On weakly classical primary submodules

Hojjat Mostafanasab

Abstract

In this paper all rings are commutative with nonzero identity. Let M be an R-module. A proper submodule N of M is called a classical primary submodule, if for each $m \in M$ and elements $a, b \in R, a b m \in N$ implies that either $a m \in N$ or $b^{t} m \in N$ for some $t \geq 1$. We introduce the notion of "weakly classical primary submodules". A proper submodule N of M is a weakly classical primary submodule if whenever $a, b \in R$ and $m \in M$ with $0 \neq a b m \in N$, then either $a m \in N$ or $b^{t} m \in N$ for some $t \geq 1$.

1 Introduction

Throughout this paper all rings are commutative with nonzero identity and all modules are unitary. We recall that a proper ideal P (resp. Q) of a commutative ring R is said to be prime (resp. primary) if whenever $a b \in P$ (resp. $a b \in Q$) for some $a, b \in R$, then $a \in P$ or $b \in P$ (resp. either $a \in Q$ or $b \in \sqrt{Q}$). Several authors have extended the notion of prime ideals to modules, see, for example $[11,16,18]$. Let M be a module over a commutative ring R. A proper submodule N of M is called prime if for $a \in R$ and $m \in M, a m \in N$ implies that $m \in N$ or $a \in\left(N:_{R} M\right)=\{r \in R \mid r M \subseteq N\}$. Anderson and Smith [3] said that a proper ideal P of a ring R is weakly prime if whenever $a, b \in R$ with $0 \neq a b \in P$, then $a \in P$ or $b \in P$. Weakly prime submodules were introduced by Ebrahimi and Farzalipour in [13]. A proper submodule N of M is called weakly prime if for $a \in R$ and $m \in M$ with $0 \neq a m \in N$, either $m \in N$ or $a \in\left(N:_{R} M\right)$. In [12], Ebrahimi and Farzalipour said that a proper ideal Q of a commutative ring R is

[^0]weakly primary if whenever $a, b \in R$, then $0 \neq a b \in Q$ implies that either $a \in Q$ or $b \in \sqrt{Q}$. Also, they said that a proper submodule N of M is weakly primary if for $a \in R$ and $m \in M$ with $0 \neq a m \in N$, either $m \in N$ or $a \in \sqrt{\left(N:_{R} M\right)}$. A proper submodule N of M is called a classical prime submodule, if for each $m \in M$ and $a, b \in R, a b m \in N$ implies that $a m \in N$ or $b m \in N$. This notion of classical prime submodules has been extensively studied by Behboodi in [7, 8] (see also, [9], in which, the notion of classical prime submodules is named "weakly prime submodules"). For more information on classical prime submodules, the reader is referred to [4, 5, 10]. In [19] the authors introduced the concept of weakly classical prime submodules. A proper submodule N of an R-module M is called a weakly classical prime submodule if whenever $a, b \in R$ and $m \in M$ with $0 \neq a b m \in N$, then $a m \in N$ or $b m \in N$. Baziar and Behboodi [6] defined a classical primary submodule in M as a proper submodule N of M such that if $a b m \in N$, where $a, b \in R$ and $m \in M$, then either $a m \in N$ or $b^{t} m \in N$ for some $t \geq 1$. In this paper we introduce the concept of weakly classical primary submodules. A proper submodule N of an R-module M is called a weakly classical primary submodule if whenever $a, b \in R$ and $m \in M$ with $0 \neq a b m \in N$, then $a m \in N$ or $b^{t} m \in N$ for some $t \geq 1$. Clearly, every classical primary submodule is a weakly classical primary submodule.

The annihilator of M which is denoted by $\operatorname{Ann}_{R}(M)$ is $\left(0:_{R} M\right)$. Furthermore, for every $m \in M,\left(0:_{R} m\right)$ is denoted by $\operatorname{Ann}_{R}(m)$. When $\operatorname{Ann}_{R}(M)=0$, M is called a faithful R-module. An R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R, see [14]. Note that, since $I \subseteq\left(N:_{R} M\right)$ then $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$. So that $N=\left(N:_{R} M\right) M$. Finitely generated faithful multiplication modules are cancellation modules [22, Corollary to Theorem 9], where an R-module M is defined to be a cancellation module if $I M=J M$ for ideals I and J of R implies $I=J$. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product of N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then by [2, Theorem 3.4], the product of N and K is independent of presentations of N and K. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$ (see [2]). Let N be a proper submodule of a nonzero R-module M. We recall from [17] that the M-radical of N, denoted by $M-\operatorname{rad}(N)$, is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then we say $M-\operatorname{rad}(N)=M$. It is shown in [14, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M$. In [20], Quartararo et al. said that a commutative ring R is a u-ring provided R has the property that an ideal that is contained in a finite union of ideals must be contained in one of those ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them. They show that every Bézout ring is a u-ring. Moreover, they proved that every Prüfer domain is a u-domain. Also, any ring which contains an infinite field as a subring is a u-ring, [21, Exercise 3.63]. In [15], Gottlieb investigated submodules covered by finite unions of submodules.

Among many results in this paper, it is shown (Theorem 2.17) that N is a weakly classical primary submodule of an R-module M if and only if for every pair of ideals I, J of R and $m \in M$ with $0 \neq I J m \subseteq N$, either $I m \subseteq N$ or $J \subseteq \sqrt{\left(N:_{R} m\right)}$. It is proved (Theorem 2.19) that if N is a weakly classical primary
submodule of an R-module M that is not classical primary, then $\left(N:_{R} M\right)^{2} N=0$. It is shown (Theorem 3.4) that over a $u m$-ring R, N is a weakly classical primary submodule of an R-module M if and only if for every pair of ideals I, J of R and submodule L of M with $0 \neq I J L \subseteq N$, either $I L \subseteq N$ or $J \subseteq \sqrt{\left(N:_{R} L\right)}$. Let R be a um-ring, M be an R-module and F be a faithfully flat R-module. It is shown (Theorem 3.10) that N is a weakly classical primary submodule of M if and only if $F \otimes N$ is a weakly classical primary submodule of $F \otimes M$. Let $R=R_{1} \times R_{2} \times R_{3}$ be a decomposable ring and $M=M_{1} \times M_{2} \times M_{3}$ be an R-module where M_{i} is an R_{i}-module, for $i=1,2,3$. In Theorem 4.8 it is proved that if N is a weakly classical primary submodule of M, then either $N=\{(0,0,0)\}$ or N is a classical primary submodule of M.

2 Properties of weakly classical primary submodules

Notice that for an R-module M, the zero submodule $\{0\}$ is always a weakly classical primary submodule. In the following example, we give a module in which the zero submodule is not classical primary.

Example 2.1. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{p} \oplus \mathbb{Z}_{q} \oplus \mathbb{Q}$ where p, q are two distinct prime integers. Note that $p q(\overline{1}, \overline{1}, 0)=(\overline{0}, \overline{0}, 0)$, but $p(\overline{1}, \overline{1}, 0) \neq(\overline{0}, \overline{0}, 0)$ and $q^{t}(\overline{1}, \overline{1}, 0) \neq(\overline{0}, \overline{0}, 0)$ for every $t \geq 1$. So the zero submodule of M is not classical primary. Hence the two concepts of classical primary submodules and of weakly classical primary submodules are different in general.

For an R-module M, the set of zero-divisors of M is denoted by $Z_{R}(M)$.
Theorem 2.2. Let M be an R-module, N be a submodule of M and S be a multiplicative subset of R.

1. If N is a weakly classical primary submodule of M such that $\left(N:_{R} M\right) \cap S=\varnothing$, then $S^{-1} N$ is a weakly classical primary submodule of $S^{-1} M$.
2. If $S^{-1} N$ is a weakly classical primary submodule of $S^{-1} M$ such that $S \cap Z_{R}(N)=\varnothing$ and $S \cap Z_{R}(M / N)=\varnothing$, then N is a weakly classical primary submodule of M.

Proof. (1) Let N be a weakly classical primary submodule of M and $\left(N:_{R} M\right) \cap S=\varnothing$. Suppose that $\frac{0}{1} \neq \frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s_{3}} \in S^{-1} N$ for some $a_{1}, a_{2} \in R$, $s_{1}, s_{2}, s_{3} \in S$ and $m \in M$. Then there exists $s \in S$ such that $s a_{1} a_{2} m \in N$. If $s a_{1} a_{2} m=0$, then $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s_{3}}=\frac{s a_{1} a_{2} m}{s s_{1} s_{2} s_{3}}=\frac{0}{1}$, a contradiction. Since N is a weakly classical primary submodule, then we have $a_{1}(s m) \in N$ or $a_{2}^{t}(s m) \in N$ for some $t \geq 1$. Thus $\frac{a_{1}}{s_{1}} \frac{m}{s_{3}}=\frac{s a_{1} m}{s s_{1} s_{3}} \in S^{-1} N$ or $\left(\frac{a_{2}}{s_{2}}\right)^{t} \frac{m}{s_{3}}=\frac{s a_{2}^{t} m}{s s_{2}^{t} s_{3}} \in S^{-1} N$. Consequently $S^{-1} N$ is a weakly classical primary submodule of $S^{-1} M$.
(2) Suppose that $S^{-1} N$ is a weakly classical primary submodule of $S^{-1} M$ and $S \cap Z_{R}(N)=\varnothing$ and $S \cap Z_{R}(M / N)=\varnothing$. Let $a, b \in R$ and $m \in M$ such that $0 \neq a b m \in N$. Then $\frac{a}{1} \frac{b}{1} \frac{m}{1} \in S^{-1} N$. If $\frac{a}{1} \frac{b}{1} \frac{m}{1}=\frac{0}{1}$, then there exists $s \in S$ such that
sabm $=0$ which contradicts $S \cap Z_{R}(N)=\varnothing$. Therefore $\frac{a b}{1} \frac{b}{1} \frac{m}{1} \neq \frac{0}{1}$, and so either $\frac{a}{1} \frac{m}{1} \in S^{-1} N$ or $\left(\frac{b}{1}\right)^{t} \frac{m}{1} \in S^{-1} N$ for some $t \geq 1$. Assume that $\frac{a}{1} \frac{m}{1} \in S^{-1} N$. So there exists $u \in S$ such that uam $\in N$. But $S \cap Z_{R}(M / N)=\varnothing$, whence $a m \in N$. If $\left(\frac{b}{1}\right)^{t} \frac{m}{1} \in S^{-1} N$ for some $t \geq 1$, then there exists $v \in S$ such that $v b^{t} m \in N$. Again $S \cap Z_{R}(M / N)=\varnothing$ implies that $b^{t} m \in N$. Consequently N is a weakly classical primary submodule of M.

Theorem 2.3. Let M be an R-module and N a proper submodule of M.

1. If N is a weakly classical primary submodule of M, then $\left(N:_{R} m\right)$ is a weakly primary ideal of R for every $m \in M \backslash N$ with $A n n_{R}(m)=0$.
2. If $\left(N:_{R} m\right)$ is a weakly primary ideal of R for every $m \in M \backslash N$, then N is a weakly classical primary submodule of M.

Proof. (1) Suppose that N is a weakly classical primary submodule. Let $m \in M \backslash N$ with $\operatorname{Ann}_{R}(m)=0$, and $0 \neq a b \in\left(N:_{R} m\right)$ for some $a, b \in R$. Then $0 \neq a b m \in N$. So $a m \in N$ or $b^{t} m \in N$ for some $t \geq 1$, i.e., $a \in\left(N:_{R} m\right)$ or $b \in \sqrt{\left(N:_{R} m\right)}$. Consequently $\left(N:_{R} m\right)$ is a weakly primary ideal of R.
(2) Assume that $\left(N:_{R} m\right)$ is a weakly primary ideal of R for every $m \in M \backslash N$. Let $0 \neq a b m \in N$ for some $m \in M$ and $a, b \in R$. If $m \in N$, then we are done. So we assume that $m \notin N$. Hence $0 \neq a b \in\left(N:_{R} m\right)$ implies that either $a \in\left(N:_{R} m\right)$ or $b^{t} \in\left(N:_{R} m\right)$ for some $t \geq 1$. Therefore either $a m \in N$ or $b^{t} m \in N$, and so N is a weakly classical primary submodule of M.

We recall that M is a torsion-free R-module if and only if for every $0 \neq m \in$ $M, \operatorname{Ann}_{R}(m)=0$. As a direct consequence of Theorem 2.3 the following result follows.

Corollary 2.4. Let M be a torsion-free R-module and N a proper submodule of M. Then N is a weakly classical primary submodule of M if and only if $\left(N:_{R} m\right)$ is a weakly primary ideal of R for every $m \in M \backslash N$.

Theorem 2.5. Let $f: M \rightarrow M^{\prime}$ be a homomorphism of R-modules.

1. Suppose that f is a monomorphism. If N^{\prime} is a weakly classical primary submodule of M^{\prime} with $f^{-1}\left(N^{\prime}\right) \neq M$, then $f^{-1}\left(N^{\prime}\right)$ is a weakly classical primary submodule of M.
2. Suppose that f is an epimorphism. If N is a weakly classical primary submodule of M containing $\operatorname{Ker}(f)$, then $f(N)$ is a weakly classical primary submodule of M^{\prime}.

Proof. (1) Suppose that N^{\prime} is a weakly classical primary submodule of M^{\prime} with $f^{-1}\left(N^{\prime}\right) \neq M$. Let $0 \neq a b m \in f^{-1}\left(N^{\prime}\right)$ for some $a, b \in R$ and $m \in M$. Since f is a monomorphism, $0 \neq f(a b m) \in N^{\prime}$. So we get $0 \neq a b f(m) \in N^{\prime}$. Hence $f(a m)=a f(m) \in N^{\prime}$ or $f\left(b^{t} m\right)=b^{t} f(m) \in N^{\prime}$ for some $t \geq 1$. Thus am $\in f^{-1}\left(N^{\prime}\right)$ or $b^{t} m \in f^{-1}\left(N^{\prime}\right)$. Therefore $f^{-1}\left(N^{\prime}\right)$ is a weakly classical primary submodule of M.
(2) Assume that N is a weakly classical primary submodule of M. Let $a, b \in R$ and $m^{\prime} \in M^{\prime}$ be such that $0 \neq a b m^{\prime} \in f(N)$. By assumption there exists $m \in$ M such that $m^{\prime}=f(m)$ and so $f(a b m) \in f(N)$. Since $\operatorname{Ker}(f) \subseteq N$, we have $0 \neq a b m \in N$. It implies that $a m \in N$ or $b^{t} m \in N$ for some $t \geq 1$. Hence $a m^{\prime} \in f(N)$ or $b^{t} m^{\prime} \in f(N)$. Consequently $f(N)$ is a weakly classical primary submodule of M^{\prime}.

As an immediate consequence of Theorem 2.5(2) we have the following corollary.

Corollary 2.6. Let M be an R-module and $L \subset N$ be submodules of M. If N is a weakly classical primary submodule of M, then N / L is a weakly classical primary submodule of M / L.

Theorem 2.7. Let K and N be submodules of M with $K \subset N \subset M$. If K is a weakly classical primary submodule of M and N / K is a weakly classical primary submodule of M / K, then N is a weakly classical primary submodule of M.

Proof. Let $a, b \in R, m \in M$ and $0 \neq a b m \in N$. If $a b m \in K$, then $a m \in K \subset N$ or for some $t \geq 1, b^{t} m \in K \subset N$ as it is needed. Thus, assume that $a b m \notin K$. Then $0 \neq a b(m+K) \in N / K$, and so $a(m+K) \in N / K$ or $b^{t}(m+K) \in N / K$ for some $t \geq 1$. It means that $a m \in N$ or $b^{t} m \in N$, which completes the proof.

Proposition 2.8. Let N be a proper submodule of an R-module M. If N is a weakly primary submodule of M, then N is a weakly classical primary submodule of M.

Proof. Assume that N is a weakly primary submodule of M. Let $a, b \in R$ and $m \in M$ such that $0 \neq a b m \in N$. Therefore either $b m \in N$ or $a \in \sqrt{\left(N:_{R} M\right)}$. In the first case we reach the claim. In the second case there exists $t \geq 1$ such that $a^{t} M \subseteq N$ and so $a^{t} m \in N$. Consequently N is a weakly classical primary submodule.

Corollary 2.9. Let R be a ring and I be a proper ideal of R.

1. ${ }_{R} I$ is a weakly classical primary submodule of $R_{R} R$ if and only if I is a weakly primary ideal of R.
2. Every proper ideal of R is weakly primary if and only if for every R-module M and every proper submodule N of M, N is a weakly classical primary submodule of M.

Proof. (1) Let ${ }_{R} I$ be a weakly classical primary submodule of ${ }_{R} R$. Then by Theorem 2.3(1), $\left(I:_{R} 1\right)=I$ is a weakly primary ideal of R. For the converse, notice that ${ }_{R} I$ is a weakly primary submodule of ${ }_{R} R$ if and only if I is a weakly primary ideal of R. Now, apply Proposition 2.8.
(2) Assume that every proper ideal of R is weakly primary. Let N be a proper submodule of an R-module M. Since for every $m \in M \backslash N,\left(N:_{R} m\right)$ is a proper ideal of R, then it is a weakly primary ideal of R. Hence by Theorem 2.3(2), N is a weakly classical primary submodule of M. We have the converse immediately by part (1).

The following example shows that the converse of Proposition 2.8 is not true.

Example 2.10. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{p} \oplus \mathbb{Z} \oplus \mathbb{Z}$ where p is a prime integer. Consider the submodule $N=\{\overline{0}\} \oplus\{0\} \oplus \mathbb{Z}$ of M. Notice that $(\overline{0}, 0,0) \neq p(\overline{1}, 0,1)=$ $(\overline{0}, 0, p) \in N$, but $(\overline{1}, 0,1) \notin N$. Also $p^{t}(\overline{1}, 1,1) \notin N$ for every $t \geq 1$, which shows that $p \notin(N: \mathbb{Z} M)$. Therefore N is not a weakly primary submodule of M. Now, assume that $m, n, z, w \in \mathbb{Z}$ and $\bar{x} \in \mathbb{Z}_{p}$ be such that $(\overline{0}, 0,0) \neq m n(\bar{x}, z, w) \in N$. Hence $\overline{m n x}=\overline{0}$ and $m n z=0$. Therefore $p \mid m n x$ and $z=0$. So $p \mid m$ or $p \mid n x$. If $p \mid m$, then $m(\bar{x}, z, w)=(\overline{m x}, 0, m w)=(\overline{0}, 0, m w) \in N$. Similarly, if $p \mid n x$, then $n(\bar{x}, z, w)=(\overline{n x}, 0, n w)=(\overline{0}, 0, n w) \in N$. Consequently N is a weakly classical prime submodule and so it is a weakly classical primary submodule.

Proposition 2.11. Let M be a cyclic R-module. Then a proper submodule N of M is a weakly primary submodule if and only if it is a weakly classical primary submodule.

Proof. By Proposition 2.8, the "only if" part holds. Let $M=R m$ for some $m \in M$ and N be a weakly classical primary submodule of M. Suppose that $0 \neq r x \in N$ for some $r \in R$ and $x \in M$. Then there exists an element $s \in R$ such that $x=s m$. Therefore $0 \neq r x=s r m \in N$ and since N is a weakly classical primary submodule, $x=s m \in N$ or $r^{t} m \in N$ for some $t \geq 1$. Hence $x \in N$ or $r^{t} \in\left(N:_{R} M\right)$. Consequently, either $x \in N$ or $r \in \sqrt{\left(N:_{R} M\right)}$ and so N is a weakly primary submodule of M.

Definition 2.12. Let N be a proper submodule of M and $a, b \in R, m \in M$. If N is a weakly classical primary submodule and $a b m=0, a m \notin N, b \notin \sqrt{\left(N:_{R} m\right)}$, then (a, b, m) is called a classical primary triple-zero of N.

Theorem 2.13. Let N be a weakly classical primary submodule of a finitely generated R-module M and suppose that $a b K \subseteq N$ for some $a, b \in R$ and some submodule K of M. If (a, b, k) is not a classical primary triple-zero of N for any $k \in K$, then $a K \subseteq N$ or $b^{t} K \subseteq N$ for some $t \geq 1$.

Proof. Suppose that (a, b, k) is not a classical primary triple-zero of N for any $k \in K$. Assume on the contrary that $a K \nsubseteq N$ and $b \notin \sqrt{\left(N:_{R} K\right)}$. Then there exists $k_{1} \in K$ such that $a k_{1} \notin N$, and since M is finitely generated, there exists $k_{2} \in K$ such that $b \notin \sqrt{\left(N:_{R} k_{2}\right)}$. If $a b k_{1} \neq 0$, then we have $b \in \sqrt{\left(N:_{R} k_{1}\right)}$, because $a k_{1} \notin N$ and N is a weakly classical primary submodule of M. If $a b k_{1}=0$, then since $a k_{1} \notin N$ and $\left(a, b, k_{1}\right)$ is not a classical primary triple-zero of N, we conclude once again that $b \in \sqrt{\left(N:_{R} k_{1}\right)}$. By a similar argument, since $\left(a, b, k_{2}\right)$ is not a classical primary triple-zero and $b \notin \sqrt{\left(N:_{R} k_{2}\right)}$, then we deduce that $a k_{2} \in N$. By our hypothesis, $a b\left(k_{1}+k_{2}\right) \in N$ and $\left(a, b, k_{1}+k_{2}\right)$ is not a classical primary triple-zero of N. Hence we have either $a\left(k_{1}+k_{2}\right) \in N$ or $b \in \sqrt{\left(N:_{R} k_{1}+k_{2}\right)}$. If $a\left(k_{1}+k_{2}\right)=a k_{1}+a k_{2} \in N$, then since $a k_{2} \in N$, we have $a k_{1} \in N$, a contradiction. If $b \in \sqrt{\left(N:_{R} k_{1}+k_{2}\right)}$, then since $b \in \sqrt{\left(N:_{R} k_{1}\right)}$, we have $b \in \sqrt{\left(N:_{R} k_{2}\right)}$, which again is a contradiction. Thus $a K \subseteq N$ or $b^{t} K \subseteq N$ for some $t \geq 1$.

Definition 2.14. Let N be a weakly classical primary submodule of an R-module M and suppose that $I J K \subseteq N$ for some ideals I, J of R and some submodule K of M. We say that N is a free classical primary triple-zero with respect to IJK if (a, b, k) is not a classical primary triple-zero of N for any $a \in I, b \in J$, and $k \in K$.

Remark 2.15. Let N be a weakly classical primary submodule of M and suppose that $I J K \subseteq N$ for some ideals I, J of R and some submodule K of M such that N is a free classical primary triple-zero with respect to $I J K$. Then $a \in I, b \in J$, and $k \in K$ implies that either $a k \in N$ or $b^{t} k \in N$ for some $t \geq 1$.

Corollary 2.16. Let N be a weakly classical primary submodule of a finitely generated R-module M and suppose that $I J K \subseteq N$ for some ideals I, J of R and some submodule K of M. If N is a free classical primary triple-zero with respect to $I J K$, then $I K \subseteq N$ or $J \subseteq \sqrt{\left(N:_{R} K\right)}$.

Proof. Suppose that N is a free classical primary triple-zero with respect to IJK. Assume that $I K \nsubseteq N$ and $J \nsubseteq \sqrt{\left(N:_{R} K\right)}$. Then there exist $a \in I$ and $b \in J$ with $a K \nsubseteq N$ and $b^{s} K \nsubseteq N$ for every $s \geq 1$. Since $a b K \subseteq N$ and N is free classical primary triple-zero with respect to $I J K$, then Theorem 2.13 implies that $a K \subseteq N$ or $b^{t} K \subseteq N$ for some $t \geq 1$, which is a contradiction. Consequently $I K \subseteq N$ or $J \subseteq \sqrt{\left(N:_{R} K\right)}$.

Let M be an R-module and N a submodule of M. For every $a \in R$, $\{m \in M \mid a m \in N\}$ is denoted by $\left(N:_{M} a\right)$. It is easy to see that $\left(N:_{M} a\right)$ is a submodule of M containing N.

In the next theorem we characterize weakly classical primary submodules.
Theorem 2.17. Let M be an R-module and N be a proper submodule of M. The following conditions are equivalent:

1. N is weakly classical primary;
2. For every $a, b \in R,\left(N:_{M} a b\right) \subseteq\left(0:_{M} a b\right) \cup\left(N:_{M} a\right) \cup\left(\cup_{t \geq 1}\left(N:_{M} b^{t}\right)\right)$;
3. For every $a \in R$ and $m \in M$ with am $\notin N,\left(N:_{R}\right.$ am $) \subseteq\left(0:_{R}\right.$ am $) \cup$ $\sqrt{\left(N:_{R} m\right)}$;
4. For every $a \in R$ and $m \in M$ with am $\notin N,\left(N:_{R}\right.$ am $)=\left(0:_{R}\right.$ am) or $\left(N:_{R} a m\right) \subseteq \sqrt{\left(N:_{R} m\right)}$;
5. For every $a \in R$ and every ideal I of R and $m \in M$ with $0 \neq a I m \subseteq N$, either $a m \in N$ or $I \subseteq \sqrt{\left(N:_{R} m\right)}$;
6. For every ideal I of R and $m \in M$ with $I \nsubseteq \sqrt{\left(N:_{R} m\right)},\left(N:_{R} \operatorname{Im}\right)=\left(0:_{R}\right.$ Im $)$ or $\left(N:_{R} \operatorname{Im}\right)=\left(N:_{R} m\right)$;
7. For every pair of ideals I, J of R and $m \in M$ with $0 \neq I J m \subseteq N$, either $I m \subseteq N$ or $J \subseteq \sqrt{\left(N:_{R} m\right)}$.

Proof. (1) \Rightarrow (2) Suppose that N is a weakly classical primary submodule of M. Let $m \in\left(N:_{M} a b\right)$. Then $a b m \in N$. If $a b m=0$, then $m \in\left(0:_{M} a b\right)$. Assume that $a b m \neq 0$. Hence $a m \in N$ or $b^{t} m \in N$ for some $t \geq 1$. Therefore $m \in\left(N:_{M} a\right)$ or $m \in \cup_{t \geq 1}\left(N:_{M} b^{t}\right)$. Consequently, ($\left.N::_{M} a b\right) \subseteq$ $\left(0:_{M} a b\right) \cup\left(N:_{M} a\right) \cup\left(\cup_{t \geq 1}\left(N:_{M} b^{t}\right)\right)$.
(2) \Rightarrow (3) Let $a m \notin N$ for some $a \in R$ and $m \in M$. Assume that $x \in\left(N:_{R} a m\right)$.

Then axm $\in N$, and so $m \in\left(N:_{M} a x\right)$. Since $a m \notin N$, then $m \notin\left(N:_{M} a\right)$. Thus by part (2), $m \in\left(0:_{M} a x\right)$ or $m \in \cup_{t \geq 1}\left(N:_{M} x^{t}\right)$, whence $x \in\left(0:_{R}\right.$ am) or $x \in \sqrt{\left(N:_{R} m\right)}$. Therefore $\left(N:_{R} a m\right) \subseteq\left(0:_{R} a m\right) \cup \sqrt{\left(N:_{R} m\right)}$.
$(3) \Rightarrow(4)$ By the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them.
$(4) \Rightarrow(5)$ Suppose that for some $a \in R$, an ideal I of R and $m \in M, 0 \neq a I m \subseteq N$. Hence $I \subseteq\left(N:_{R} a m\right)$ and $I \nsubseteq\left(0:_{R} a m\right)$. If $a m \in N$, then we are done. So, assume that $a m \notin N$. Therefore by part (4) we have that $I \subseteq \sqrt{\left(N:_{R} m\right)}$.
(5) \Rightarrow (6) Assume that I is an ideal of R and $m \in M$ such that $I \nsubseteq \sqrt{\left(N:_{R} m\right)}$. Let $x \in\left(N:_{R}\right.$ Im $)$. Thus $x \operatorname{Im} \subseteq N$. If $x \operatorname{Im}=0$, then $x \in\left(0:_{R}\right.$ Im $)$. If $x \operatorname{Im} \neq 0$, then by part (5) we have $x m \in N$ and so $x \in\left(N:_{R} m\right)$. Hence $\left(N:_{R} \operatorname{Im}\right)=\left(0:_{R} \operatorname{Im}\right) \cup\left(N:_{R} m\right)$. Consequently $\left(N:_{R} \operatorname{Im}\right)=\left(0:_{R} \operatorname{Im}\right)$ or $\left(N:_{R} \operatorname{Im}\right)=\left(N:_{R} m\right)$.
(6) $\Rightarrow(7)$ Let $0 \neq I J m \subseteq N$ for some ideals I, J of R and $m \in M$ with $J \nsubseteq \sqrt{\left(N:_{R} m\right)}$. Therefore $I \subseteq\left(N:_{R} J m\right)$. On the other hand part (6) implies that either $\left(N:_{R} J m\right)=\left(0:_{R} J m\right)$ or $\left(N:_{R} J m\right)=\left(N:_{R} m\right)$. The former cannot hold, because $\operatorname{IJm} \neq 0$. Hence the second case implies that $\operatorname{Im} \subseteq N$.
$(7) \Rightarrow(1)$ Is trivial.
Theorem 2.18. Let N be a weakly classical primary submodule of M and suppose that (a, b, m) is a classical primary triple-zero of N for some $a, b \in R$ and $m \in M$. Then the following conditions hold:

1. $a b N=0$.
2. $a\left(N:_{R} M\right) m=0$.
3. $b\left(N:_{R} M\right) m=0$.
4. $\left(N:_{R} M\right)^{2} m=0$.
5. $a\left(N:_{R} M\right) N=0$.
6. $b\left(N:_{R} M\right) N=0$.

Proof. (1) Suppose that $a b N \neq 0$. Then there exists $n \in N$ with $a b n \neq 0$. Hence $0 \neq a b(m+n)=a b n \in N$, so we conclude that $a(m+n) \in N$ or $b^{t}(m+n) \in N$ for some $t \geq 1$. Thus $a m \in N$ or $b^{t} m \in N$, which contradicts the assumption that (a, b, m) is classical primary triple-zero. Thus $a b N=0$.
(2) Let $a x m \neq 0$ for some $x \in\left(N:_{R} M\right)$. Then $a(b+x) m \neq 0$, because $a b m=0$. Since $x m \in N, a(b+x) m \in N$. Then $a m \in N$ or $(b+x)^{t} m \in N$ for some $t \geq 1$. Hence $a m \in N$ or $b^{t} m \in N$, which contradicts our hypothesis.
(3) The proof is similar to part (2).
(4) Assume that $x_{1} x_{2} m \neq 0$ for some $x_{1}, x_{2} \in\left(N:_{R} M\right)$. Then by parts (2) and (3), $\left(a+x_{1}\right)\left(b+x_{2}\right) m=x_{1} x_{2} m \neq 0$. Clearly $\left(a+x_{1}\right)\left(b+x_{2}\right) m \in N$. Then $\left(a+x_{1}\right) m \in N$ or $\left(b+x_{2}\right)^{t} m \in N$ for some $t \geq 1$. Therefore $a m \in N$ or $b^{t} m \in N$ which is a contradiction. Consequently $\left(N:_{R} M\right)^{2} m=0$.
(5) Let $a x n \neq 0$ for some $x \in\left(N:_{R} M\right)$ and $n \in N$. Therefore by parts (1) and (2) we conclude that $0 \neq a(b+x)(m+n)=a x n \in N$. So $a(m+n) \in N$
or $(b+x)^{t}(m+n) \in N$ for some $t \geq 1$. Hence $a m \in N$ or $b^{t} m \in N$. This contradiction shows that $a\left(N:_{R} M\right) N=0$.
(6) Similart to part (5).

A submodule N of an R-module M is called a nilpotent submodule if $\left(N:_{R} M\right)^{k} N=0$ for some positive integer k (see [1]), and we say that $m \in M$ is nilpotent if Rm is a nilpotent submodule of M.

Theorem 2.19. If N is a weakly classical primary submodule of an R-module M that is not classical primary, then $\left(N:_{R} M\right)^{2} N=0$ and so N is nilpotent.

Proof. Suppose that N is a weakly classical primary submodule of M that is not classical primary. Then there exists a classical primary triple-zero (a, b, m) of N for some $a, b \in R$ and $m \in M$. Assume that $\left(N:_{R} M\right)^{2} N \neq 0$. Hence there are $x_{1}, x_{2} \in\left(N:_{R} M\right)$ and $n \in N$ such that $x_{1} x_{2} n \neq 0$. By Theorem 2.18, $0 \neq\left(a+x_{1}\right)\left(b+x_{2}\right)(m+n)=x_{1} x_{2} n \in N$. So $\left(a+x_{1}\right)(m+n) \in N$ or $\left(b+x_{1}\right)^{t}(m+n) \in N$ for some $t \geq 1$. Therefore $a m \in N$ or $b^{t} m \in N$, a contradiction.

Remark 2.20. Let M be a multiplication R-module and K, L be submodules of M. Then there are ideals I, J of R such that $K=I M$ and $L=J M$. Thus $K L=I J M=$ $I L$. In particular $K M=I M=K$. Also, for any $m \in M$ we define $K m:=K R m$. Hence $K m=I R m=I m$.

Corollary 2.21. If N is a weakly classical primary submodule of a multiplication R-module M that is not classical primary, then $N^{3}=0$.

Proof. Since M is multiplication, then $N=\left(N:_{R} M\right) M$. Therefore by Theorem 2.19 and Remark 2.20, $N^{3}=\left(N:_{R} M\right)^{2} N=0$.

Definition 2.22. ([17]) Let N be a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted by $M-\operatorname{rad}(N)$, is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then we say $M-\operatorname{rad}(N)=M$.

Let M be an R-module. Assume that $\operatorname{Nil}(M)$ is the set of all nilpotent elements of M. If M is faithful, then $\operatorname{Nil}(M)$ is a submodule of M and if M is faithful multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\bigcap Q(=M-r a d(\{0\}))$, where the intersection runs over all prime submodules of $M,[1$, Theorem 6].

We recall from [14, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M$.

Theorem 2.23. Let N be a weakly classical primary submodule of M. If N is not classical primary, then

1. $\sqrt{\left(N:_{R} M\right)}=\sqrt{A n n_{R}(M)}$.
2. If M is multiplication, then $M-\operatorname{rad}(N)=M-\operatorname{rad}(\{0\})$. If in addition M is faithful, then $M-\operatorname{rad}(N)=\operatorname{Nil}(M)$.

Proof. (1) Assume that N is not classical primary. By Theorem 2.19, $\left(N:_{R} M\right)^{2} N=$ 0 . Then

$$
\begin{aligned}
\left(N:_{R} M\right)^{3} & =\left(N:_{R} M\right)^{2}\left(N:_{R} M\right) \\
& \subseteq\left(\left(N:_{R} M\right)^{2} N:_{R} M\right) \\
& =\left(0:_{R} M\right),
\end{aligned}
$$

and so $\left(N:_{R} M\right) \subseteq \sqrt{\left(0:_{R} M\right)}$. Hence, we have $\sqrt{\left(N:_{R} M\right)}=\sqrt{\left(0:_{R} M\right)}=$ $\sqrt{\operatorname{Ann}_{R}(M)}$.
(2) Suppose that M is multiplication. Then, by part (1) we have that

$$
M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M=\sqrt{\left(0:_{R} M\right)} M=M-\operatorname{rad}(\{0\})
$$

Now, if in addition M is faithful, then $M-\operatorname{rad}(N)=M-\operatorname{rad}(\{0\})=\operatorname{Nil}(M)$.
Regarding Remark 2.20 we have the next proposition.
Proposition 2.24. Let R be a Noetherian ring, M a multiplication R-module and N be a proper submodule of M. The following conditions are equivalent:

1. N is a weakly classical primary submodule of M;
2. If $0 \neq N_{1} N_{2} m \subseteq N$ for some submodules N_{1}, N_{2} of M and $m \in M$, then either $N_{1} m \subseteq N$ or $N_{2}^{t} m \subseteq N$ for some $t \geq 1$.

Proof. (1) \Rightarrow (2) Let $0 \neq N_{1} N_{2} m \subseteq N$ for some submodules N_{1}, N_{2} of M and $m \in M$. Since M is multiplication, there are ideals I_{1}, I_{2} of R such that $N_{1}=I_{1} M$ and $N_{2}=I_{2} M$. Therefore $0 \neq N_{1} N_{2} m=I_{1} I_{2} m \subseteq N$, and so by Theorem 2.17 either $I_{1} m \subseteq N$ or $I_{2} \subseteq \sqrt{\left(N:_{R} m\right)}$. In the first case we have $N_{1} m=I_{1} m \subseteq N$. Notice the fact that every ideal of a Noetherian ring contains a power of its radical. So, in the second case, there exists some $t \geq 1$ such that $I_{2}^{t} \subseteq\left(\sqrt{\left(N:_{R} m\right)}\right)^{t} \subseteq$ $\left(N:_{R} m\right)$. Therefore $N_{2}^{t} m=I_{2}^{t} m \subseteq N$.
(2) \Rightarrow (1) Suppose that $0 \neq I_{1} I_{2} m \subseteq N$ for some ideals I_{1}, I_{2} of R and some $m \in M$.

In part (2) set $N_{1}:=I_{1} M$ and $N_{2}:=I_{2} M$. Therefore $N_{1} m=I_{1} m \subseteq N$ or $N_{2}^{t} m=I_{2}^{t} m \subseteq N$ for some $t \geq 1$. Consequently N is a weakly classical primary submodule of M.

3 Weakly classical primary submodules of modules over specific rings

First, we recall the two concepts of u-rings and $u m$-rings and then investigate weakly classical primary submodules over these rings.

Definition 3.1. ([20]) A commutative ring R is a u-ring provided R has the property that an ideal that is contained in a finite union of ideals must be contained in one of those ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them.

Proposition 3.2. Let M be an R-module and N be a weakly classical primary submodule of M.Then

1. For every $a, b \in R$ and $m \in M$,

$$
\left(N:_{R} a b m\right)=\left(0:_{R} a b m\right) \cup\left(N:_{R} a m\right) \cup\left(\cup_{t \geq 1}\left(N:_{R} b^{t} m\right)\right) ;
$$

2. If R is a u-ring, then for every $a, b \in R$ and $m \in M,\left(N:_{R} a b m\right)=\left(0:_{R} a b m\right)$ or $\left(N:_{R} a b m\right)=\left(N:_{R} a m\right)$ or $\left(N:_{R} a b m\right)=\left(N:_{R} b^{t} m\right)$ for some $t \geq 1$.

Proof. (1) Let $a, b \in R$ and $m \in M$. Suppose that $r \in\left(N:_{R} a b m\right)$. Then $a b(r m) \in N$. If $a b(r m)=0$, then $r \in\left(0:_{R} a b m\right)$. Therefore we assume that $a b(r m) \neq 0$. So, either $a(r m) \in N$ or $b^{t}(r m) \in N$ for some $t \geq 1$. Thus, either $r \in\left(N:_{R} a m\right)$ or $r \in\left(N:_{R} b^{t} m\right)$ for some $t \geq 1$. Consequently $\left(N:_{R} a b m\right)=$ $\left(0:_{R} a b m\right) \cup\left(N:_{R} a m\right) \cup\left(\cup_{t \geq 1}\left(N:_{R} b^{t} m\right)\right)$.
(2) Apply part (1).

Lemma 3.3. A ring R is a um-ring if and only if $M \subseteq \bigcup_{i=1}^{n} M_{i}$, where M_{i} 's are some R-modules and n is a positive integer implies that $M \subseteq M_{i}$ for some $1 \leq i \leq n$.

Proof. (\Leftarrow) It is clear.
(\Rightarrow) Suppose that R is a um-ring. Let $M \subseteq \bigcup_{i=1}^{n} M_{i}$ for some R-modules M_{1}, M_{2}, \ldots , M_{n}. Then $M=\bigcup_{i=1}^{n}\left(M_{i} \cap M\right)$ and so $M=M_{i} \cap M$ for some $1 \leq i \leq n$. Therefore $M \subseteq M_{i}$ for some $1 \leq i \leq n$.

Theorem 3.4. Let R be a um-ring, M be an R-module and N be a proper submodule of M. The following conditions are equivalent:

1. N is weakly classical primary;
2. For every $a, b \in R,\left(N:_{M} a b\right)=\left(0:_{M} a b\right)$ or $\left(N:_{M} a b\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a b\right)=\left(N:_{M} b^{t}\right)$ for some $t \geq 1$;
3. For every $a, b \in R$ and every submodule L of $M, 0 \neq a b L \subseteq N$ implies that $a L \subseteq N$ or $b^{t} L \subseteq N$ for some $t \geq 1$;
4. For every $a \in R$ and every submodule L of M with $a L \nsubseteq N,\left(N:_{R} a L\right)=$ $\left(0:_{R} a L\right)$ or $\left(N:_{R} a L\right) \subseteq \sqrt{\left(N:_{R} L\right) ;}$
5. For every $a \in R$, every ideal I of R and every submodule L of $M, 0 \neq a I L \subseteq N$ implies that $a L \subseteq N$ or $I \subseteq \sqrt{\left(N:_{R} L\right)}$;
6. For every ideal I of R and every submodule L of M with $I \nsubseteq \sqrt{\left(N:_{R} L\right)}$, $\left(N:_{R} I L\right)=\left(0:_{R} I L\right)$ or $\left(N:_{R} I L\right)=\left(N:_{R} L\right) ;$
7. For every pair of ideals I, J of R and every submodule L of $M, 0 \neq I J L \subseteq N$ implies that $I L \subseteq N$ or $J \subseteq \sqrt{\left(N:_{R} L\right)}$.

Proof. Similar to that of Theorem 2.17.
Remark 3.5. The zero submodule of the \mathbb{Z}-module \mathbb{Z}_{6}, is a weakly classical primary submodule (weakly primary ideal) of \mathbb{Z}_{6}. Notice that $2 \cdot 3 \in 6 \mathbb{Z}$, but neither $2 \in 6 \mathbb{Z}$ nor $3 \in \sqrt{6 \mathbb{Z}}=2 \mathbb{Z} \cap 3 \mathbb{Z}$. Therefore $\left(0: \mathbb{Z} \mathbb{Z}_{6}\right)=6 \mathbb{Z}$ is not a weakly primary ideal of \mathbb{Z}.

Proposition 3.6. Let R be a um-ring, M be an R-module and N be a proper submodule of M. If N is a weakly classical primary submodule of M, then $\left(N:_{R} L\right)$ is a weakly primary ideal of R for every faithful submodule L of M that is not contained in N.

Proof. Assume that N is a weakly classical primary submodule of M and L is a faithful submodule of M such that $L \nsubseteq N$. Let $0 \neq a b \in\left(N:_{R} L\right)$ for some $a, b \in R$. Then $0 \neq a b L \subseteq N$, because L is faithful. Hence Theorem 3.4 implies that $a L \subseteq N$ or $b^{t} L \subseteq N$ for some $t \geq$ 1, i.e., $a \in\left(N:_{R} L\right)$ or $b \in \sqrt{\left(N:_{R} L\right)}$. Consequently $\left(N:_{R} L\right)$ is a weakly primary ideal of R.

Lemma 3.7. Let R be a ring and Q be a proper ideal of R. The following conditions are equivalent:

1. Q is a weakly primary ideal of R;
2. For every element $a \in R \backslash Q$, either $\left(Q:_{R} a\right)=\left(0:_{R} a\right)$ or $\left(Q:_{R} a\right) \subseteq \sqrt{Q}$;
3. For every $a \in R$ and every ideal I of $R, 0 \neq a I \subseteq Q$ implies that either $a \in Q$ or $I \subseteq \sqrt{Q} ;$
4. For every ideal I of R with $I \nsubseteq \sqrt{Q}$, either $\left(Q:_{R} I\right)=\left(0:_{R} I\right)$ or $\left(Q:_{R} I\right)=Q$;
5. For every pair of ideals I, J of $R, 0 \neq I J \subseteq Q$ implies that either $I \subseteq Q$ or $J \subseteq \sqrt{Q}$.

Proof. (1) \Rightarrow (2) Assume that Q is a weakly primary ideal of R. Let $a \in R \backslash Q$ and $x \in\left(Q:_{R} a\right)$. Then $a x \in Q$. If $a x=0$, then $x \in\left(0:_{R} a\right)$. Suppose that $a x \neq 0$. So $x \in \sqrt{Q}$. Hence $\left(Q:_{R} a\right) \subseteq\left(0:_{R} a\right) \cup \sqrt{Q}$. Therefore either $\left(Q:_{R} a\right)=\left(0:_{R} a\right)$ or $\left(Q:_{R} a\right) \subseteq \sqrt{Q}$.
$(2) \Rightarrow(3)$ Suppose that for some $a \in R$ and ideal I of $R, 0 \neq a I \subseteq Q$. Thus $I \subseteq\left(Q:_{R} a\right)$. Since $a I \neq 0$, then $\left(Q:_{R} a\right) \neq\left(0:_{R} a\right)$. Then, part (2) implies that $I \subseteq\left(Q:_{R} a\right) \subseteq \sqrt{Q}$.
$(3) \Rightarrow(4)$ Suppose that $I \nsubseteq \sqrt{Q}$ for some ideal I of R. Let $x \in\left(Q:_{R} I\right)$. Then $x I \subseteq Q$. If $x I=0$, then $x \in\left(0:_{R} I\right)$. If $x I \neq 0$, then by part (3) we have that $x \in Q$. Hence $\left(Q:_{R} I\right)=\left(0:_{R} I\right) \cup Q$. Consequently $\left(Q:_{R} I\right)=\left(0:_{R} I\right)$ or $\left(Q:_{R} I\right)=Q$.
$(4) \Rightarrow(5)$ Assume that I, J are ideals of R such that $0 \neq I J \subseteq Q$. Then $I \subseteq\left(Q:_{R} J\right)$. Suppose that $J \nsubseteq \sqrt{Q}$. Thus part (4) implies that $\left(Q:_{R} J\right)=\left(0:_{R} J\right)$ or $\left(Q:_{R} J\right)=Q$. Since $I J \neq 0$, then we have only $\left(Q:_{R} J\right)=Q$, and so $I \subseteq Q$.
$(5) \Rightarrow(1)$ is straightforward.
Theorem 3.8. Let R be a Noetherian um-ring, M be a faithful multiplication R-module and N be a proper submodule of M. The following conditions are equivalent:

1. N is a weakly classical primary submodule of M;
2. If $0 \neq N_{1} N_{2} N_{3} \subseteq N$ for some submodules N_{1}, N_{2}, N_{3} of M, then either $N_{1} N_{3} \subseteq N$ or $N_{2}^{t} N_{3} \subseteq N$ for some $t \geq 1 ;$
3. If $0 \neq N_{1} N_{2} \subseteq N$ for some submodules N_{1}, N_{2} of M, then either $N_{1} \subseteq N$ or $N_{2}^{t} \subseteq N$ for some $t \geq 1$;
4. N is a weakly primary submodule of M;
5. $\left(N:_{R} M\right)$ is a weakly primary ideal of R.

Proof. (1) $\Rightarrow(2)$ Let $0 \neq N_{1} N_{2} N_{3} \subseteq N$ for some submodules N_{1}, N_{2}, N_{3} of M. Since M is multiplication, there exist ideals I_{1}, I_{2} of R such that $N_{1}=I_{1} M$ and $N_{2}=$ $I_{2} M$. Therefore $0 \neq I_{1} I_{2} N_{3} \subseteq N$. Since R is Noetherian, Theorem 2.24 implies that $I_{1} N_{3} \subseteq N$ or $I_{2}^{t} N_{3} \subseteq N$ for some $t \geq 1$. Thus, either $N_{1} N_{3} \subseteq N$ or $N_{2}^{t} N_{3} \subseteq N$. $(2) \Rightarrow(3)$ is easy.
(3) \Rightarrow (4) Suppose that $0 \neq I K \subseteq N$ for some ideal I of R and some submodule K of M. It is sufficient to set $N_{1}:=K$ and $N_{2}:=I M$ in part (3).
$(4) \Rightarrow(1)$ By Proposition 2.8.
$(1) \Rightarrow(5)$ By Proposition 3.6.
$(5) \Rightarrow(4)$ Let $0 \neq I K \subseteq N$ for some ideal I of R and some submodule K of M. Since M is multiplication, then there is an ideal J of R such that $K=J M$. Hence $0 \neq J I \subseteq\left(N:_{R} M\right)$ which by Lemma 3.7 implies that either $J \subseteq\left(N:_{R} M\right)$ or $I \subseteq \sqrt{\left(N:_{R} M\right)}$. If $I \subseteq \sqrt{\left(N:_{R} M\right)}$, the we are done. If $J \subseteq\left(N:_{R} M\right)$, then $K=J M \subseteq N$.

Proposition 3.9. Let R be a Noetherian um-ring. Let M be a faithful multiplication R-module and N a submodule of M. Then the following conditions are equivalent:

1. N is a weakly classical primary submodule;
2. ($\left.N:_{R} M\right)$ is a weakly primary ideal of R;
3. $N=I M$ for some weakly primary ideal I of R.

Proof. (1) $\Leftrightarrow(2)$. By Theorem 3.8.
(2) \Rightarrow (3) Since $\left(N:_{R} M\right)$ is a weakly primary ideal and $N=\left(N:_{R} M\right) M$, then condition (3) holds.
$(3) \Rightarrow(2)$ By the fact that every multiplication module over a Noetherian ring is a Noetherian module, M is Noetherian and so finitely generated. Suppose that $N=I M$ for some weakly primary ideal I of R. Since M is a multiplication module, we have $N=(N: M) M$. Therefore $N=I M=(N: M) M$ and so $I=(N: M)$, because by [22, Corollary to Theorem 9] M is cancellation.

Theorem 3.10. Let R be a um-ring and M be an R-module.

1. If F is a flat R-module and N is a weakly classical primary submodule of M such that $F \otimes N \neq F \otimes M$, then $F \otimes N$ is a weakly classical primary submodule of $F \otimes M$.
2. Suppose that F is a faithfully flat R-module. Then N is a weakly classical primary submodule of M if and only if $F \otimes N$ is a weakly classical primary submodule of $F \otimes M$.

Proof. (1) Let $a, b \in R$. Then by Theorem 3.4, either $\left(N:_{M} a b\right)=\left(0:_{M} a b\right)$ or $\left(N:_{M} a b\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a b\right)=\left(N:_{M} b^{t}\right)$ for some $t \geq 1$. Assume that $\left(N:_{M} a b\right)=\left(0:_{M} a b\right)$. Then by [5, Lemma 3.2],

$$
\begin{aligned}
\left(F \otimes N:_{F \otimes M} a b\right) & =F \otimes\left(N:_{M} a b\right)=F \otimes\left(0:_{M} a b\right) \\
& =\left(F \otimes 0:_{F \otimes M} a b\right)=\left(0:_{F \otimes M} a b\right) .
\end{aligned}
$$

Now, suppose that $\left(N:_{M} a b\right)=\left(N:_{M} a\right)$. Again by [5, Lemma 3.2],

$$
\begin{aligned}
\left(F \otimes N:_{F \otimes M} a b\right) & =F \otimes\left(N:_{M} a b\right)=F \otimes\left(N:_{M} a\right) \\
& =\left(F \otimes N:_{F \otimes M} a\right)
\end{aligned}
$$

With a similar argument we can show that if $\left(N:_{M} a b\right)=\left(N:_{M} b^{t}\right)$ for some $t \geq 1$, then $\left(F \otimes N:_{F \otimes M} a b\right)=\left(F \otimes N:_{F \otimes M} b^{t}\right)$. Consequently by Theorem 3.4 we deduce that $F \otimes N$ is a weakly classical primary submodule of $F \otimes M$.
(2) Let N be a weakly classical primary submodule of M and assume that $F \otimes N=F \otimes M$. Then $0 \rightarrow F \otimes N \xlongequal{C} F \otimes M \rightarrow 0$ is an exact sequence. Since F is a faithfully flat module, $0 \rightarrow N \stackrel{\smile}{\leftrightharpoons} M \rightarrow 0$ is an exact sequence. So $N=M$, which is a contradiction. So $F \otimes N \neq F \otimes M$. Then $F \otimes N$ is a weakly classical primary submodule by (1). Now for the converse, let $F \otimes N$ be a weakly classical primary submodule of $F \otimes M$. We have $F \otimes N \neq F \otimes M$ and so $N \neq M$. Let $a, b \in R$. Then by Theorem 3.4, $\left(F \otimes N:_{F \otimes M} a b\right)=\left(0:_{F \otimes M} a b\right)$ or $\left(F \otimes N:_{F \otimes M} a b\right)=\left(F \otimes N:_{F \otimes M} a\right)$ or $\left(F \otimes N:_{F \otimes M} a b\right)=\left(F \otimes N:_{F \otimes M} b^{t}\right)$ for some $t \geq 1$. Suppose that $\left(F \otimes N:_{F \otimes M} a b\right)=\left(0:_{F \otimes M} a b\right)$. Hence

$$
\begin{aligned}
F \otimes\left(N:_{M} a b\right) & =\left(F \otimes N:_{F \otimes M} a b\right)=\left(0:_{F \otimes M} a b\right) \\
& =\left(F \otimes 0:_{F \otimes M} a b\right)=F \otimes\left(0:_{M} a b\right)
\end{aligned}
$$

Thus $0 \rightarrow F \otimes\left(0:_{M} a b\right) \xlongequal{\subseteq} F \otimes\left(N:_{M} a b\right) \rightarrow 0$ is an exact sequence. Since F is a faithfully flat module, $0 \rightarrow\left(0:_{M} a b\right) \stackrel{\subsetneq}{\leftrightharpoons}\left(N:_{M} a b\right) \rightarrow 0$ is an exact sequence which implies that $\left(N:_{M} a b\right)=\left(0:_{M} a b\right)$. With a similar argument we can deduce that if $\left(F \otimes N:_{F \otimes M} a b\right)=\left(F \otimes N:_{F \otimes M} a\right)$ or $\left(F \otimes N:_{F \otimes M} a b\right)=$ $\left(F \otimes N:_{F \otimes M} b^{t}\right)$ for some $t \geq 1$, then $\left(N:_{M} a b\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a b\right)=$ $\left(N:_{M} b^{t}\right)$. Consequently N is a weakly classical primary submodule of M by Theorem 3.4.

Corollary 3.11. Let R be a um-ring, M be an R-module and X be an indeterminate. If N is a weakly classical primary submodule of M, then $N[X]$ is a weakly classical primary submodule of $M[X]$.

Proof. Assume that N is a weakly classical primary submodule of M. Notice that $R[X]$ is a flat R-module. Then by Theorem 3.10, $R[X] \otimes N \simeq N[X]$ is a weakly classical primary submodule of $R[X] \otimes M \simeq M[X]$.

4 Weakly classical primary submodules in direct products of modules

Let R be a ring and M_{1}, M_{2} be two R-modules. Then $M=M_{1} \times M_{2}$ is an R module, and for R-submodules N_{1} of M_{1} and N_{2} of $M_{2}, N=N_{1} \times N_{2}$ is an R-submodule of M.

Theorem 4.1. Let M_{1}, M_{2} be R-modules and N_{1} be a proper submodule of M_{1}. Then the following conditions are equivalent:

1. $N=N_{1} \times M_{2}$ is a weakly classical primary submodule of $M=M_{1} \times M_{2}$;
2. N_{1} is a weakly classical primary submodule of M_{1} and for each $r, s \in R$ and $m_{1} \in M_{1}$ we have

$$
r s m_{1}=0, r m_{1} \notin N_{1}, s \notin \sqrt{\left(N_{1}: m_{1}\right)} \Rightarrow r s \in \operatorname{Ann}_{R}\left(M_{2}\right) .
$$

Proof. (1) \Rightarrow (2) Suppose that $N=N_{1} \times M_{2}$ is a weakly classical primary submodule of $M=M_{1} \times M_{2}$. Let $r, s \in R$ and $m_{1} \in M_{1}$ be such that $0 \neq r s m_{1} \in N_{1}$. Then $(0,0) \neq r s\left(m_{1}, 0\right) \in N$. Thus $r\left(m_{1}, 0\right) \in N$ or $s^{t}\left(m_{1}, 0\right) \in N$ for some $t \geq 1$, and so $r m_{1} \in N_{1}$ or $s^{t} m_{1} \in N_{1}$ for some $t \geq 1$. Consequently N_{1} is a weakly classical primary submodule of M_{1}. Now, assume that $r s m_{1}=0$ for some $r, s \in R$ and $m_{1} \in M_{1}$ such that $r m_{1} \notin N_{1}$ and $s \notin \sqrt{\left(N_{1}: m_{1}\right)}$. Suppose that $r s \notin \operatorname{Ann}_{R}\left(M_{2}\right)$. Therefore there exists $m_{2} \in M_{2}$ such that $r s m_{2} \neq 0$. Hence $(0,0) \neq r s\left(m_{1}, m_{2}\right) \in N$, and so $r\left(m_{1}, m_{2}\right) \in N$ or $s^{t}\left(m_{1}, m_{2}\right) \in N$ for some $t \geq 1$. Thus $r m_{1} \in N_{1}$ or $s^{t} m_{1} \in N_{1}$ for some $t \geq 1$, which is a contradiction. Consequently $r s \in \operatorname{Ann}_{R}\left(M_{2}\right)$.
(2) \Rightarrow (1) Let $r, s \in R$ and $\left(m_{1}, m_{2}\right) \in M=M_{1} \times M_{2}$ be such that $(0,0) \neq r s\left(m_{1}, m_{2}\right)$ $\in N=N_{1} \times M_{2}$. First assume that $r s m_{1} \neq 0$. Then by part (2), $r m_{1} \in N_{1}$ or $s^{t} m_{1} \in N_{1}$ for some $t \geq 1$. So $r\left(m_{1}, m_{2}\right) \in N$ or $s^{t}\left(m_{1}, m_{2}\right) \in N$, and thus we are done. If $r s m_{1}=0$, then $r s m_{2} \neq 0$. Therefore $r s \notin \operatorname{Ann}_{R}\left(M_{2}\right)$, and so part (2) implies that either $r m_{1} \in N_{1}$ or $s^{t} m_{1} \in N_{1}$ for some $t \geq 1$. Again we have that $r\left(m_{1}, m_{2}\right) \in N$ or $s^{t}\left(m_{1}, m_{2}\right) \in N$ which shows N is a weakly classical primary submodule of M.

The following two propositions have easy verifications.
Proposition 4.2. Let M_{1}, M_{2} be R-modules and N_{1} be a proper submodule of M_{1}. Then $N=N_{1} \times M_{2}$ is a classical primary submodule of $M=M_{1} \times M_{2}$ if and only if N_{1} is a classical primary submodule of M_{1}.

Proposition 4.3. Let M_{1}, M_{2} be R-modules and N_{1}, N_{2} be proper submodules of M_{1}, M_{2}, respectively. If $N=N_{1} \times N_{2}$ is a weakly classical primary (resp. classical primary) submodule of $M=M_{1} \times M_{2}$, then N_{1} is a weakly classical primary (resp. classical primary) submodule of M_{1} and N_{2} is a weakly classical primary (resp. classical primary) submodule of M_{2}.

Example 4.4. Let $R=\mathbb{Z}, M=\mathbb{Z} \times \mathbb{Z}$ and $N=p \mathbb{Z} \times q \mathbb{Z}$ where p, q are two distinct prime integers. Since $p \mathbb{Z}, q \mathbb{Z}$ are prime ideals of \mathbb{Z}, then $p \mathbb{Z}, q \mathbb{Z}$ are weakly classical primary \mathbb{Z}-submodules of \mathbb{Z}. Notice that $(0,0) \neq p q(1,1)=$ $(p q, p q) \in N$, but $p(1,1) \notin N$ and $q^{t}(1,1) \notin N$ for every $t \geq 1$. So N is not a weakly classical primary submodule of M. This example shows that the converse of Proposition 4.3 is not true.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is in the form of $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}.

Theorem 4.5. Let $R=R_{1} \times R_{2}$ be a decomposable ring and $M=M_{1} \times M_{2}$ be an R module where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Suppose that $N=N_{1} \times M_{2}$ is a proper submodule of M. Then the following conditions are equivalent:

1. N_{1} is a classical primary submodule of M_{1};
2. N is a classical primary submodule of M;
3. N is a weakly classical primary submodule of M.

Proof. (1) \Rightarrow (2) Let $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\left(m_{1}, m_{2}\right) \in N$ for some $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in R$ and $\left(m_{1}, m_{2}\right) \in M$. Then $a_{1} b_{1} m_{1} \in N_{1}$ so either $a_{1} m_{1} \in N_{1}$ or $b_{1}^{t} m_{1} \in N_{1}$ for some $t \geq 1$, which shows that either $\left(a_{1}, a_{2}\right)\left(m_{1}, m_{2}\right) \in N$ or $\left(b_{1}, b_{2}\right)^{t}\left(m_{1}, m_{2}\right) \in N$. Consequently N is a classical primary submodule of M.
$(2) \Rightarrow(3)$ It is clear that every classical primary submodule is a weakly classical primary submodule.
(3) \Rightarrow (1) Let $a b m \in N_{1}$ for some $a, b \in R_{1}$ and $m \in M_{1}$. We may assume that $0 \neq m^{\prime} \in M_{2}$. Therefore $0 \neq(a, 1)(b, 1)\left(m, m^{\prime}\right) \in N$. So either $(a, 1)\left(m, m^{\prime}\right) \in N$ or $(b, 1)^{t}\left(m, m^{\prime}\right) \in N$ for some $t \geq 1$. Therefore $a m \in N_{1}$ or $b^{t} m \in N_{1}$. Hence N_{1} is a classical primary submodule of M_{1}.

Proposition 4.6. Let $R=R_{1} \times R_{2}$ be a decomposable ring and $M=M_{1} \times M_{2}$ be an R-module where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Suppose that N_{1}, N_{2} are proper submodules of M_{1}, M_{2}, respectively. If $N=N_{1} \times N_{2}$ is a weakly classical primary submodule of M, then N_{1} is a weakly prime submodule of M_{1} and N_{2} is a weakly prime submodule of M_{2}.

Proof. Suppose that $N=N_{1} \times N_{2}$ is a weakly classical primary submodule of M. By hypothesis, there exist $x \in M_{1} \backslash N_{1}$ and $y \in M_{2} \backslash N_{2}$. First, we show that N_{1} is a weakly prime submodule of M_{1}. Let $0 \neq a m_{1} \in N_{1}$ for some $a \in R_{1}$ and $m_{1} \in M_{1}$. Then $0 \neq(1,0)(a, 1)\left(m_{1}, y\right) \in N_{1} \times N_{2}=N$. Notice that if $(a, 1)\left(m_{1}, y\right) \in N_{1} \times N_{2}=N$, then $y \in N_{2}$ which is a contradiction. So we get $(1,0)^{t}\left(m_{1}, y\right) \in N_{1} \times N_{2}=N$ for some $t \geq 1$. Thus $m_{1} \in N_{1}$. Hence N_{1} is a weakly prime submodule of M_{1}. A similar argument shows that N_{2} is a weakly prime submodule of M_{2}.

The following example shows that the converse of Proposition 4.6 is not true in general.

Example 4.7. Let $R=M=\mathbb{Z} \times \mathbb{Z}$ and $N=p \mathbb{Z} \times q \mathbb{Z}$ where p, q are two distinct prime integers. Since $p \mathbb{Z}, q \mathbb{Z}$ are prime ideals of \mathbb{Z}, then $p \mathbb{Z}, q \mathbb{Z}$ are weakly primary (weakly classical primary) \mathbb{Z}-submodules of \mathbb{Z}. Notice that $(0,0) \neq(p, 1)(1, q)(1,1)=(p, q) \in N$, but $(p, 1)(1,1) \notin N$ and $(1, q)^{t}(1,1) \notin N$ for every $t \geq 1$. So N is not a weakly classical primary submodule of M.

Theorem 4.8. Let $R=R_{1} \times R_{2} \times R_{3}$ be a decomposable ring and $M=M_{1} \times M_{2} \times M_{3}$ be an R-module where M_{i} is an R_{i}-module, for $i=1,2,3$. If N is a weakly classical primary submodule of M, then either $N=\{(0,0,0)\}$ or N is a classical primary submodule of M.

Proof. Since $\{(0,0,0)\}$ is a weakly classical primary submodule in any module, we may assume that $N=N_{1} \times N_{2} \times N_{3} \neq\{(0,0,0)\}$. We assume that N is not a classical primary submodule of M and reach a contradiction. Without loss of generality we may assume that $N_{1} \neq 0$ and so there is $0 \neq n \in N_{1}$. We claim that $N_{2}=M_{2}$ or $N_{3}=M_{3}$. Suppose that there are $m_{2} \in M_{2} \backslash N_{2}$ and $m_{3} \in M_{3} \backslash N_{3}$. Get $r \in\left(N_{2}:_{R_{2}} M_{2}\right)$ and $s \in\left(N_{3}:_{R_{3}} M_{3}\right)$. Since

$$
(0,0,0) \neq(1, r, 1)(1,1, s)\left(n, m_{2}, m_{3}\right)=\left(n, r m_{2}, s m_{3}\right) \in N,
$$

then $(1, r, 1)\left(n, m_{2}, m_{3}\right)=\left(n, r m_{2}, m_{3}\right) \in N$ or $(1,1, s)^{t}\left(n, m_{2}, m_{3}\right)=\left(n, m_{2}, s^{t} m_{3}\right)$ $\in N$ for some $t \geq 1$. Therefore either $m_{3} \in N_{3}$ or $m_{2} \in N_{2}$, a contradiction. Hence $N=N_{1} \times M_{2} \times N_{3}$ or $N=N_{1} \times N_{2} \times M_{3}$. Let $N=N_{1} \times M_{2} \times N_{3}$. Then $(0,1,0) \in\left(N \quad:_{R} \quad M\right)$. Clearly $(0,1,0)^{2} N \neq\{(0,0,0)\}$. So $\left(N:_{R} M\right)^{2} N \neq\{(0,0,0)\}$ which is a contradiction, by Theorem 2.19. In the case when $N=N_{1} \times N_{2} \times M_{3}$ we have that $(0,0,1) \in\left(N:_{R} M\right)$ and similar to the previous case we reach a contradiction.

References

[1] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, 36 (2008), 4620-4642.
[2] R. Ameri, On the prime submodules of multiplication modules, Inter. J. Math. Math. Sci., 27 (2003), 1715-1724.
[3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
[4] A. Azizi, On prime and weakly prime submodules, Vietnam J. Math., 36(3) (2008) 315-325.
[5] A. Azizi, Weakly prime submodules and prime submodules, Glasgow Math. J., 48 (2006) 343-346.
[6] M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl., 8(3) (2009) 351-362.
[7] M. Behboodi, A generalization of Bears lower nilradical for modules, J. Algebra Appl., 6 (2) (2007) 337-353.
[8] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar., 113(3) (2006) 239-250.
[9] M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math., 32(2) (2004) 185-195.
[10] M. Behboodi and S. H. Shojaee, On chains of classical prime submodules and dimension theory of modules, Bull. Iranian Math. Soc., 36(1) (2010) 149-166.
[11] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978) 156-181.
[12] S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J., 12(3) (2005), 423-429.
[13] S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38(3) (2007), 247-252.
[14] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.
[15] Ch. Gottlieb, On finite unions of submodules, Comm. Algebra, 43 (2015), 847-855.
[16] C.-P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
[17] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canadian Math. Bull., 29(1) (1986), 37-39.
[18] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
[19] H. Mostafanasab, U. Tekir and K. H. Oral, Weakly classical prime submodules, submitted.
[20] P. Quartararo and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc., 52 (1975), 91-96.
[21] R.Y. Sharp, Steps in commutative algebra, Second edition, Cambridge University Press, Cambridge, 2000.
[22] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50 (1988), 223-235.

Department of Mathematics and Applications
University of Mohaghegh Ardabili
P. O. Box 179, Ardabil, Iran
email:h.mostafanasab@uma.ac.ir, h.mostafanasab@gmail.com

[^0]: Received by the editors in February 2015 - In revised form in August 2015.
 Communicated by S. Caenepeel.
 2010 Mathematics Subject Classification : Primary: 13A15; secondary: 13C99; 13 F05.
 Key words and phrases : Weakly primary submodule, Classical primary submodule, Weakly classical primary submodule.

