for any γ1, .., γn

such that for all k ≤ n, γk ∈ F (Ark ,sk
) we have that

∥

∥

n

∑
k=1

γk

∥

∥

F (M)
≥

1

3

n

∑
k=1

‖γk‖F (M).

Proposition 3.3. For any k ∈ Z there exists an operator Tk : F (M) → F (Ck) ⊂
F (M) such that

∀γ ∈ F (M) γ = ∑
k∈Z

Tkγ with ∑
k∈Z

‖Tkγ‖F (M) ≤ λ‖γ‖F (M),

where λ ≥ 1 is a universal constant.

Proof of Theorem 3.1. We will prove by transfinite induction on α < ω1, the
following statement:

(Hα): If K(α) is finite, then F (K) has the Schur property (where K(α) is the
Cantor-Bendixon derived set of K of order α).
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If α = 0, then F (K) is finite dimensional, so (H0) is clearly true.
Assume that α ∈ [1, ω1) and that (Hβ) is true for any β < α. Consider

now K a compact metric space such that K(α) = {x1, .., xn}. It is then clas-
sical that there exist mutually disjoint clopen subsets K1,..,Kn of K such that

K = ∪n
i=1Ki and for all i ≤ n, K

(α)
i = {xi}. By compactness the Ki’s are

uniformly far apart from each other. It then follows that F (K) is isomor-
phic to the ℓ1 sum of the F (Ki)’s (see the proof of Theorem 3.1 in [3] for

details). Therefore we may assume that K(α) = {0}, where 0 is the origin of
our pointed metric space.
Following the notation introduced for Lemmas 3.2 and 3.3, we have that for
any k in Z, 0 is an isolated point of Ck. Therefore Ck is a compact space

such that C
(α)
k = ∅. It follows from our induction hypothesis that F (Ck)

has the Schur property. Consider now (γi)
∞
i=1 a weakly null sequence in

F (M). Then, we have that for any k ∈ Z, the sequence (Tkγi)
∞
i=1 is norm

converging to 0.
The rest of the proof goes by contradiction. So assume that ‖γi‖ = ‖γi‖F (K)

does not tend to 0. Then we will build a subsequence of (γi) which is equiv-
alent to the canonical basis of ℓ1, which is not weakly null. This will yield
our contradiction. So, by extracting a first subsequence, we may assume
that ‖γi‖ ≥ δ, for some δ > 0. Assume also, as we may, that the diameter of
K is less than 1. Fix M > 1, whose (large) value will be made precise later.
Set i1 = 1, M1 = 0 and pick N1 < 0 such that

∑
k<N1

‖Tkγi1‖ <
δ

M
.

We now choose inductively, using Proposition 3.3 and the fact that for all k
in Z limi→∞ ‖Tkγi‖ = 0: M1 = 0 > N1 > .. > Mn > Nn and i1 < .. < in

such that

∀n ≥ 0 Mn+1 = Nn − 3 and ∑
k/∈Fn

‖Tkγin
‖ <

δ

M
, where Fn = [Nn, Mn].

Let now (αn) be a finite sequence in R. We have that

∥

∥∑
n

αnγin

∥

∥ =
∥

∥∑
n

αn( ∑
k∈Z

Tkγin
)
∥

∥ ≥
∥

∥∑
n

αn( ∑
k∈Fn

Tkγin
)
∥

∥−
δ

M ∑
n

|αn| (3.4)

Since ∑k∈Fn
Tkγin

∈ F (ANn−1,Mn+1) and Mn+1 = Nn − 3, it follows from
Lemma 3.2 that

∥

∥∑
n

αn( ∑
k∈Fn

Tkγin
)
∥

∥ ≥
1

3 ∑
n

|αn|
∥

∥ ∑
k∈Fn

Tkγin

∥

∥ ≥
1

3

(

δ −
δ

M

)

∑
n

|αn| (3.5)

Combining inequalities (3.4) and (3.5), we get

∥

∥∑
n

αnγin

∥

∥ ≥
(1

3

(

δ −
δ

M

)

−
δ

M

)

∑
n

|αn| ≥
δ

6 ∑
n

|αn|,

if M was initially chosen large enough, which concludes our proof.
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Remark. Gathering the results from [3] and Theorem 3.1, we have that the
free space over a countable compact metric space is a Schur space which is
isometric to a dual space and has the metric approximation property. How-
ever it can still be quite complicated. Indeed, in [2] an example of a compact
subset K of R

2 such that K′ = {0} and F (K) does not embed into L1 is given.

Recall that a proper metric space is a space whose balls are relatively
compact. Then we can extend our result as follows.

Corollary 3.4. Let M be a proper countable metric space. Then F (M) has the
Schur property.

Proof. Still using the notation introduced for Lemmas 3.2 and 3.3, we have
that for any k ∈ Z, Mk is a countable compact metric space. Thus Theorem
3.1 implies that F (Mk) has the Schur property. We can now use Propo-
sition 4.3 in [12] which insures that F (M) is isomorphic to a subspace of
(∑k∈Z F (Mk))ℓ1

. This clearly implies that F (M) has the Schur property.
Note that we could also have made the following reasoning. Since the Ck’s
are countable and compact, each F (Ck) is a Schur space. Thus we can
reproduce the argument used in our inductive proof of Theorem 3.1 to show
that F (M) is a Schur space.
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