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Abstract

In this article, using the concept of measure of noncompactness, we give
some results concerning the compactness and continuity of the nonlinear
Volterra and Fredholm integral operators on the space BC(Ω) (Ω is an
unbounded subset of the Euclidean space R

n). Then, we prove an exis-
tence result for a functional integral equation which includes several classes
of nonlinear integral equations. Our results generalize and improve some
previous works. We will also include some examples which show that our
results are applicable where the previous ones are not.

1 Introduction

Fixed point theory has two main branches: metric fixed point theory and topo-
logical fixed point theory. Concerning the topological branch, the concept of the
compactness plays a fundamental role in creating the basis of several investi-
gations conducted in nonlinear analysis and is very useful in several topics of
applied mathematics, engineering, mathematical physics, numerical analysis, and
so on.
On the other hand, the measures of noncompactness are very useful tools in func-
tional analysis, for instance, in the theory of operator equations in Banach spaces.

∗Corresponding author
Received by the editors in April 2015 - In revised form in June 2015.
Communicated by G. Godefroy.
2010 Mathematics Subject Classification : 47H09, 47H10, 34A12.
Key words and phrases : Measure of noncompactness, Functional integral equations, Fixed

point, Compact-integral operators.

Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 761–779



762 R. Allahyari – R. Arab – A. S. Haghighi

They are also used in the study of functional equations, ordinary and partial dif-
ferential equations, fractional partial differential equations, integral and integro-
differential equations, optimal control theory, etc. In particular, the fixed point
theorems derived from them have many applications. There exists a consider-
able literature devoted to this subject (see for example [1-7, 10, 11, 13-15, 17-20]).
Integral equations play a very important role in nonlinear analysis and find nu-
merous applications in engineering, mathematical physics, economics, etc.
Recently, in [4] Aghajani and Jalilian extended results of the papers [11, 14] by
considering the following integral equation in general form

x(t) = f (t, x(α(t)),
∫ β(t)

0
g(t, s, x(γ(s)))ds) (1.1)

on BC(R+).
Moreover, Aghajani et al. [7] and Arab [8] studied the existence of solutions for
the functional integral equations on BC(R+ × R+)

x(t, s) = f
(

t, s, x(ξ1(t), ξ2(s)),
∫ β2(s)

0

∫ β1(t)

0
g1(t, s, v, w, x(η1(v), η2(w)))dvdw,

∫ β3(t)

0
g2(t, s, v, x(ζ1(v), ζ2(s)))dv

)

(1.2)

and

x(t, s) = a(t, s) + h1(t, s, x(t, s))
∫ t

0
g1(t, s, u) f1(u, x(u, s))du

+ h2(t, s, x(t, s))
∫ t

0

∫ s

0
g2(t, s, u, v) f2(u, v, x(u, v))dudv,

(1.3)

respectively.
Also, equations like

x(t) = f
(

t,
∫ t

0
u(t, s, x(s))ds,

∫

∞

0
a2(t)v(s, x(s))ds

)

, t ≥ 0 (1.4)

and

x(t) = p(t) + f (t, x(t))
∫

∞

0
g(t, τ)h(τ, x(τ))dτ, t ≥ 0 (1.5)

have been considered by Aghajani et al. [5] and Banaś et al. [16], respectively.
In this paper, we study the existence of solutions for the following functional
integral equations

u(x) = f
(

x, u(x),
∫

Γ(x)
g(x, y, u(ξ(y)))dy,

∫

Ω′
k(x, y)h(y, u(η(y)))dy

)

, (1.6)

and

u(x) = f1(x, u(x)) + f2(x, u(x))
∫

Ω′

∫

Γ(x)
k(x, y)g(y, z, u(ζ(y, z)))dzdy. (1.7)

We are going to show that those equations have solutions belonging to the space
BC(Ω) where x ∈ Ω (Ω is an unbounded subset of the Euclidean space R

n).
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Those equations when Ω = R+ and Ω = R+ × R+ respectively reduce to the
functional integral equations on BC(R+) and functional integral equations on
BC(R+ × R+).
Let us notice that this equations are general forms of many above-mentioned
integral equations, for example, Eq. (1.7) is a general form of Eq. (1.5) (con-

sider u(x) = x(t), f1(x, u(x)) = p(t), f2(x, u(x)) = f (t, x(t)), Ω
′
= [0, ∞),

Γ(x) = [0, 1], k(x, y) = g(t, τ) and g(y, z, u(ζ(y, z))) = h(τ, x(τ)) ), and in a
similar method, Eq. (1.6) is a general form of integral equations Eq. (1.1), Eq.
(1.2) and Eq. (1.4).
Now, for investigating the existence of solutions for this equations, in Section 2 we
present some definitions and preliminary results about the concept of measure of
noncompactness, in Section 3 we obtain main results about the compactness and
continuity of Volterra and Fredholm integral operators, and finally in Section 4
we prove an existence result for this equations. The results of this paper general-
ize and improve several main results ( see [1, 3, 4, 6, 7, 11, 14, 17, 18, 20]). We will
also include some examples which show that our results are applicable where the
previous ones are not.

2 Preliminaries

Here, we recall some basic facts concerning measures of noncompactness from
[12], which is defined axiomatically in terms of some natural conditions. Denote
by R the set of real numbers and put R+ = [0, + ∞). Let (E, ‖ · ‖) be a real
Banach space with zero element 0. Let B(x, r) denote the closed ball centered at
x with radius r. The symbol Br stands for the ball B(0, r). For X, a nonempty
subset of E, we denote by X and ConvX the closure and the closed convex hull of
X, respectively. Moreover, let us denote by ME the family of nonempty bounded
subsets of E and by NE its subfamily consisting of all relatively compact subsets
of E.

Definition 2.1. A mapping µ : ME −→ R+ is said to be a measure of noncompactness
in E if it satisfies the following conditions:

1◦ The family ker µ = {X ∈ ME : µ(X) = 0} is nonempty and ker µ ⊆ NE.

2◦ X ⊂ Y =⇒ µ(X) ≤ µ(Y).

3◦ µ(X) = µ(X).

4◦ µ(ConvX) = µ(X).

5◦ µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].

6◦ If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n = 1, 2, · · ·
and if lim

n→∞
µ(Xn) = 0 then X∞ = ∩∞

n=1Xn 6= ∅.

Definition 2.2. Let X be a Banach space. An operator (not necessarily linear) F : X −→
X is compact if the closure of F(Y) is compact whenever Y ⊂ X is bounded.
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Remark 2.1. Let C be any nonempty and bounded subsets of a Banach space E
and let T : E −→ E be a continuous mapping, if µ(T(C)) = 0, where µ is an
arbitrary measure of noncompactness, then by using Definition 2.1, T : E −→ E
is a compact operator.

Now we recall the following important fixed point theorem playing a key role
in the sequel.

Theorem 2.1. [3] Let C be a nonempty, bounded, closed and convex subset of a Banach
space E and let F : C −→ C be a continuous mapping such that

µ(FX) ≤ ϕ(µ(X)) (2.1)

for any nonempty subset X of C where µ is an arbitrary measure of noncompactness and
ϕ : R+ −→ R+ is a nondecreasing function such that ϕ(t) < t for each t ≥ 0 and
ϕ(0) = 0. Then F has at least one fixed point in the set C.

The set Ω is a nonempty and unbounded subset of the Euclidean space R
n.

Let BC(Ω) be the Banach space of all bounded and continuous functions on Ω

equipped with the standard norm

‖u‖u = sup{|u(x)| : x ∈ Ω}.

For any nonempty bounded subset U of BC(Ω), u ∈ U, T > 0 and ε ≥ 0

ωT(u, ε) = sup{|u(x)− u(y)| : x, y ∈ B̄T, ‖x − y‖ ≤ ε}.

ωT(U, ε) = sup
{

ωT(u, ε) : u ∈ U
}

,

ωT
0 (U) = lim

ε→0
ωT(U, ε), ω0(U) = lim

T→∞

ωT
0 (U),

U(x) = {u(x) : u ∈ U} ,

and
µ(U) = ω0(U) + lim sup

‖x‖→∞

diamU(x).

Similar to [9] (cf. also [12]), it can be shown that the function µ is a measure of
noncompactness in the space BC(Ω) (in the sense of Definition 2.1).

3 Construction of compact-integral operator on BC(Ω)

In this section we obtain main results about the compactness and continuity of
Volterra and Fredholm integral operators.

Definition 3.1. Let Ω be an unbounded subset of the Euclidean space R
n. We say that

a mapping Λ : Ω −→ MRm is continuous function if for each ε > 0 there exists δ > 0
such that

‖x − y‖ < δ =⇒ m(Λ(x)△ Λ(y)) < ε

where m is Lebesgue measure on Ω and △ denotes the symmetric difference.
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First, we define a compact-integral operator of Volterra type on BC(Ω).

Theorem 3.1. Assume that the following conditions are satisfied:

(i) Let Ω be a nonempty and unbounded subset of the Euclidean space R
n, Γ : Ω −→

MRm and ξ :
⋃

x∈Ω

Γ(x) −→ Ω are continuous functions such that
⋃

‖x‖≤T

Γ(x) is

bounded subset of R
m for all T > 0.

(ii) g : Ω × (
⋃

x∈Ω

Γ(x)) × R −→ R is continuous and there exists a nondecreasing

and continuous function ϑ : R+ −→ R+ such that

sup{
∣

∣

∣

∫

Γ(x)
g(x, y, u(ξ(y)))dy

∣

∣

∣
: x ∈ Ω, u ∈ B̄r} ≤ ϑ(r). (3.1)

Moreover, for any r ∈ R+

lim
‖x‖−→∞

∣

∣

∣

∫

Γ(x)
[g(x, y, u(ξ(y))) − g(x, y, v(ξ(y)))]dy

∣

∣

∣
= 0

uniformly with respect to u, v ∈ B̄r.

Then G : BC(Ω) −→ BC(Ω) defined by

Gu(x) =
∫

Γ(x)
g(x, y, u(ξ(y)))dy

is a compact and continuous operator and ‖Gu‖u ≤ ϑ(‖u‖u).

Proof. Obviously, Gu(x) for any u ∈ BC(Ω) is continuous on Ω and by (3.1), G is
a self operator on BC(Ω). Now we show that G is continuous. To verify this, take
u ∈ BC(Ω) and ε > 0 arbitrarily. Moreover take v ∈ BC(Ω) with ‖u − v‖u < ε.
Then, considering condition (ii) there exists T > 0 such that for any x ∈ Ω such
that ‖x‖ > T we have

∣

∣

∣
Gu(x)− Gv(x)

∣

∣

∣
≤

∣

∣

∣

∫

Γ(x)
[g(x, y, u(ξ(y)) − g(x, y, u, v(ξ(y))]dy

∣

∣

∣
≤ ε. (3.2)

Also, if x ∈ B̄T, then we obtain

|Gu(x) − Gv(x)| ≤
∣

∣

∣

∫

Γ(x) |g(x, y, u(ξ(y)) − g(x, y, v(ξ(y))|dy
∣

∣

∣
≤ ΓTθT(ε),

where

ΓT = sup{m(Γ(x)) : x ∈ B̄T}
θT(ε) = sup{|g(x, y, u)− g(x, y, v)| : x ∈ B̄T, y ∈

⋃

‖x‖≤T

Γ(x), u, v ∈ [−b, b],

‖u − v‖u ≤ ε},
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with b = ‖u‖u + ε. By using the continuity of g on the compact set

B̄T × ⋃

‖x‖≤T Γ(x) × [−b, b], we have θT(ε) −→ 0 as ε −→ 0. Thus, G is a con-

tinuous function on BC(Ω). To complete the proof we need to verify that G is
a compact operator. Let U be a nonempty and bounded subset of BC(Ω), and
assume that T > 0 and ε > 0 are arbitrary constants. Then for u ∈ U and
x1, x2 ∈ B̄T, with ‖x2 − x1‖ ≤ ε we have
∣

∣

∣
Gu(x2)− Gu(x1)

∣

∣

∣
≤
∣

∣

∣

∫

Γ(x1)
g(x1, y, u(ξ(y)))dy −

∫

Γ(x2)
g(x1, y, u(ξ(y)))dy

∣

∣

∣

+
∣

∣

∣

∫

Γ(x2)
g(x1, y, u(ξ(y)))dy −

∫

Γ(x2)
g(x2, y, u(ξ(y)))dy

∣

∣

∣

≤
∣

∣

∣

∫

Γ(x1)△Γ(x2)
g(x1, y, u(ξ(y)))dy

∣

∣

∣

+
∫

Γ(x2)
|g(x1, y, u(ξ(y))) − g(x2, y, u(ξ(y)))|dy

≤Ur
TωT(Γ, ε) + ΓTωr

T(g, ε),

(3.3)

where

r = sup{‖u‖u : u ∈ U},

ωr
T(g, ε) = sup{|g(x1, y, u)− g(x2, y, u)| : x1, x2 ∈ B̄T, ‖x2 − x1‖ ≤ ε,

y ∈
⋃

‖x‖≤T

Γ(x), u ∈ [−r, r]},

ωT(Γ, ε) = sup{m(Γ(x)△ Γ(y)) : x, y ∈ B̄T, ‖x − y‖ ≤ ε}
Ur

T = sup{|g(x, y, u)| : x ∈ B̄T, y ∈
⋃

‖x‖≤T

Γ(x), u ∈ [−r, r]}.

Since u was an arbitrary element of U in (3.3), we obtain

ωT(G(U), ε) ≤ ΓTωr
T(g, ε) + Ur

TωT(Γ, ε). (3.4)

On the other hand, by using the uniform continuity of g and Γ on the compact

sets B̄T ×⋃

‖x‖≤T Γ(x)× [−r, r] and B̄T, respectively, we have ωr
T(g, ε) −→ 0 and

ωT(Γ, ε) −→ 0 as ε −→ 0. Therefore, we obtain ω0
T(G(U)) = 0, which gives

ω0(G(U)) = 0. (3.5)

Moreover, for arbitrary u, v ∈ U ⊂ B̄r and x ∈ Ω we have the following estimate
∣

∣

∣
Gu(x)− Gv(x)

∣

∣

∣
≤

∣

∣

∣

∫

Γ(x)
[g(x, y, u(ξ(y))) − g(x, y, v(ξ(y)))]dy

∣

∣

∣
.

Thus, we obtain

diamG(U)(x) ≤ sup{
∣

∣

∣

∫

Γ(x)
[g(x, y, u(ξ(y))) − g(x, y, v(ξ(y)))]dy

∣

∣

∣
: u, v ∈ B̄r}.(3.6)

Taking ‖x‖ −→ ∞ in the inequality (3.6), then using (ii) we arrive at

lim sup
‖x‖−→∞

diamG(U)(x) = 0. (3.7)
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Further, combining (3.5) and (3.7) we get

lim sup
‖x‖−→∞

diamG(U)(x) + ω0(G(U)) = 0

or, equivalently µ(G(U)) = 0. Thus, G is a compact operator. Also, by condition
(ii) we deduce ‖Gu‖u ≤ ϑ(‖u‖u) and the proof is complete.

Now, we define a compact-integral operator of Fredholm type on BC(Ω).

Theorem 3.2. Assume that the following conditions are satisfied:

(i) Let Ω be a nonempty and unbounded subset of the Euclidean space R
n,

k : Ω × Ω
′ −→ R (Ω′ is a subset of R

k) and η : Ω
′ −→ Ω are continuous

functions,

(ii) h : Ω′ × R −→ R is continuous and there exist a continuous function a : Ω′ −→
R+ and a continuous and nondecreasing function b : R+ −→ R+ such that

|h(x, u)| ≤ a(x)b(|u|)

for x ∈ Ω′ and u ∈ R. Also the function y −→ a(y)k(x, y) is integrable over Ω′

for any fixed x ∈ Ω,

(iii) There exists a positive constant D such that

sup{
∫

Ω′
a(y)|k(x, y)|dy : x ∈ Ω} < D

and

lim
‖x‖→∞

∫

Ω′
a(y)|k(x, y)|dy = 0, (3.8)

(iv) The following equality holds:

lim
T→∞

{

sup
{

∫

Ω′\B̄T

a(y)|k(x, y)|dy : x ∈ Ω

}

}

= 0.

Then H : BC(Ω) −→ BC(Ω) defined by

Hu(x) =
∫

Ω′
k(x, y)h(y, u(η(y)))dy

is a compact and continuous operator and ‖Hu‖u ≤ Db(‖u‖u).

Proof. In view of the imposed assumptions we have that the function Hu(x) is
continuous on Ω for any u ∈ BC(Ω), using our assumptions, we obtain

|Hu(x)| =
∣

∣

∣

∫

Ω′
k(x, y)h(y, u(η(y)))dy

∣

∣

∣

≤
∣

∣

∣

∫

Ω′
k(x, y)a(y)b(|u(η(y))|)dy

∣

∣

∣

≤ b(‖u‖u)
∣

∣

∣

∫

Ω′
k(x, y)a(y)dy

∣

∣

∣

≤ Db(‖u‖u)
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Hence by (iii), we have
‖Hu‖u ≤ Db(‖u‖u)

and H is a self operator on BC(Ω). Now we show that H is continuous. To verify
this, take u ∈ BC(Ω) and ε > 0 arbitrarily. Moreover take v ∈ BC(Ω) with
‖u − v‖u < ε. Then we have

∣

∣

∣
Hu(x)− Hv(x)

∣

∣

∣
≤

∣

∣

∣

∫

Ω′
k(x, y)[h(y, u(η(y))) − h(y, v(η(y)))]dy

∣

∣

∣
. (3.9)

This result together condition (iii) imply that there exists T > 0 such that for all
x ∈ Ω with ‖x‖ > T we have

∣

∣

∣
Hu(x)− Hv(x)

∣

∣

∣
≤

∫

Ω′
k(x, y)[|h(y, u(η(y)))| + |h(y, v(η(y)))|]dy

≤
∫

Ω′
2k(x, y)a(y)b(‖u‖u + ε)dy

≤ 2Db(‖u‖u + ε)ε.

If x ∈ B̄T, then the inequality in (3.9) follows that

∣

∣

∣
Hu(x)− Hv(x)

∣

∣

∣
≤
∣

∣

∣

∫

B̄T

k(x, y)[h(y, u(η(y))) − h(y, v(η(y)))]dy
∣

∣

∣

+
∣

∣

∣

∫

Ω′\B̄T

k(x, y)[h(y, u(η(y))) − h(y, v(η(y)))]dy
∣

∣

∣

≤m(B̄T)KTωT
r0
(h, ε) + 2b(r0)

∫

Ω′\B̄T

|k(x, y)||a(y)|dy

where

KT = sup{k(x, y) : x ∈ B̄T ⊂ Ω, y ∈ B̄T ⊂ Ω
′}

ωT
r0
(h, ε) = sup{|h(y, u)− h(y, v)| : y ∈ B̄T ⊂ Ω

′, u, v ∈ [−r0, r0], ‖u− v‖u ≤ ε}.

with r0 = ‖x‖+ ε. By using the continuity of h on the compact set B̄T × [−r0, r0],
we have ωT

r0
(h, ε) −→ 0 as ε −→ 0 and in view of assumption (iv) we can choose

T in such a way that the last term of the above estimate are sufficiently small.
Thus H is a continuous function on BC(Ω). To complete the proof we need to
verify that H is a compact operator. Let U be a nonempty and bounded subset of
BC(Ω), and assume that T > 0 and ε > 0 are arbitrary constants. Then for u ∈ U
and x1, x2 ∈ B̄T, with ‖x2 − x1‖ ≤ ε we have

∣

∣

∣
Hu(x2)− Hu(x1)

∣

∣

∣

≤
∣

∣

∣

∫

Ω′
k(x2, y)h(y, u(η(y)))dy −

∫

Ω′
k(x1, y)h(y, u(η(y)))dy

∣

∣

∣

≤
∫

B̄T

|k(x2, y)− k(x1, y)||h(y, u(η(y)))|dy

+
∫

Ω′\B̄T

|k(x2, y)− k(x1, y)|a(y)b(|u(η(y))|)dy

≤m(B̄T)U
T
r ωT

r (k, ε) + b(r)
∫

Ω′\B̄T

[|k(x2, y)|+ |k(x1, y)|]a(y)dy

(3.10)
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where

r = sup{‖u‖ : u ∈ U},

ωr
T(k, ε) = sup{|k(x1 , y)− k(x2, y)| :

x1, x2 ∈ B̄T ⊂ Ω, ‖x2 − x1‖ ≤ ε, y ∈ B̄T ⊂ Ω
′},

UT
r = sup{|h(y, u)| : y ∈ B̄T, u ∈ [−r, r]}.

Since u was an arbitrary element of U in (3.10), we obtain

ωT(H(U), ε) ≤ m(B̄T)U
T
r ωT

r (k, ε) + b(r)
∫

Ω′\B̄T

[|k(x2, y)|+ |k(x1, y)|]a(y)dy

On the other hand, by the uniform continuity of k on the compact set B̄T × B̄T, we
have ωT

r (k, ε) −→ 0 as ε −→ 0. Therefore, we obtain

ωT
0 (H(U)) ≤ b(r)

(

∫

Ω′\B̄T

|k(x2, y)|a(y)dy +
∫

Ω′\B̄T

|k(x1, y)|a(y)dy
)

.

Now taking T −→ ∞ and by using assumption (iv) we get

ω0(H(U)) = 0. (3.11)

Moreover, for arbitrary u, v ∈ U and x ∈ Ω we have the following estimate

∣

∣

∣
Hu(x)− Hv(x)

∣

∣

∣
≤

∣

∣

∣

∫

Ω′
k(x, y)[h(y, u(η(y))) − h(y, v(η(y)))]dy

∣

∣

∣

≤
∫

Ω′
k(x, y)[|h(y, u(η(y)))| + |h(y, v(η(y)))|]dy

≤
∫

Ω′
k(x, y)a(y)[b(|u(η(y))|) + b(|v(η(y))|)]dy

≤ 2b(r)
∫

Ω′
k(x, y)a(y)dy,

where r = sup{‖u‖ : u ∈ U}. Thus, we obtain

diamH(U)(x) ≤ 2b(r)
∫

Ω′
k(x, y)a(y)dy. (3.12)

Taking ‖x‖ −→ ∞ in the inequality (3.12), then using (iii) we arrive at

lim sup
‖x‖−→∞

diamH(U)(x) = 0. (3.13)

Further, combining (3.11) and (3.13) we get

lim sup
‖x‖−→∞

diamH(U)(x) + ω0(H(U)) = 0

or, equivalently µ(H(U)) = 0. Thus, H is a compact operator and the proof is
complete.

Finally, we define a compact-integral operator of Volterra-Fredholm type on
BC(Ω).
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Theorem 3.3. Assume that the following conditions are satisfied:

(i) Let Ω be a nonempty and unbounded subset of the Euclidean space R
n, Γ : Ω −→

MRm , ζ : Ω′ ×
⋃

x∈Ω

Γ(x) −→ Ω and k : Ω × Ω′ −→ R (Ω′ is a subset of R
k) are

continuous functions such that
⋃

‖x‖≤T

Γ(x) is bounded subset of R
m for all T > 0.

(ii) g : Ω′ ×
⋃

x∈Ω

Γ(x) × R −→ R is continuous and there exist a continuous and

nondecreasing function ϑ : R+ −→ R+ such that

sup{
∣

∣

∣

∣

∫

Ω′

∫

Γ(x)
k(x, y)g(y, z, u(ζ(y, z)))dzdy

∣

∣

∣

∣

: x ∈ Ω, u ∈ B̄r} < ϑ(r).

(3.14)
Moreover, for any r > 0

lim
‖x‖−→∞

∣

∣

∣

∣

∫

Ω′

∫

Γ(x)
k(x, y)[g(y, z, u(ζ(y, z))) − g(y, z, v(ζ(y, z)))]dzdy

∣

∣

∣

∣

= 0,

(3.15)
uniformly respect to u, v ∈ B̄r and the function

y −→
∫

Γ(x)
k(x, y)g(y, z, u(ζ(y, z)))dz

is integrable over Ω′ for any fixed x ∈ Ω,

(iii) The following equality holds:

lim
T→∞

{

sup
{

|
∫

Ω′\B̄T

∫

Γ(x)
k(x, y)g(y, z, u(ζ(y, z)))dzdy| :

x ∈ Ω, u ∈ BC(Ω)
}

}

= 0.

Then Q : BC(Ω) −→ BC(Ω) defined by

Qu(x) =
∫

Ω′

∫

Γ(x)
k(x, y)g(y, z, u(ζ(y, z)))dzdy

is a compact and continuous operator and ‖Qu‖u ≤ ϑ(‖u‖u).

Proof. Obviously, Qu(x) for any u ∈ BC(Ω) is well defined and continuous on Ω,
because the function y −→

∫

Γ(x) k(x, y)g(y, z, u(ζ(y, z)))dz is integrable over Ω′

for any fixed x ∈ Ω and by (3.14), Q is a self operator on BC(Ω). Now we show
that Q is continuous. To do this, take u ∈ BC(Ω) and ε > 0 arbitrarily. Moreover
take v ∈ BC(Ω) with ‖u − v‖u < ε. Then, considering condition (ii) there exists
T > 0 such that for ‖x‖ > T we have

∣

∣

∣
Qu(x)− Qv(x)

∣

∣

∣
≤

∣

∣

∣

∫

Ω′

∫

Γ(x)
k(x, y)[g(y, z, u(ζ(y, z))) − g(y, z, v(ζ(y, z)))]dzdy

∣

∣

∣
≤ ε. (3.16)
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Also, if x ∈ B̄T, then we have

∣

∣

∣
Qu(x)− Qv(x)

∣

∣

∣

≤
∣

∣

∣

∫

B̄T

∫

Γ(x)
k(x, y)[g(y, z, u(ζ(y, z))) − g(y, z, v(ζ(y, z)))]dzdy

∣

∣

∣

+
∣

∣

∣

∫

Ω′\B̄T

∫

Γ(x)
k(x, y)[g(y, z, u(ζ(y, z))) − g(y, z, v(ζ(y, z)))]dzdy

∣

∣

∣

≤m(B̄T)KTθT(ε) +
∫

Ω′\B̄T

∫

Γ(x)
k(x, y)[|g(y, z, u(ζ(y, z)))|

+ |g(y, z, v(ζ(y, z)))|]dzdy

(3.17)

where

KT = sup{k(x, y) : x ∈ B̄T ⊂ Ω, y ∈ B̄T ⊂ Ω
′}

θT(ε) = sup{|g(y, z, u) − g(y, z, v)| :

y ∈ B̄T ⊂ Ω
′, z ∈

⋃

‖x‖≤T

Γ(x) u, v ∈ [−b, b], ‖u − v‖u ≤ ε},

with b = ‖u‖u + ε. By using the continuity of g on the compact set

B̄T × ⋃

‖x‖≤T Γ(x) × [−b, b], we have θT(ε) −→ 0 as ε −→ 0. On the other hand,
in view of assumption (iii) we can choose T in such a way that the last term of the
estimate (3.17) are sufficiently small. Thus, Q is a continuous function on BC(Ω).
To complete the proof we need to verify that Q is a compact operator. Let U be a
nonempty and bounded subset of BC(Ω), and assume that T > 0 and ε > 0 are
arbitrary constants. Similar to the proof of Theorems 3.1 and 3.2, we deduce

ωT(Q(U), ε) ≤m(B̄T)ω
T(Γ, ε)KTUT

r + m(B̄T)U
T
r ωr

T(k, ε)

+
∫

Ω′\B̄T

∫

Γ(x2)
|k(x2, y)g(y, z, u(ζ(y, z)))|dzdy

+
∫

Ω′\B̄T

∫

Γ(x1)
|k(x1, y)g(y, z, u(ζ(y, z)))|dzdy

where

ωr
T(k, ε) = sup{|k(x1, y)− k(x2, y)| :

x1, x2 ∈ B̄T ⊂ Ω, y ∈ B̄T ⊂ Ω
′, ‖x1 − x2‖ ≤ ε},

ωT(Γ, ε) = sup{m(Γ(x)△ Γ(y)) : x, y ∈ B̄T, ‖x − y| ≤ ε},

UT
r = sup{|g(y, z, u)| : y ∈ B̄T ⊂ Ω

′, z ∈
⋃

‖x‖≤T

Γ(x), u ∈ [−r, r]},

with r = sup{‖u‖u : u ∈ U}. On the other hand, by the uniform continuity of k
and Γ on the compact sets B̄T × B̄T and B̄T, respectively, we have ωr

T(k, ε) −→ 0
and ωT(Γ, ε) −→ 0 as ε −→ 0. Therefore, we obtain

ωT
0 (Q(U)) ≤ 2 sup{

∫

Ω′\B̄T

∫

Γ(x)
|k(x, y)g(y, z, u(ζ(y, z)))|dzdy : x ∈ Ω, u ∈ U}.
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Now taking T −→ ∞ and by using assumption(iii) we get

ω0(Q(U)) = 0. (3.18)

Moreover, we obtain

diamQ(U)(x) ≤
sup{

∣

∣

∣

∫

Ω′

∫

Γ(x)
k(x, y)[g(y, z, u(ζ(y, z))) − g(y, z, v(ζ(y, z)))]dzdy

∣

∣

∣
:

u, v ∈ BC(Ω)}. (3.19)

Taking ‖x‖ −→ ∞ in the inequality (3.19), then using (ii) we arrive at

lim sup
‖x‖−→∞

diamQ(U)(x) = 0. (3.20)

Further, combining (3.18) and (3.20) we get

lim sup
‖x‖−→∞

diamQ(U)(x) + ω0(Q(U)) = 0

or, equivalently µ(Q(U)) = 0. Thus, Q is a compact operator and the proof is
complete.

4 Application

Theorem 4.1. Assume that the following conditions are satisfied:

(i) Let Ω be a nonempty and unbounded subset of the Euclidean space R
n, f1 : Ω ×

R −→ R and f2 : Ω × R × R × R −→ R are continuous. Moreover there
exist k1, k2 ∈ [0, 1], and nondecreasing, concave and right continuous functions
ϕ : R+ −→ R+ such that ϕ(t) < t for all t ≥ 0,

| f1(x, u1)− f1(x, u2)| ≤ k1ϕ(|u1 − u2|), (4.1)

and

| f2(x, u1, v1, z1)− f2(x, u2, v2, z2)| ≤ k2 ϕ(|u1 −u2|)+ |v1 − v2|+ |z1 − z2|.
(4.2)

(ii) M1 := sup{| f1(x, 0)| : x ∈ Ω} < ∞ and M2 := sup{| f2(x, 0, 0, 0)| :
x ∈ Ω} < ∞.

(iii) Gi : BC(Ω) −→ BC(Ω) (i = 1, 2, 3) be a compact and continuous operator and
there exists a nondecreasing function ϑi : R+ −→ R+ such that

‖Gi(x)‖ ≤ ϑi(‖x‖).



Construction of compact-integral operators on BC(Ω) 773

(iv) There exists a positive solution r0 such that

k1 ϕ(r) + M1 +
(

M2 + k2 ϕ(r) + ϑ1(r) + ϑ2(r)
)

ϑ3(r) ≤ r, (4.3)

and

k1 + k2ϑ3(r) ≤ 1.

Then there exists u ∈ BC(Ω) such that

u(x) = f1

(

x, u(x)
)

+ f2

(

x, u(x), G1u(x), G2u(x)
)

G3u(x). (4.4)

Proof. Define the operator F : BC(Ω) −→ BC(Ω) by

Fu(x) = f1

(

x, u(x)
)

+ f2

(

x, u(x), G1u(x), G2u(x)
)

G3u(x).

Obviously, Fu(x) for any u ∈ BC(Ω) is well defined and continuous on Ω. Since
Gi and fi are continuous, therefore, F is a continuous operator on BC(Ω). Using
conditions (i)-(iii), for arbitrarily fixed x ∈ Ω, we have

|Fu(x)|

≤ | f1

(

x, u(x)
)

− f1(x, 0)|+ | f1(x, 0)|
+
(

| f2

(

x, u(x), G1u(x), G2u(x)
)

− f2(x, 0, 0, 0)|+ | f2(x, 0, 0, 0)|
)

|G3u(x)|

≤ k1 ϕ(|u(x)|) + M1 +
(

M2 + k2 ϕ(|u(x)|) + |G1u(x)| + |G2u(x)|
)

|G3u(x)|

≤ k1 ϕ(‖u‖) + M1 +
(

M2 + k2 ϕ(‖u‖) + ϑ1(‖u‖) + ϑ2(‖u‖)
)

ϑ3(‖u‖)

Thus, we obtain

‖Fu‖ ≤ k1 ϕ(‖u‖) + M1 +
(

M2 + k2 ϕ(‖u‖) + ϑ1(‖u‖) + ϑ2(‖u‖)
)

ϑ3(‖u‖),

and Fu ∈ BC(Ω) for any u ∈ BC(Ω). Thus, keeping in mind assumption (iv), we
infer that F is a self mapping of the ball B̄r0 . Now we show that for any nonempty
set U ⊂ B̄r0 we have ω0(F(U)) ≤ ϕ(ω0(U)).
For this, we fix T > 0 and ε > 0 arbitrarily. In similar argument we have

ωT(F(U), ε) ≤ ωT
r0
( f1, ε) + ϑ3(r0)ω

T
r0
( f2, ε) +

(

k1 + k2ϑ3(r0)
)

ϕ(ωT(U, ε))

+ϑ3(r0)
(

ωT(G1(U), ε) + ωT(G2(U), ε)
)

+
(

ϕ(r0) + ϑ1(r0) + ϑ2(r0) + M2

)

ωT(G3(U), ε)

where

ωT
r0
( f1, ε) = sup{| f1(x, u)− f1(y, u)| : x, y ∈ B̄T, u ∈ [−r0, r0]},

ωT
r0
( f2, ε) = sup{| f2(x, u, v, z)− f2(y, u, v, z)| : x, y ∈ B̄T, u ∈ [−r0, r0],

v ∈ [−ϑ1(r0), ϑ1(r0)], z ∈ [−ϑ2(r0), ϑ2(r0)]}.
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By using the continuity of f1 and f2 on the compact set B̄T × [−r0, r0] and
B̄T × [−r0, r0] × [−ϑ1(r0), ϑ1(r0)] × [−ϑ2(r0), ϑ2(r0)], respectively, we have
ωT

r0
( fi, ε) −→ 0 as ε −→ 0, and

ωT
0 (F(U)) ≤

(

k1 + k2ϑ3(r0)
)

ϕ(ωT
0 (U)) + ϑ3(r0)

(

ωT
0 (G1(U)) + ωT

0 (G2(U))
)

+
(

ϕ(r0) + ϑ1(r0) + ϑ2(r0) + M2

)

ωT
0 (G3(U)).

Also, since Gi are compact operators for all 1 ≤ i ≤ 3, so we have ωT
0 (Gi(U)) −→

0 as T −→ ∞, and

ω0(F(U)) ≤
(

k1 + k2ϑ3(r0)
)

ϕ(ω0(U)). (4.5)

Moreover, for arbitrary u, v ∈ U and x ∈ Ω, we have the following estimate
∣

∣

∣
Fu(x) − Fv(x)

∣

∣

∣
≤

(

k1 + k2ϑ3(r0)
)

ϕ(diamU(x))

+ϑ3(r0)
(

diamG1(U)(x) + diamG2(U)(x)
)

+
(

ϕ(r0) + ϑ1(r0) + ϑ2(r0) + M2

)

diamG3(U)(x).

Thus, we obtain

diamF(U)(x) ≤
(

k1 + k2ϑ3(r0)
)

ϕ(diamU(x))

+ϑ3(r0)
(

diamG1(U)(x) + diamG2(U)(x)
)

+
(

ϕ(r0) + ϑ1(r0) + ϑ2(r0) + M2

)

diamG3(U)(x). (4.6)

Taking ‖x‖ −→ ∞ in the inequality (4.6), and using lim sup
‖x‖−→∞

diamGi(X) −→ 0

(1 ≤ i ≤ 3), we have

lim sup
‖x‖−→∞

diamF(U)(x) ≤
(

k1 + k2ϑ3(r0)
)

ϕ(lim sup
‖x‖−→∞

diamU(x)). (4.7)

Further, combining (4.5) and (4.7) we get

lim sup
‖x‖−→∞

diamF(U)(x) + ω0(F(U)) ≤

(

k1 + k2ϑ3(r0)
)

(

ϕ(lim sup
‖x‖−→∞

diamU(x)) + ϕ(ω0(U))
)

. (4.8)

Since ϕ is a concave function, (4.8) and (iv) imply that

lim sup
‖x‖−→∞

diamF(U)(x) + ω0(F(U)) ≤ 2ϕ
(1

2
ω0(U) +

1

2
lim sup
‖x‖−→∞

diamU(x)
)

. (4.9)

Consequently, by considering µ defined by the formula

µ(U) =
1

2
ω0(U) +

1

2
lim sup
‖x‖−→∞

diamU(x),

we get
µ(F(U)) ≤ ϕ(µ(U)).

Thus from Theorem 2.1 we conclude that the operator F has a fixed point u in B̄r0 ,
and thus Eq. (4.4) has at least a solution in BC(Ω).
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As a consequence of Theorems 3.1, 3.2 and 4.1, we obtain the following results.

Corollary 4.2. Let all hypotheses of Theorems 3.1 and 3.2 are satisfied and
f2 : Ω × R × R × R −→ R be a continuous function. Moreover there exists a non-
decreasing, concave and right continuous function ϕ : R+ −→ R+ such that ϕ(t) < t
for all t ≥ 0,

| f2(x, u1, v1, z1)− f2(x, u2, v2, z2)| ≤ ϕ(|u1 − u2|) + |v1 − v2|+ |z1 − z2|

and

M := sup{| f2(x, 0, 0, 0)| : x ∈ Ω} < ∞.

Also, there exists a positive solution r0 of the inequality

M + ϕ(r) + ϑ(r) + Db(r) ≤ r.

Then Eq. (1.6) has at least a solution in the space BC(Ω).

Proof. Consider G1, G2 : BC(Ω) −→ BC(Ω) by the formulas

G1u(x) =
∫

Γ(x)
g(x, y, u(ξ(y)))dy,

G2u(x) =
∫

Ω′
k(x, y)h(y, u(η(y)))dy.

Then by applying Theorems 4.1, 3.1 and 3.2, we see that Eq. (1.6) has at least a
solution in the space BC(Ω).

Corollary 4.3. Let all hypotheses of Theorem 3.3 are satisfied and fi : Ω × R −→ R

(i = 1, 2) be a continuous function. Moreover there exists a nondecreasing, concave and
right continuous function ϕ : R+ −→ R+ and k1, k2 ∈ [0, 1] such that ϕ(t) < t for all
t ≥ 0,

| fi(x, u1)− fi(x, u2)| ≤ ki ϕ(|u1 − u2|).

There exists a positive solution r0 such that

M1 + k1ϕ(r) + (M2 + k2 ϕ(r))ϑ(r) ≤ r,

and

k1 + k2ϑ(r) ≤ 1.

Also

Mi := sup{| fi(x, 0)| : x ∈ Ω} < ∞.

Then the Eq. (1.7) has at least a solution in the space BC(Ω).

Proof. The proof is similar to the proof of the previous Corollaries.

Now, we give the following examples which also show that our results can be
applied but the previous results [1, 3, 4, 6, 7, 11, 14, 17, 18, 20] are inapplicable.
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Example 4.1. Consider the following functional integral equation

x(t) = e−t2
ln (1 + |x(t)|) +

∫ |t|

−t2
se−s2

√

x(s2)ds+

tanh
(

∫

R+

∫

R

u cos st

1 + t2
e−(s+u2) 3

√

x(us) arctan usduds
)

. (4.10)

Now, we study the solvability of Eq. (4.10) on the space BC(R). Observe that this
integral equation is a special case of Eq. (1.6) with

ξ(s) = s2, η(s, u) = us, Ω
′ = R+ × R, Γ(t) = [−t2, |t|],

f2(t, x, y, z) = e−t2
ln (1 + |x|) + y + tanh z,

g(t, s, x) = se−s2√
x, k(t, s, u) =

u cos st

1 + t2
e−(s+u2), h(s, u, x) = 3

√
x arctan us.

Taking ϕ(t) = ln(1 + |t|), ϑ(t) =
√

t, a(s, u) = 3
√

arctan us and b(x) = 3
√

x. Now,
by some simple calculations, we show that all the assumptions of Corollary 4.2
hold. Clearly Some assumptions are valid due to the selected functions. We are
just going to check critical assumptions. For this purpose, we obtain M = 1,

sup{
∣

∣

∣

∫ |t|

−t2
se−s2

√

x(s2)ds
∣

∣

∣
: t ∈ R, x ∈ BC(R+), ‖x‖ ≤ r} ≤

√
r.

Moreover, for any r > 0 we have

lim
|t|−→∞

∫ |t|

−t2
se−s2

[
√

x(s2)−
√

y(s2)]ds = 0

uniformly with respect to x, y ∈ B̄r. Thus, condition (ii) of Theorem 3.1 is true.
Further, we have

∫

R+

∫

R

|u cos st 3
√

arctan us

1 + t2
e−(s+u2)|duds ≤

3

√

π

2

1 + t2
≤ 3

√

π

2
,

and we obtain D = 3

√

π

2
. On the other hand,

lim
|t|−→∞

∫

R+

∫

R

|u cos st 3
√

arctan us

1 + t2
e−(s+u2)|duds = 0.

Consequently, assumption (iii) of Theorem 3.2 is satisfied. We now show that
assumption (iv) of Theorem 3.2 holds. For arbitrarily fixed T > 0, there exists
T′

> 0 such that Ω
′ \ B̄T ⊂ Ω

′ \ ([0, T′]× [−T′, T′]) and therefore, we get:

∫

Ω′\([0,T′]×[−T′,T′])
|u cos st 3

√
arctan us

1 + t2
e−(s+u2)|duds

≤
∫

∞

T′

∫

R

|u cos st 3
√

arctan us

1 + t2
e−(s+u2)|duds

+2
∫ T′

0

∫

∞

T′
|u cos st 3

√
arctan us

1 + t2
e−(s+u2)|duds

≤ [e−T′
+ (1 − e−T′

)e−(T′)2
] 3

√

π

2
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for all t ∈ R. Thus, we infer that assumption (iv) of Theorem 3.2 holds. Finally,
let us notice that the inequality from Corollary 4.2, having the form

M + ϕ(r) + ϑ(r) + Db(r) ≤ 1 + ln(1 + r) +
√

r + [ 3

√

π

2
] 3
√

r ≤ r.

It is easy to see that each number r ≥ 9 (this estimate can be improved) satisfies
the above inequality. Thus, as the number r0 we can take r0 = 9. Consequently,
all the assumptions in Corollary 4.2 are provided. Hence Eq. (4.10) has at least a
solution belongs to the space BC(R).

Example 4.2. Consider the following functional integral equation

x(t, s) =
st2|x(t, s)|

(s2t4 + 1)(|x(t, s)| + 1)
+

ln(
√

|x(t, s)| + 1)
∫

R

∫ |ts|

0

4u3ve−v2

(s8t8 + 1)(2 + sin x(v, u))
dudv. (4.11)

Eq. (4.11) is a special case of Eq. (1.7) with

ζ(t, s) = (t, s), Γ(t, s) = [0, |ts|], Ω
′ = R,

f1(t, s, x) =
st2|x|

(s2t4 + 1)(|x|+ 1)
, f2(t, s, x) = ln(

√

|x|+ 1),

k(t, s, v) =
ve−v2

s8t8 + 1
, g(v, u, x) =

4u3

2 + sin x
.

Taking k1, k2 = 1
2 , ϕ(t) = max{ln(t + 1), t

t+1} and ϑ(t) = 1. We investigate that
all the assumptions of Corollary 4.3 hold. To do this, we obtain Mi = 0,

∣

∣

∣

∫

R

∫ |ts|

0

4u3ve−v2

(s8t8 + 1)(2 + sin x(s, u))
dudv

∣

∣

∣
≤ t4s4

s8t8 + 1
,

and we deduce

sup{
∣

∣

∣

∫

R

∫ |ts|

0

4u3ve−v2

(s8t8 + 1)(2 + sin x(s, u))
dudv

∣

∣

∣
: t, s ∈ R, x ∈ BC(R2), ‖x‖ ≤ r} < 1,

lim
‖(t,s)‖−→∞

∣

∣

∣

∫

R

∫ |ts|

0

4u3ve−v2

(s8t8 + 1)(2 + sin x(s, u))
− 4u3ve−v2

(s8t8 + 1)(2 + sin y(s, u))
dudv

∣

∣

∣
= 0.

Consequently, assumption (ii) of Theorem 3.3 is satisfied. On the other hand, for
arbitrarily fixed T > 0 we get:

∣

∣

∣

∫

R\B̄T

∫ |ts|

0

4u3ve−v2

(s8t8 + 1)(2 + sin x(v, u))
dudv

∣

∣

∣

≤ 2
∣

∣

∣

∫

∞

T

∫ |ts|

0

4u3ve−v2

(s8t8 + 1)(2 + sin x(v, u))
dudv

∣

∣

∣

≤ e−T2
.
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From the above estimates we infer that assumption (iii) of Theorem 3.3 holds. It
is easy to see that each number r ≥ 1 (this estimate can be improved) satisfies in
the following inequalities, i.e.,

M1 + k1 ϕ(r) + (M2 + k2 ϕ(r))ϑ(r) ≤ max{ln(r + 1),
r

r + 1
} ≤ r,

and

k1 + k2ϑ(r) ≤ 1.

Thus, as the number r0 we can take r0 = 1. Consequently, all assumptions in
Corollary 4.3 are provided. Hence Eq. (4.11) has at least a solution belonging to
the space BC(R × R).
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[12] J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Lect.
Notes Pure Appl. Math., vol. 60, Dekker, New York, 1980.
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