On bijections, isometries and expansive maps

Alessandro Fedeli* Attilio Le Donne

Abstract

In this paper we show when a bijection on a set X can be made either an isometry or an expansive map with respect to a non-discrete metric on X. As a corollary we obtain that any bijection on an infinite set can be made biLipschitz by a non-discrete metric.

1 Introduction

In [2] Ellis raised the following question: let T be a self-map on a set X, how can we construct a non-discrete topology on X with respect to which T is continuous?

Answering the above question, de Groot and de Vries showed, among other things, that if T is a bijection on an infinite set X, then there is always a nondiscrete metric d on X (i.e., (X, d) has an accumulation point) with respect to which T is a homeomorphism [6].

Moreover, it is worth noting that in [5] the authors show when a bijection on a set X can be made a homeomorphism by a compact metrizable topology on X (see also [4]).

The aim of this note is to show when a bijection on a set X can be made either an isometry or an expansive map by a non-discrete metric on X.

Let T be a self-map on a metric space (X, d). Recall that T is called an isometry if it is a distance-preserving bijection, while T is said to be expansive if it is a homeomorphism satisfying the following property: there is a $\delta>0$, called expansivity constant for T, such that for every pair x, y of distinct points of X we have $d\left(T^{n}(x), T^{n}(y)\right) \geq \delta$ for some $n \in \mathbb{Z}$.

[^0]Let $T: X \rightarrow X$ be a bijection and let $x \in X$. The (full) orbit of x (under T) is the set $O(x)=O(x, T)=\left\{T^{n}(x): n \in \mathbb{Z}\right\}$. The cardinality of a finite orbit $O(x)$ will be called the length of $O(x)$ and x will be called a periodic point of minimal period $|O(x)|$.

The reader is referred to [3] for notations and terminology not explicitly given.

2 The results

Our first result will characterize isometries of non-discrete metric spaces.
Theorem 1. Let T be a bijection on a set X. There is a non-discrete metric d on X with respect to which T is an isometry iff one of the following holds.
(1) There exists an infinite orbit.
(2) For some $p \in \mathbb{N}$:
(i) there is an orbit of length p,
(ii) there exist infinitely many orbits whose length is a multiple of p.

Proof. Let us show the sufficiency. First suppose that there is an infinite orbit O. Without loss of generality we may assume that $O=\mathbb{Z}$ and $T(x)=x+1$ for every $x \in O$.

Claim. There exists a non-discrete metric ρ on \mathbb{Z} such that the map $T:(\mathbb{Z}, \rho) \rightarrow$ (\mathbb{Z}, ρ) given by $T(x)=x+1$, for every $x \in \mathbb{Z}$, is an isometry.

Proof of the claim. Although, as noted by the referee, we may simply take the restriction of an irrational rotation of S^{1} to the orbit of any point, we will give an alternative proof.

Let us define, when p is odd and $k \geq 0, \rho\left(0,2^{k} p\right)=\left\|2^{k} p\right\|=\frac{1}{k+1}$ and $\rho(0,0)=$ 0 . Now let us extend ρ on \mathbb{Z} by $\rho(n, m)=\rho(0, m-n)=\rho(0, n-m)$. To show that ρ is a metric on \mathbb{Z} it is enough to show that $\|x+y\| \leq \max (\|x\|,\|y\|)$. So let $x=2^{k} p$ and $y=2^{h} q$, with p and q odd. We may assume $k \geq h$.

If $k>h$, then $\|y\|>\|x\|$. So $x+y=2^{h}\left(2^{k-h} p+q\right)$ with $k-h \geq 1$, hence $2^{k-h} p+q$ is odd and $\|x+y\|=\frac{1}{h+1}=\|y\|$.

If $h=k$, then $\|x\|=\|y\|, x+y=2^{k}(p+q)=2^{m} s$ with s odd and $m>k$. So $\|x+y\|=\frac{1}{m+1}<\frac{1}{k+1}=\|x\|=\|y\|$. Therefore $\|x+y\| \leq \max (\|x\|,\|y\|)$.

Clearly $T:(\mathbb{Z}, \rho) \rightarrow(\mathbb{Z}, \rho)$ is an isometry. Moreover ρ is non-discrete, in fact (\mathbb{Z}, ρ) has no isolated points (it is enough to observe that 0 is an accumulation point of $(\mathbb{Z}, \rho))$. The proof of the claim is complete.

Now let d be the metric on X given by $d \mid O=\rho$, where ρ is the metric described in the proof of the claim above, and $d(x, y)=1$ whenever x and y are distinct points of X not both belonging to O (observe that d is a metric because ρ is bounded by 1). Clearly d is non-discrete and T is an isometry.

Now suppose (2) holds. Then there is an orbit $O(x)$ of length some p and, for every $n \in \mathbb{N}$, there is an orbit $O\left(x_{n}\right)$, with $O\left(x_{n}\right) \neq O(x)$, whose length is a multiple of p and $O\left(x_{n}\right) \neq O\left(x_{m}\right)$ whenever $n \neq m$.

It is not restrictive to assume that $X=O(x) \cup \bigcup_{n} O\left(x_{n}\right)$.

Case 1. $(p=1)$ In this case x is a fixed point and we define:
$d_{T}(x, y)=\frac{1}{n}$ whenever $y \in O\left(x_{n}\right), d_{T}(y, z)=\frac{1}{n}$ whenever $y, z \in O\left(x_{n}\right)$ and $y \neq z, d_{T}(y, z)=\frac{1}{n}+\frac{1}{m}$ whenever $y \in O\left(x_{n}\right), z \in O\left(x_{m}\right)$ and $n \neq m$.

Clearly d_{T} is a non-discrete metric on X (x is an accumulation point of X) with respect to which T is an isometry.
Case 2. $(p>1)$ Set $X_{i}=T^{i}\left(\{x\} \cup \bigcup_{n} O\left(x_{n}, T^{p}\right)\right)$ for every $i \in\{0, \ldots, p-1\}$.
Clearly X is the disjoint union of X_{0}, \ldots, X_{p-1}. Since $T^{i}(x)$ is a fixed point of the restriction $T^{p}: X_{i} \rightarrow X_{i}$, we may take on each X_{i} the metric $d=d_{T^{p}}$ defined in case 1. If we define also $d(y, z)=1$ whenever y and z do not both belong to the same X_{i}, we obtain a non-discrete metric on X (observe that $T^{i}(x)$ is an accumulation point of X_{i}) with respect to which T is an isometry.

Now let us show the necessity. If there are no infinite orbits, let us take an accumulation point x. Then $O(x)$ is formed by accumulation points. Let p be the length of $O(x)$. We claim that that there are infinitely many orbits whose length is a multiple of p. This is clear if $p=1$. If $p>1$, let η be the smallest distance between two distinct points of $O(x)$. We may assume that $\eta=1$. Now, for every $n>2$, let us take some $x_{n} \neq x$ such that $d\left(x_{n}, x\right) \leq \frac{1}{n}$ and $O\left(x_{n}\right) \neq O\left(x_{m}\right)$ whenever $n \neq m$. We claim that the length p_{n} of $O\left(x_{n}\right)$ is a multiple of p. Suppose not. Since T is an isometry and $d\left(x_{n}, x\right) \leq \frac{1}{n}$, it follows that $d\left(T^{p_{n}}\left(x_{n}\right), T^{p_{n}}(x)\right) \leq$ $\frac{1}{n}$, i.e., $d\left(x_{n}, T^{p_{n}}(x)\right) \leq \frac{1}{n}$. Now $T^{p_{n}}(x) \neq x$ (recall that we are assuming that p_{n} is not a multiple of p, so $d\left(T^{p_{n}}(x), x_{n}\right) \geq d\left(x, T^{p_{n}}(x)\right)-d\left(x, x_{n}\right) \geq 1-\frac{1}{n}>\frac{1}{n}$ (recall that $n>2$), a contradiction.

Now let us turn our attention on expansivity. In the sequel we will make use of the following dynamical system. Let $2^{\mathbb{Z}}$, where $2=\{0,1\}$, be endowed with the metric given by $\rho(x, y)=2^{-n}$ with $n=\min \left\{|i|: x_{i} \neq y_{i}\right\}$ whenever $x=\left(x_{i}\right)$ and $y=\left(y_{i}\right)$ are two distinct points of $2^{\mathbb{Z}}$, and let $\sigma: 2^{\mathbb{Z}} \rightarrow 2^{\mathbb{Z}}$ be the map defined by $\sigma(x)=\left(\sigma(x)_{i}\right)$, where $x=\left(x_{i}\right)$ and $\sigma(x)_{i}=x_{i+1}$. The map σ is an expansive homeomorphism, moreover it has 2^{n} periodic points of minimal period $\leq n$ and points with dense orbit (see, e.g., [1] pp. 7, 33, 36). $\left(2^{\mathbb{Z}}, \sigma\right)$ (or simply the map σ) is called (full) two-sided shift, it is a classical example of a (Devaney) chaotic dynamical system (for a recent account of this topic see [7, Ch. 1]).

Theorem 2. Let T be a bijection on a set X. There is a non-discrete metric d on X with respect to which T is expansive iff one of the following holds.
(1) There exists an infinite orbit.
(2) All points are periodic and the set of minimal periods is infinite.

Proof. Sufficiency. Let us assume that there is a infinite orbit O. We may assume, without loss of generality, that O is a dense orbit of the two-sided shift $\sigma: 2^{\mathbb{Z}} \rightarrow 2^{\mathbb{Z}}$ and that $T(x)=\sigma(x)$ for every $x \in O$. Now let d be the metric on X given by $d \mid O=\rho$, where ρ is the metric on $2^{\mathbb{Z}}$ described above, and $d(x, y)=1$ whenever x and y are two distinct points of X not both belonging to O. Then d is a non-discrete metric on X with respect to which T is expansive (observe that $\sigma \mid O$ is expansive and O is not discrete).

Now let us consider the case in which all points are periodic and the set of
minimal periods is infinite. We may assume that there is a sequence $\left(n_{k}\right)_{k \geq 0}$ of distinct positive integers with :
(i) $n_{0}>2$,
(ii) $n_{k+1}>2(2 k+1)$ for every $k \geq 0$;
and such that n_{k} is the minimal period of some point of the two-sided shift σ.
Our goal is to find a sequence $\left(p_{k}\right)_{k \geq 0}$ in $2^{\mathbb{Z}}$ such that $\left(p_{k}\right)$ converges to p_{0} and p_{k} has minimal period n_{k} for every $k \geq 0$.

We define:

1) $p_{0}(n)=1$ if and only if $n \equiv 0\left(\bmod n_{0}\right)$;
2) $p_{k}(n)=p_{0}(n)$ whenever $|n| \leq k$, for every $k \geq 1$;
3) $p_{k}(n)=0$ whenever $k<n<n_{k}-k$, for every $k \geq 1$;
4) $p_{k}(m)=p_{k}(n)$ if and only if $m \equiv n\left(\bmod n_{k}\right)$; for every $k \geq 1$.

Clearly, by 2), $\rho\left(p_{k}, p_{0}\right)<2^{-k}$ for every k, therefore $\left(p_{k}\right)$ converges to p_{0}.
Moreover p_{k} has minimal period n_{k} for every k. Assume not, then there is some $m_{k}<n_{k}$ which is the minimal period of p_{k}. By 4), n_{k} is a period of p_{k}, so n_{k} must be a multiple of m_{k}. Hence $m_{k} \leq \frac{1}{2} n_{k}$. This is a contradiction, in fact p_{k} has more than $\frac{1}{2} n_{k}$ consecutive $0^{\prime} s\left(p_{k}\right.$ has $n_{k}-2 k-1$ consecutive $0^{\prime} s$ and such number is greater than $\frac{1}{2} n_{k}$).

Now let us take, for every non-negative integer k, a point x_{k} in X of minimal period n_{k}. We may identify the set $Y=\bigcup_{k \geq 0} O\left(x_{k}\right)$ with the subset of $2^{\mathbb{Z}}$ given by $\bigcup_{k \geq 0} O\left(p_{k}\right)$ and we may assume that $T(x)=\sigma(x)$ for every $x \in Y$.

Now let d be the metric on X given by $d \mid Y=\rho$ and $d(x, y)=1$ whenever x and y are distinct points of X not both belonging to Y.

Clearly d is a non-discrete metric on X (x_{0} is an accumulation point) with respect to which T is an expansive map.

Necessity. Let us suppose that there is a non-discrete metric d on X with respect to which T is expansive, all points are periodic and the set of minimal periods is finite, i.e., bounded by a number L.

Let p be an accumulation point of (X, d) and let κ be the period of p. We may assume that $d\left(T^{n}(p), T^{m}(p)\right) \geq 1$ whenever $T^{n}(p) \neq T^{m}(p)$. Let $\delta<\frac{1}{2}$ be an expansivity constant for T.

Now let us take a neighbourhood U of p such that $T^{n}(U) \subset B\left(T^{n}(p), \delta\right)$ for every $n \in\{0, \ldots, L\}$.

Let $y \in U$, we claim that $d\left(T^{n}(p), T^{n}(y)\right)<\delta$ for every $n \in \mathbb{Z}$. Let m be the minimal period of y. Then $d\left(T^{m}(p), T^{m}(y)\right)=d\left(T^{m}(p), y\right)<\delta$. Since $B\left(T^{n}(p), \frac{1}{2}\right) \cap B\left(T^{m}(p), \frac{1}{2}\right)=\varnothing$ whenever $T^{n}(p) \neq T^{m}(p)$, it follows that $T^{m}(p)=p$. So m is a multiple of k. Therefore from $d\left(T^{i}(p), T^{i}(y)\right)<\delta$ for every $i \leq m$ (recall that $m \leq L$), it follows that $d\left(T^{n}(p), T^{n}(y)\right)<\delta$ for every $n \in \mathbb{Z}$.

By expansiveness of T it follows that $U=\{p\}$. Since p is an accumulation point, we reach a contradiction.

A well-known weakening of the concept of isometry is given by the following notion: a self-map map f on a metric space (X, d) is called biLipschitz if there exists some L such that $\frac{1}{L} d(x, y) \leq d(f(x), f(y)) \leq L d(x, y)$ for every $x, y \in X$.

It is interesting to observe that, as a consequence of our results, one can obtain the following

Corollary 3. Let T be a bijection on an infinite set X. Then there is always a nondiscrete metric on X with respect to which T is biLipschitz.

Proof. By Theorem 1 it is enough to consider the case in which all points are periodic and the set of minimal periods is infinite. Now, following the proof of Theorem 2 it can be seen that, in this case, one can take the same metric given in the part (2) of the sufficiency (observe that the shift σ is biLipschitz).

References

[1] M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, 2002.
[2] D. Ellis, Orbital topologies, Quart. J. of Math. (2) 4 (1953) 117-119.
[3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989
[4] C. Good and S. Greenwood, Continuity in separable metrizable and Lindelöf spaces, Proc. Amer. Math. Soc. 138 (2010) 577-591.
[5] C. Good, S. Greenwood, R.W. Knight, D.W. McIntyre and S.Watson, Characterizing continuous functions on compact spaces, Adv. Math. 206 (2006) 695-728.
[6] J. de Groot and H. de Vries, Metrization of a set which is mapped into itself, Quart. J. Math. Oxford (2) 9 (1958) 144-148.
[7] K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Springer Verlag, 2011.

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universitá dell'Aquila 67100 L'Aquila, Italy
e-mail : afedeli@univaq.it
Dipartimento di Matematica, Universitá di Roma "La Sapienza" 00185 Roma, Italy
e-mail : ledonne@mat.uniroma1.it

[^0]: *Corresponding author
 Received by the editors in February 2015.
 Communicated by E. Colebunders.
 2010 Mathematics Subject Classification : 54E35,54E40.
 Key words and phrases : bijection, metric, isometry, expansive map.

