On ϕ -ergodic property of Banach modules

Mehdi Nemati

Abstract

Let \mathcal{A} be a Banach algebra and let ϕ be a non-zero character on \mathcal{A} . We introduce the notion of ϕ -ergodic property for a Banach right \mathcal{A} -module X. This concept considerably generalizes the existence of ϕ -means of norm one on \mathcal{A}^* . We also show that the ϕ -ergodic property of X is related to some other properties such as a Hahn-Banach type extension property and the existence of ϕ -means of norm one on a certain subspace of \mathcal{A}^* . Finally, we give some characterizations for ϕ -amenability of a Banach algebra in terms of its closed ideals.

1 Introduction

Let \mathcal{A} be Banach algebra and let $\phi : \mathcal{A} \to \mathbb{C}$ be a character, i.e., a non-zero homomorphism of \mathcal{A} . Recently, Kaniuth, Lau and Pym [4, 5] introduced and investigated a notion of amenability for Banach algebras called ϕ -amenability. Independently, Monfared introduced and studied in [10] the notion of character amenability for Banach algebras. Let $\Delta(\mathcal{A})$ be the set of all non-zero characters, bounded multiplicative linear functionals on Banach algebra \mathcal{A} and let $\phi \in \Delta(\mathcal{A})$. Following [5], \mathcal{A} is called ϕ -amenable if there exists a ϕ -mean on \mathcal{A}^* , that is a functional $m \in \mathcal{A}^{**}$ such that

$$m(\phi) = 1$$
, $m(f \cdot a) = \phi(a)m(f)$ $(f \in \mathcal{A}^*, a \in \mathcal{A})$.

Moreover, A is called *character amenable* if it has a bounded right approximate identity and it is ϕ -amenable for all $\phi \in \Delta(A)$. There are many characterizations

Communicated by F. Bastin.

Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 655–668

Received by the editors in December 2014 - In revised form in May 2015.

²⁰¹⁰ Mathematics Subject Classification : Primary 46H20, 46H25; Secondary 16E40.

Key words and phrases : Banach module, ϕ -ergodic property, ϕ -amenability, Lau algebra, ϕ -mean.

for ϕ -amenability of Banach algebras. For example, Nasr-Isfahani and the author in [11] characterized ϕ -amenability in terms of ϕ -ergodic anti representations. Recently, Sahami and Pourabbas in [13] has introduced and studied ϕ -homological concepts of Banach algebras which are closely related to ϕ -amenability.

Note that the notion of ϕ -amenability is a generalization of left amenability for Lau algebras A studied in [7]. In fact, ϕ -amenability coincides with left amenability in the case where the character ϕ is taken to be the identity of the von Neumann algebra A^* .

Examples of Lau algebras include the predual algebras of a Hopf von Neumann algebra, in particular the class of quantum group algebras $L^1(\mathbb{G})$ and the Fourier-Stieltjes algebra B(G) of a topological group G; see [7, 6]. They also include the measure algebra M(S) of a locally compact semigroup S. Moreover, the hypergroup algebra $L^1(H)$ and the measure algebra M(H) of a locally compact hypergroup H with a left Haar measure are Lau algebras.

In this work we aim to introduce and study a notion of amenability for Banach modules. We continue and generalize our investigation [12] as ϕ -ergodic property with respect to a character ϕ on A. We also generalize major results in [5]. The article is organized as follows: After introducing some notations, we define the concept of ϕ -ergodic property for a Banach right A-module X which is a generalization of ϕ -amenability for Banach algebras with a ϕ -mean of norm one. We show (in Corollary 2.11) that the ϕ -ergodic property of X is closely related to the existence of a ϕ -mean of norm one, on topologically left introverted subspace $\mathcal{L}_X(A)$ of A^* . We shall prove the ϕ -ergodic property of X is also related to some other properties such as a Hahn-Banach type extension property (see Theorem 2.18). Finally we characterize ϕ -amenability of a Banach algebra, with a ϕ -mean of norm one, in terms of its ideals.

2 ϕ -ergodic property

For a normed space *X*, the dual space of *X* is denoted by X^* and the action of $\xi \in X^*$ at $x \in X$ is denoted either by $\xi(x)$ or by $\langle \xi, x \rangle$. Let \mathcal{A} be a Banach algebra and let *X* be a Banach left, right or two-sided \mathcal{A} -module. Then X^* is respectively a Banach right, left or two-sided \mathcal{A} -module with the corresponding module action(s) defined naturally by

$$\langle \xi \cdot a, x \rangle = \langle \xi, a \cdot x \rangle, \quad \langle a \cdot \xi, x \rangle = \langle \xi, x \cdot a \rangle \quad (\xi \in X^*, x \in X, a \in \mathcal{A}).$$

For each $\phi \in \Delta(\mathcal{A})$ define the semigroup

$$S_{\phi} = \{ a \in \mathcal{A} : \phi(a) = 1 \}.$$

Let $N(\mathcal{A}^*, \phi)$ denote the set of all $f \in \mathcal{A}^*$ with the following property: for each $\delta > 0$, there exists a sequence (a_n) in S_{ϕ} such that $||a_n|| \leq 1 + \delta$ for all n and $||f \cdot a_n|| \to 0$.

We shall use the following characterization of ϕ -amenable Banach algebras involving the set $N(\mathcal{A}^*, \phi)$ to extend the notion of ϕ -amenability over Banach modules.

Theorem 2.1. [5, Theorem 2.8] Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then the following two conditions are equivalent.

(i) There exists a ϕ -mean with ||m|| = 1.

(ii) $N(\mathcal{A}^*, \phi)$ is a subspace of \mathcal{A}^* and $f \cdot a - f \in N(\mathcal{A}^*, \phi)$ for all $f \in \mathcal{A}^*$ and all $a \in S_{\phi}$.

Similarly, for a Banach right A-module X, we denote by $N(X, \phi)$ the set of all $x \in X$ with the following property: for each $\delta > 0$, there exists a sequence (a_n) in S_{ϕ} such that $||a_n|| \leq 1 + \delta$ for all n and $||x \cdot a_n|| \to 0$.

Lemma 2.2. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module. Then the following statements hold.

(i) $N(X, \phi)$ is closed in X and closed under scaler multiplication.

(ii) If A is commutative, then $N(X, \phi)$ is a closed subspace of X.

(iii) $N(X,\phi) \subseteq \{x - x \cdot a : x \in X, a \in S_{\phi}\}^{-\|\cdot\|}$

Proof. (i). Let $x \in \overline{N(X,\phi)}^{\|\cdot\|}$. Then there is a sequence $(x_n) \subseteq N(X,\phi)$ such that $x_n \to x$. Since $x_n \in N(X,\phi)$, for each *n* there exists $a_n \in S_{\phi}$ such that $\|a_n\| \leq 1 + \frac{1}{n}$ and $\|x_n \cdot a_n\| \leq \frac{1}{n}$. Thus,

$$||x \cdot a_n|| \le ||x \cdot a_n - x_n \cdot a_n|| + ||x_n \cdot a_n|| \le ||x - x_n|| ||a_n|| + \frac{1}{n},$$

for all $n \in \mathbb{N}$ which implies that $x \in N(X, \phi)$.

(ii). It suffice to show that $N(X, \phi)$ is closed under addition. Suppose that $x_1, x_2 \in N(X, \phi)$ and $\delta > 0$. Then there are $a_j \in S_{\phi}, j = 1, 2$, such that $||a_j|| \le 1 + \delta$ and $||x_j \cdot a_j|| \le \delta$. Since A is commutative it follows that

$$\|(x_1 + x_2) \cdot (a_1 a_2)\| \le \|x_1 \cdot a_1\| \|a_2\| + \|x_2 \cdot a_2\| \|a_1\| \le 2\delta(1+\delta).$$

Hence, $x_1 + x_2 \in N(X, \phi)$.

(iii). Let

$$Y := \{x - x \cdot a : x \in X, a \in S_{\phi}\}$$

and fix $x \in N(X)$. Then for each $\delta > 0$, there exists a sequence (a_n) in S_{ϕ} such that $||a_n|| \le 1 + \delta$ for all n and $||x \cdot a_n|| \to 0$. Hence,

$$||x - (x - x \cdot a_n)|| \to 0.$$

whence $N(X) \subseteq Y^{-\|\cdot\|}$.

Let *X* be a Banach right *A*-module. For subsets $Y \subseteq X$ and $F \subseteq A$ let

$$YF = \{y \cdot b : y \in Y, b \in F\}.$$

Then we say that *Y* is *F*-invariant if $YF \subseteq Y$.

Lemma 2.3. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module. Then $N(X, \phi)$ is closed under addition if it is an S_{ϕ} -invariant subset of X.

Proof. Let $x_1, x_2 \in N(X, \phi)$ and $\delta > 0$. Then there are $a_j \in S_{\phi}$, j = 1, 2, such that $||a_j|| \le 1 + \delta$, $||x_1 \cdot a_1|| \le \delta$ and $||(x_2 \cdot a_1) \cdot a_2|| \le \delta$. Thus,

$$|(x_1 + x_2) \cdot (a_1 a_2)|| \le ||x_1 \cdot a_1|| ||a_2|| + ||x_2 \cdot a_1 a_2|| \le \delta(2 + \delta).$$

Therefore, $x_1 + x_2 \in N(X)$.

Lemma 2.4. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module. Then $N(X, \phi)$ is an S_{ϕ} -invariant subset of X if it is a subspace of X and $x - x \cdot a \in N(X, \phi)$ for all $x \in X$ and $a \in S_{\phi}$.

Proof. Let $x \in N(X, \phi)$ and $a \in S_{\phi}$. Then, $x \cdot a = x - (x - x \cdot a) \in N(X, \phi)$ by assumption.

Definition 2.5. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module. We say that X has *the* ϕ -*ergodic property* if there exists a net (u_{α}) in S_{ϕ} such that $||u_{\alpha}|| \to 1$ and $||(x - x \cdot a) \cdot u_{\alpha}|| \to 0$ for all $x \in X$ and $a \in S_{\phi}$.

The next theorem is one of the main results of the paper which is a characterization of ϕ -ergodic property for Banach modules, using the set $N(X, \phi)$. Note that the following theorem generalizes [5, Theorem 2.8].

Theorem 2.6. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module. Then the following statements are equivalent.

(i) There exists a net (u_{β}) in S_{ϕ} such that $||u_{\beta}|| \to 1$ and $(x - x \cdot a) \cdot u_{\beta} \to 0$ in the weak topology of X for all $x \in X$ and $a \in S_{\phi}$.

(ii) $N(X, \phi)$ is a subspace of X and $x - x \cdot a \in N(X, \phi)$ for all $x \in X$ and $a \in S_{\phi}$.

(iii) *X* has the ϕ -ergodic property.

Proof. (i) \Rightarrow (ii). Fix $x \in N(X, \phi)$ and $a \in S_{\phi}$. Given $\delta > 0$. Then there exists $a_1 \in S_{\phi}$ such that $||a_1|| \le 1 + \delta$ and $||x \cdot a_1|| \le \delta$. By assumption there exists a net (u_{β}) in S_{ϕ} such that $||u_{\beta}|| \to 1$ and (0, 0, 0) is in weak closure of the set

$$C := \{ ((x - x \cdot a) \cdot u_{\beta}, (x - x \cdot a_1) \cdot u_{\beta}, (x \cdot a - x \cdot aa_1) \cdot u_{\beta}) \}.$$

Therefore, (0,0,0) is in the norm closure of the convex hull of *C*. Since the set $\{a_{\beta}\}$ being contained in the closed hyperplane S_{ϕ} , we easily can find $a_2 \in S_{\phi}$ such that $||a_2|| \leq 1 + \delta$ and

$$\|(x-x\cdot a)\cdot a_2\| \leq \delta, \quad \|(x-x\cdot a_1)\cdot a_2\| \leq \delta, \quad \|(x\cdot a-x\cdot aa_1)\cdot a_2\| \leq \delta.$$

Thus,

$$\begin{aligned} \|(x \cdot a) \cdot a_1 a_2\| &\leq \|(x \cdot a - x \cdot a a_1) \cdot a_2\| + \|x \cdot a a_2 - x \cdot a_2\| \\ &+ \|x \cdot a_2 - x \cdot a_1 a_2\| + \|x \cdot a_1 a_2\| \\ &\leq \delta(4 + \delta). \end{aligned}$$

Since $\phi(a_1a_2) = 1$, $||a_1a_2|| \leq (1 + \delta)^2$ and $\delta > 0$ is arbitrary, it follows that $x \cdot a \in N(X, \phi)$. Thus, $N(X, \phi)$ is a closed subspace of X by Lemma 2.3. Similarly, we can prove that $x - x \cdot a \in N(X, \phi)$ for all $x \in X$ and $a \in S_{\phi}$ which completes the proof.

(ii) \Rightarrow (iii). We claim that for every finite subsets *F* and *Y* of *S*_{ϕ} and *X*, respectively and $\varepsilon > 0$, there exists $u_{F,Y,\varepsilon} \in S_{\phi}$ such that $||u_{F,Y,\varepsilon}|| \le 1 + \varepsilon$ and

$$\|(x-x\cdot a)\cdot u_{F,Y,\varepsilon}\|\leq \varepsilon$$

for all $x \in Y$ and $a \in F$. Let $Y = \{x_1, ..., x_k\}$ and $F = \{a_1...a_m\}$, say. Fix $a \in F$ and choose $\delta > 0$ such that $(1 + \delta)^{m+k+1} \le 1 + \varepsilon$. By assumption, there exists $v_1 \in S_{\phi}$ such that $||v_1|| \le 1 + \delta$ and

$$\|(x_1 \cdot a - x_1) \cdot v_1\| \leq \delta.$$

Since $(x_2 - x_2 \cdot a) \cdot v_1 \in N(X, \phi)$ by Lemma 2.4, again by (ii) there exists $v_2 \in S_{\phi}$ such that $||v_2|| \le 1 + \delta$ and

$$\|(x_2 \cdot a - x_2) \cdot v_1 v_2\| \leq \delta.$$

For j = 1, 2 we have $v_j \in S_{\phi}$, $||v_j|| \le 1 + \delta$ and

$$\|(x_j - x_j \cdot a) \cdot v_1 v_2\| \le \delta(1 + \delta).$$

By induction, there exist $v_i \in S_{\phi}$, $1 \le j \le k$, such that $||v_i|| \le 1 + \delta$ and

$$\|(x_j - x_j \cdot a) \cdot v_1 \dots v_j\| \le \delta (1 + \delta)^{j-1} \le \varepsilon.$$

Thus, if we put $v_{Y,\varepsilon} = v_1...v_k$, then we have $v_{Y,\varepsilon} \in S_{\phi}$, $||v_{Y,\varepsilon}|| \le 1 + \varepsilon$ and

$$\|(x - x \cdot a) \cdot v_{Y,\varepsilon}\| \le \varepsilon \qquad (*)$$

for all $x \in Y$. Now, by (*), there exists $u_1 \in S_{\phi}$ such that $||u_1|| \leq 1 + \delta$ and

$$\|(x-x\cdot a_1)\cdot u_1\|\leq \delta$$

for all $x \in Y$. By assumption $(x - x \cdot a_2) \cdot u_1 \in N(X, \phi)$ for all $x \in Y$. Again by (ii) and using methods similar to those employed in the proof of (*) we can find $u_2 \in S_{\phi}$ such that $||u_2|| \leq 1 + \delta$ and

$$\|(x-x\cdot a_2)u_1u_2\|\leq \delta$$

for all $x \in Y$. Proceeding inductively, we see that there exist u_i , $1 \le i \le m$, such that $||u_i|| \le 1 + \delta$ and

$$\|(x - x \cdot a_i) \cdot u_1 \dots u_i\| \le \delta (1 + \delta)^{i-1} \le \varepsilon$$

for all $y \in Y$. Thus, if we set $u_{F,Y,\varepsilon} = u_1...u_m$, then we have $u_{F,Y,\varepsilon} \in S_{\phi}$, $||u_{F,Y,\varepsilon}|| \le 1 + \varepsilon$ and

$$\|(x-x\cdot a)\cdot u_{F,Y,\varepsilon}\|\leq \varepsilon$$

for all $x \in Y$ and $a \in F$.

Now, let Γ be the set of all $\gamma := (F, Y, \varepsilon)$ for which $\varepsilon > 0$, $F \subseteq S_{\phi}$ and $Y \subseteq X$ are finite sets. Then Γ is a directed set in the obvious manner and (u_{γ}) is the required net.

The implication (iii) \Rightarrow (i) is trivial.

Corollary 2.7. Let A be a commutative Banach algebra, $\phi \in \Delta(A)$ and let X be a Banach right A-module. Then X has the ϕ -ergodic property if and only if $x - x \cdot a \in N(X, \phi)$ for all $x \in X$ and $a \in S_{\phi}$.

Corollary 2.8. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$. Then \mathcal{A} is ϕ -amenable with a ϕ -mean of norm one if and only if ker $\phi = N(\mathcal{A}, \phi)$.

Proof. Suppose that \mathcal{A} has a ϕ -mean of norm one. Then there is a net $(u_{\alpha}) \subseteq S_{\phi}$ such that $||u_{\alpha}|| \to 1$ and

$$||au_{\alpha} - \phi(a)u_{\alpha}|| \to 0$$

for all $a \in A$. In particular, $||au_{\alpha}|| \to 0$ for all $a \in \ker \phi$. It follows that $\ker \phi \subseteq N(\mathcal{A}, \phi)$. The reverse inclusion follows from this fact that

$$N(\mathcal{A},\phi) \subseteq \{b-ba: b \in \mathcal{A}, a \in S_{\phi}\}^{-\|\cdot\|} \subseteq \ker \phi.$$

Conversely, first note that ker ϕ is a closed ideal in \mathcal{A} and $b - ba \in \ker \phi$ for all $b \in \mathcal{A}$ and $a \in S_{\phi}$ which implies that \mathcal{A} has the ϕ -ergodic property as a Banach right \mathcal{A} -module by Theorem 2.6. Thus, there is a net $(u_{\alpha}) \subseteq S_{\phi}$ such that $||u_{\alpha}|| \to 1$ and

$$||(b-ba)u_{\alpha}|| \rightarrow 0$$

for all $b \in A$ and $a \in S_{\phi}$. By assumption ker $\phi = \{b - ba : b \in A, a \in S_{\phi}\}^{-\|\cdot\|}$ and therefore $\|bu_{\alpha}\| \to 0$ for all $b \in \ker \phi$. Thus A has a ϕ -mean of norm one by [5, Theorem 2.4(iv)].

Given a Banach algebra \mathcal{A} with $\phi \in \Delta(\mathcal{A})$, for each $f \in \mathcal{A}^*$ and $a \in \mathcal{A}$ define elements $f \cdot a$ of \mathcal{A}^* by $\langle f \cdot a, b \rangle = \langle f, ab \rangle$ for all $b \in \mathcal{A}$. We recall that a closed subspace X of \mathcal{A}^* is *left invariant* if $X \cdot \mathcal{A} \subseteq X$. Note that a closed left invariant subspace of \mathcal{A}^* is thus a Banach right \mathcal{A} -module. Suppose that X is a left invariant subspace of \mathcal{A}^* . Then $m \in \mathcal{A}^{**}$ is called a ϕ -mean on X if

$$m(\phi) = 1, \quad m(f \cdot a) = \phi(a)m(f) \quad (f \in X, a \in \mathcal{A}).$$

Let $X \subseteq A^*$ be a left invariant subspace. For each $m \in X^*$ and $f \in X$ define $m \cdot f \in A^*$ by $\langle m \cdot f, a \rangle = \langle m, f \cdot a \rangle$ for all $a \in A$. The subspace X is called *topologically left introverted* if $X^* \cdot X \subseteq X$. Define the Arens product \odot on the topological left introverted subspace X by

$$\langle m \odot n, f \rangle = \langle m, n \cdot f \rangle$$

for all $m, n \in X^*$ and $f \in X$. This product makes X^* into a Banach algebra.

Corollary 2.9. Let A be a Banach algebra with $\phi \in \Delta(A)$ and let X be a closed topological left introverted subspace of A^* . Then X has the ϕ -ergodic property if and only if there is a ϕ -mean of norm one on X.

Proof. Let *X* has the ϕ -ergodic property. Then $N(X, \phi)$ is a closed subspace of \mathcal{A}^* and $f - f \cdot a \in N(X, \phi)$ for all $f \in X$ and $a \in S_{\phi}$. Since $\phi \notin N(X, \phi)$ and $\|\phi\| = 1$, by the Hahn-Banach theorem there exists $m \in \mathcal{A}^*$ such that m = 0 on $N(X, \phi)$

and $||m|| = m(\phi) = 1$. Thus $m(f \cdot a) = m(f)$ for all $f \in X$ and $a \in S_{\phi}$. Therefore, $m(f \cdot a) = \phi(a)m(f)$ for all $f \in X$ and $a \in A$.

Conversely, let $m \in \mathcal{A}^*$ be a ϕ -mean of norm one on X. Then there exists a net $(u_\beta) \subseteq S_\phi$ such that $||u_\beta|| \to 1$ and $u_\beta \to m$ in the weak* topology of \mathcal{A}^* . For each $n \in X^*$ and $f \in X$ we have

$$\lim_{\beta} \langle n, (f - f \cdot a) \cdot u_{\beta} \rangle = \langle m \odot n, f - f \cdot a \rangle$$
$$= \langle m, (n \cdot f) - (n \cdot f) \cdot a \rangle$$
$$= 0,$$

for all $a \in S_{\phi}$ whence *X* has the ϕ -ergodic property by Theorem 2.6.

Remark 2.10. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$. Suppose that \mathcal{A}^* is equipped with its natural Banach right \mathcal{A} -module action. Then \mathcal{A}^* has the ϕ -ergodic property if and only if \mathcal{A} is ϕ -amenable with a ϕ -mean of norm one by Corollary 2.9.

Suppose that *X* is a Banach right A-module. For each $\xi \in X^*$ and $x \in X$ consider the functional $\xi \circ x \in A^*$ defined by

$$(\xi \circ x)(a) = \xi(x \cdot a)$$

for all $a \in A$. Now, define $\mathcal{L}_X(A)$ to be the closed linear span of the following set

$$\{\xi \circ x : x \in X, \xi \in X^*\}.$$

Then, it is clear that $(\xi \circ x) \cdot a = \xi \circ (x \cdot a)$ for all $a \in A$. Thus, $\mathcal{L}_X(\mathcal{A})$ is a left invariant subspace of \mathcal{A}^* . Also $\mathcal{L}_X(\mathcal{A})$ is a topologically left introverted subspace of \mathcal{A}^* . Indeed, for each $m \in \mathcal{A}^{**}$, $\xi \in X^*$ and $x \in X$ we have $m \cdot (\xi \circ x) = (m \bullet \xi) \circ x$, where $m \bullet \xi \in X^*$ is defined by $m \bullet \xi(x) = m(\xi \circ x)$ for all $x \in X$.

Corollary 2.11. Let A be a Banach algebra with $\phi \in \Delta(A)$ and let X be a Banach right A-module. Then the following statements are equivalent.

(i) *X* has the ϕ -ergodic property.

(ii) $\mathcal{L}_X(\mathcal{A})$ has the ϕ -ergodic property.

(iii) There is a ϕ -mean of norm one on $\mathcal{L}_X(\mathcal{A})$.

Proof. (i) \Rightarrow (ii). Fix $x \in X$, and $\xi \in X^*$ and let $f := \xi \circ x$. Then by assumption there exists a net $(u_{\alpha}) \subseteq S_{\phi}$ such that $||u_{\alpha}|| \to 1$ and $||(x - x \cdot a) \cdot u_{\alpha}|| \to 0$ for all $a \in S_{\phi}$. Thus

$$\|(f-f\cdot a)\cdot u_{\alpha}\|\leq \|\xi\|\|(x-x\cdot a)\cdot u_{\alpha}\|\to 0.$$

This shows that, $\mathcal{L}_X(\mathcal{A})$ has the ϕ -ergodic property.

(ii) \Rightarrow (iii). This follows from Corollary 2.9.

(iii) \Rightarrow (i). Suppose that $m \in \mathcal{A}^*$ is a ϕ -mean of norm one on $\mathcal{L}_X(\mathcal{A})$. Then there exists a net $(u_\alpha) \subseteq S_\phi$ such that $||u_\alpha|| \rightarrow 1$ and $u_\alpha \rightarrow m$ in the weak^{*} topology of \mathcal{A}^* . It follows that $\langle f, au_\alpha - u_\alpha \rangle \rightarrow 0$ for all $a \in S_\phi$ and $f \in \mathcal{L}_X(\mathcal{A})$. In particular, for each $x \in X$ and $\xi \in X^*$ we have

$$\langle \xi, (x-x\cdot a)\cdot u_{\alpha}\rangle = \langle \xi\circ x, au_{\alpha}-u_{\alpha}\rangle \to 0$$

which implies that *X* has the ϕ -ergodic property by Theorem 2.6.

Example 2.12. (1). Let *H* be a locally compact hypergroup with the convolution product *, defined on M(H), the space of bounded Radon measures on *H*. Concerning the general theory of hypergroups we refer the reader to [2]. Suppose that ω is a left Haar measure on *H* and let $x \mapsto \bar{x}$ be an involution of *H*. Thus the convolution product on hypergroup algebra $L^1(H)$ is naturally defined to make it a Banach algebra. Therefore, for $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q}$, we can identify each $L^p(H)$ and $L^q(H)$ with the dual space of the other via

$$\langle f,g\rangle = \int_H f(x)g(x)d\omega(x), \quad (f \in L^p(H), g \in L^q(H)).$$

By [2, Theorem 6.2C] for each $1 the Banach spaces <math>L^p(H)$ is a Banach left $L^1(H)$ -module with respect to the convolution product. Thus $L^q(H)$ the dual space of $L^p(H)$ is a Banach right $L^1(H)$ -module. Define $\mathfrak{e} : L^1(H) \to \mathbb{C}$ by $\mathfrak{e}(f) = \int_H f(x) d\omega(x)$ for all $f \in L^1(H)$. It is routine to show that \mathfrak{e} is the identity of the von Neumann algebra $L^{\infty}(H)$ such that $\mathfrak{e} \in \Delta(L^1(H))$ and induces $L^1(H)$ to a Lau algebra. One may consider amenability of H in terms of the existence of a \mathfrak{e} -mean on $L^{\infty}(H)$ [14].

We claim that $\mathcal{L}_{L^q(H)}(L^1(H), \mathfrak{e}) \subseteq C_0(H)$, where $C_0(H)$ is the Banach space of complex continuous functions on H vanishing at infinity. Indeed, for each $f \in L^p(H), g \in L^q(H)$ and $h \in L^1(H)$ we have

$$\begin{aligned} \langle f \circ g, h \rangle &= \langle g, h * f \rangle &= \int_{H} g(x)(h * f)(x)d\omega(x) \\ &= \int_{H} \int_{H} g(x)h(y)f(\bar{y} * x)d\omega(x)d\omega(y) \\ &= \int_{H} \int_{H} g(x)h(y)\bar{f}(\bar{x} * y)d\omega(x)d\omega(y) \\ &= \langle g * \bar{f}, h \rangle \end{aligned}$$

where $\bar{f}(x) = f(\bar{x})$ for all $x \in H$. But $g * \bar{f} \in C_0(H)$ by [2, Theorem 6.2E and 6.2F] and so $f \circ g \in C_0(H)$. Thus $\mathcal{L}_{L^q(H)}(L^1(H), \mathfrak{e}) \subseteq C_0(H)$. So if H where not compact, then $\mathfrak{e} \notin C_0(H)$. It follows that $L^q(H)$ always has the \mathfrak{e} -ergodic property. On the other hand, since $L^1(H)$ has a bounded approximate identity the \mathfrak{e} -ergodic property of $L^1(H)$ is the same as left amenability of the Lau algebra $L^1(H)$ and this is equivalent to amenability of the hypergroup H [14].

(2). Let \mathcal{A} be a Banach algebra and let $\phi \in \Delta(\mathcal{A})$ with $\|\phi\| = 1$. Suppose that X is a Banach right \mathcal{A} -module with the following module action:

$$x \cdot a = \phi(a)x \quad (a \in \mathcal{A}, x \in X).$$

Clearly, $\mathcal{L}_X(\mathcal{A}) = \{\lambda \phi : \lambda \in \mathbb{C}\}$ which implies that X has the ϕ -ergodic property.

For a Banach right A-module X, let $UC_r(X, A)$ be the *right uniformly continu*ous elements of X, that is the closed linear span of the set XA in X. Then $UC_r(X, A)$ is a closed subspace of X which is also a Banach right A-module.

Corollary 2.13. Let A be a Banach algebra with a bounded left approximate identity, $\phi \in \Delta(A)$ and let X be a Banach right A-module. Then X has the ϕ -ergodic property if and only if $UC_r(X, A)$ has the ϕ -ergodic property.

Proof. Suppose that $UC_r(X, \mathcal{A})$ has the ϕ -ergodic property. Fix $x_i \in X$, $a_i \in S_{\phi}$ and $\delta > 0$ for i = 1, 2. Set $x'_i := x_i - x_i \cdot a_i$ and let $a_0 \in S_{\phi}$ be such that $||a_0|| \le 1 + \delta$. Then by hypothesis, there exists $e \in \mathcal{A}$ such that

$$||a_0 - ea_0|| < \delta/(||x_1|| + ||x_2||)$$
 and $||a_i - ea_i|| < \delta/2||x_i||$.

Thus, we may define y_i by setting $y_i = (x_i \cdot e) - (x_i \cdot e) \cdot a_i$ for i = 1, 2. Now, Lemma 2.4 implies that $(y_1 + y_2) \cdot a_0 \in N(UC_r(X, \mathcal{A}), \phi)$. In fact, there exists $u_0 \in S_{\phi}$ such that $||u_0|| \leq 1 + \delta$ and

$$||(y_1+y_2)\cdot a_0u_0|| < \delta.$$

Thus,

$$\begin{aligned} \|(x_1'+x_2') \cdot a_0 u_0\| &\leq \|[x_1 \cdot (a_1 - ea_1) + x_2 \cdot (a_2 - ea_2)] \cdot a_0 u_0\| \\ &+ \|(y_1 + y_2) \cdot a_0 u_0\| \\ &+ \|(x_1 + x_2) \cdot (ea_0 - a_0) u_0\| \\ &< \delta(1 + \delta)^2 + \delta + \delta(1 + \delta). \end{aligned}$$

Since $a_0u_0 \in S_{\phi}$, $||a_0u_0|| \leq (1+\delta)^2$ and δ is arbitrary, it follows that $x'_1 + x'_2 \in N(X, \phi)$. Therefore, *X* has the ϕ -ergodic property by Theorem 2.6(ii).

Remark 2.14. (1). Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$. Regard $X = \mathcal{A}$ as the Banach right \mathcal{A} -module with the module action being given by the product of \mathcal{A} . Then $\mathcal{L}_X(\mathcal{A}) = UC_r(\mathcal{A}^*, \mathcal{A})$. Thus, X has the ϕ -ergodic property if and only if there is a ϕ -mean of norm one on $UC_r(\mathcal{A}^*, \mathcal{A})$ by Corollary 2.11. On the other hand, in the case where \mathcal{A} has a bounded left approximate identity the existence of a ϕ -mean of norm one on $UC_r(\mathcal{A}^*, \mathcal{A})$ is equivalent to the ϕ -amenability of \mathcal{A} with a ϕ -mean of norm one by Corollary 2.13.

(2). Corollary 2.13 is false when A is not assumed to have a bounded left approximate identity. Indeed, let *X* be a Banach space with dimension more than one and let $\phi \in X^*$ with $\|\phi\| = 1$. Define a product on *X* by

$$ab = \phi(b)a \quad (a, b \in X).$$

With this product *X* is a Banach algebra which we denote it by \mathcal{A} . It is clear that $\Delta(\mathcal{A}) = \{\phi\}$ and \mathcal{A} can not have a left approximate identity. Also

$$UC_r(\mathcal{A}^*, \mathcal{A}) = \{\lambda \phi : \lambda \in \mathbb{C}\}.$$

Trivially, there is a ϕ -mean of norm one on $UC_r(\mathcal{A}^*, \mathcal{A})$ but there is not a ϕ -mean on \mathcal{A}^* .

Corollary 2.15. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$. Then \mathcal{A} is ϕ -amenable with a ϕ -mean of norm one if and only if any Banach right \mathcal{A} -module X has the ϕ -ergodic property.

Proof. Suppose that $m \in A^{**}$ is a ϕ -mean of norm one on A^* and X is a Banach right A-module. Then the restriction of m to $\mathcal{L}_X(A)$ is a ϕ -mean of norm one. Hence, X has the ϕ -ergodic property. The converse follows from Example 2.10.

For a Banach right A-module X, a linear functional $\xi \in X^*$ is called ϕ -invariant if $a \cdot \xi = \phi(a)\xi$ for all $a \in A$.

Definition 2.16. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module. We say that X has *the Hahn-Banach* ϕ -*extension property* if p is a seminorm on X such that $p(x \cdot a) \leq ||a|| p(x)$ for all $a \in \mathcal{A}$ and $x \in X$, and if ξ is a ϕ -invariant linear functional on an \mathcal{A} -invariant subspace Y of X such that $|\xi| \leq p$, then there exists a ϕ -invariant extension $\tilde{\xi}$ of ξ to X such that $|\tilde{\xi}| \leq p$.

Lemma 2.17. Let \mathcal{A} be a Banach algebra, $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module with the ϕ -ergodic property. Then X has the Hahn-Banach ϕ -extension property.

Proof. Let *X*, *Y*, *p* and ξ be as in Definition 2.16. By the Hahn-Banach theorem, there exists $\eta \in X^*$ such that $|\eta| \leq p$ and $\eta(x) = \xi(x)$ for all $x \in Y$. Now, consider $\tilde{\xi} \in X^*$ defined by

$$\widetilde{\xi} = m \bullet \eta,$$

where $m \in \mathcal{A}^{**}$ is a ϕ -mean of norm one on $\mathcal{L}_X(\mathcal{A})$. Obviously, $|\tilde{\xi}| \leq p$ and for each $x \in X$ and $a \in \mathcal{A}$ we have

$$\begin{aligned} \tilde{\xi}(x \cdot a) &= m(\eta \circ (x \cdot a)) \\ &= m((\eta \circ x) \cdot a) \\ &= \phi(a)m(\eta \circ x) \\ &= \phi(a)\tilde{\xi}(x). \end{aligned}$$

Moreover, if $x \in Y$, then

$$(\eta \circ x)(a) = \eta(x \cdot a)$$

= $\xi(x \cdot a)$
= $\phi(a)\xi(x).$

That is, $\eta \circ x = \xi(x)\phi$ which implies that

$$\widetilde{\xi}(x) = m(\eta \circ x) = \xi(x)m(\phi) = \xi(x),$$

as required.

Theorem 2.18. Let \mathcal{A} be a Banach algebra, $\phi \in \Delta(\mathcal{A})$ with $\|\phi\| = 1$ and let X be a Banach right \mathcal{A} -module. Then the following statements are equivalent.

- (i) *X* has the ϕ -ergodic property.
- (ii) $\mathcal{L}_X(\mathcal{A})$ has the Hahn-Banach ϕ -extension property.

Proof. (i) \Rightarrow (ii). This follows from Corollary 2.11 and Lemma 2.17.

(ii) \Rightarrow (i). If $\phi \notin \mathcal{L}_X(\mathcal{A})$, then by the Hahn-Banach theorem we can find $m \in \mathcal{A}^{**}$ such that $||m|| = m(\phi) = 1$ and m = 0 on $\mathcal{L}_X(\mathcal{A})$. Thus X has the ϕ -ergodic property. Now, suppose that $\phi \in \mathcal{L}_X(\mathcal{A})$ and let Y be the subspace of $\mathcal{L}_X(\mathcal{A})$ generated by ϕ . Let p be the seminorm on $\mathcal{L}_X(\mathcal{A})$ defined by p(f) = ||f|| for all $f \in \mathcal{L}_X(\mathcal{A})$. Then

$$p(f \cdot a) = \|f \cdot a\| \le \|a\| \|f\| = \|a\| p(f)$$

for all $f \in \mathcal{L}_X(\mathcal{A})$ and $a \in \mathcal{A}$. We may consider $\xi \in Y^*$ defined by $\xi(\lambda \phi) = \lambda$ for all $\lambda \in \mathbb{C}$. Clearly, ξ is a ϕ -invariant linear functional on Y with $|\xi| \leq p$. Using (ii), we may obtain a ϕ -invariant extension $\tilde{\xi}$ of ξ to $\mathcal{L}_X(\mathcal{A})$ such that $|\tilde{\xi}| \leq p$. Hence, $\tilde{\xi}$ is a ϕ -mean of norm one on $\mathcal{L}_X(\mathcal{A})$.

Corollary 2.19. Let A be a Banach algebra and let $\phi \in \Delta(A)$ with $\|\phi\| = 1$. Then A is ϕ -amenable with a ϕ -mean of norm one if and only if any Banach right A-module X has the Hahn-Banach ϕ -extension property.

Lemma 2.20. Let A be a Banach algebra with $\phi \in \Delta(A)$ and let X be a Banach right A-module. Suppose that Y and Z are two invariant subspaces of X with the ϕ -ergodic property. Then $\overline{Y + Z}$ has the ϕ -ergodic property.

Proof. Let $y_i \in Y$, $z_i \in Z$, and $a_i \in S_{\phi}$ and let

$$x_i := y_i + z_i - (y_i + z_i) \cdot a_i$$

for i = 1, 2. Given $\varepsilon > 0$. Then by hypotheses there exists $u \in S_{\phi}$ such that $||u|| \le 1 + \varepsilon$ and

$$||(y_1 + y_2 - y_1 \cdot a_1 - y_2 \cdot a_2) \cdot u|| < \varepsilon.$$

Since $(z_1 + z_2 - z_1 \cdot a_1 - z_2 \cdot a_2) \cdot u \in N(Z, \phi)$ we may find $v \in S_{\phi}$ such that $||v|| \leq 1 + \varepsilon$ and

$$\|(z_1+z_2-z_1\cdot a_1-z_2\cdot a_2)\cdot uv\|<\varepsilon.$$

Thus $||(x_1 + x_2) \cdot uv|| < \varepsilon(2 + \varepsilon)$. Since $uv \in S_{\phi}$, $||uv|| \leq (1 + \varepsilon)^2$ and ε is arbitrary, it follows that $x_1 + x_2 \in N(\overline{Y + Z})$. Therefore, $\overline{Y + Z}$ has the ϕ -ergodic property.

By the above lemma for an arbitrary Banach right A-module X, there is a maximal invariant subspace in X which has the ϕ -ergodic property. We denote by $B_A(X, A^*)$ the space of all bounded right A-module maps from X into A^* .

Theorem 2.21. Let \mathcal{A} be a Banach algebra with $\phi \in \Delta(\mathcal{A})$ and let X be a Banach right \mathcal{A} -module. Then X has the ϕ -ergodic property if and only if $\overline{\text{Im}T}$ has the ϕ -ergodic property for all $T \in B_{\mathcal{A}}(X, \mathcal{A}^*)$.

Proof. Suppose that X has the ϕ -ergodic property. Now, let $f_1, f_2 \in \text{Im}T$ for some $T \in B_A(X, A^*)$ and $a_1, a_2 \in S_{\phi}$. Then there exist $x_j \in X$ such that $f_j = Tx_j$, j = 1, 2. Given $\varepsilon > 0$, there exists $u \in S_{\phi}$ such that $||u|| \le 1 + \varepsilon$ and

$$\|(x_1-x_1\cdot a_1)\cdot u\|<\varepsilon.$$

Since $(x_2 - x_2 \cdot a_2) \cdot u \in N(X, \varphi)$, we may find $v \in S_{\phi}$ such that $||v|| \leq 1 + \varepsilon$ and

$$\|(x_2-x_2\cdot a_2)\cdot uv\|<\varepsilon.$$

Then

$$\|(f_1 + f_2 - f_1 \cdot a_1 - f_2 \cdot a_2) \cdot uv\| < \|T\|\varepsilon(1+\varepsilon)$$

whence $(f_1 + f_2 - f_1 \cdot a_1 - f_2 \cdot a_2) \in N(\overline{\text{Im}T}, \phi)$. So $\overline{\text{Im}T}$ has the ϕ -ergodic property by Theorem 2.6.

Conversely, Fix $\xi \in X^*$ and define a bounded linear operator T_{ξ} from X into \mathcal{A}^* via $T_{\xi}(x) = \xi \circ x$ for all $x \in X$. It is easy to see that $T_{\xi} \in B_{\mathcal{A}}(X, \mathcal{A}^*)$. From Lemma 2.20 the linear span of the collection $\bigcup \{ \operatorname{Im} T_{\xi} : \xi \in X^* \}$, which is equal to $\mathcal{L}_X(\mathcal{A})$, has the ϕ -ergodic property. Thus, X has also the ϕ -ergodic property by Corollary 2.11.

Remark 2.22. Recall that a Lau algebra \mathcal{A} is a Banach algebra which is the predual of von Neumann algebra \mathfrak{M} such that the identity element \mathfrak{e} of \mathfrak{M} is a multiplicative linear functional on \mathcal{A} . In this case, the \mathfrak{e} -means of norm one are nothing but the *topological left invariant means* on \mathcal{A}^* ; see [7] and [8], [1] for more details concerning the left amenability of Lau algebras. Following [7], \mathcal{A} is called *left amenable* if there is a topological left invariant mean on \mathcal{A}^* . Therefore the following statements are equivalent.

(i) \mathcal{A} is left amenable.

(ii) Every Banach right A-module X has the e-ergodic property.

(iii) Every Banach right A-module X has the Hahn-Banach e-extension property.

(iv) $\overline{\text{Im}T}$ has the \mathfrak{e} -ergodic property for all $T \in B_{\mathcal{A}}(X, \mathcal{A}^*)$ and all Banach right \mathcal{A} -module X.

The next result describes the interaction between ϕ -amenability of a Banach algebra and its closed left ideals.

Theorem 2.23. Let A be a Banach algebra and let $\phi \in \sigma(A)$. Suppose that I is a closed left ideal of A such that $\|\phi\|_I = 1$. Then the following statements are equivalent.

- (i) *I* is $\phi|_I$ -amenable with a $\phi|_I$ -mean of norm one.
- (ii) A is ϕ -amenable with a ϕ -mean of norm one.

Proof. (i) \Rightarrow (ii). Suppose that $a \in \ker \phi$ and $\varepsilon > 0$. Given $v_0 \in S_{\phi|_I}$ and $\delta > 0$ such that $(1 + \delta)^2 \leq 1 + \varepsilon$ and $||v_0|| \leq 1 + \delta$. Since $av_0 \in \ker \phi|_I$, it follows from [5, Theorem 2.4] that there exists $v \in S_{\phi|_I}$ such that $||v|| \leq 1 + \delta$ and $||av_0v|| \leq \delta$. If we set $u := v_0v$, then $u \in S_{\phi}$. Moreover, $||u|| \leq (1 + \delta)^2 \leq 1 + \varepsilon$ and $||au|| \leq \varepsilon$. Again by [5, Theorem 2.4] we conclude that (ii) holds.

(ii) \Rightarrow (i). Fix $a \in \ker \phi|_I$ and $\varepsilon > 0$. Let v_0 and $\delta > 0$ be as in the proof of previous implication. Thus there exists $u \in S_{\phi}$ such that $||u|| \leq 1 + \delta$ and $||au|| \leq \delta$. By setting $v := uv_0$, we have $v \in S_{\phi|_I}$. Moreover, $||v|| \leq 1 + \varepsilon$ and $||av|| \leq ||au|| ||v_0|| \leq \varepsilon$. These imply that (i) holds.

Example 2.24. Let *H* be a locally compact hypergroup. Then the hypergroup algebra $L^1(H)$ is an ideal in the measure algebra M(H). Consider $\tilde{\mathfrak{e}} \in \Delta(M(H))$ defined by $\tilde{\mathfrak{e}}(\mu) = \mu(H)$. Moreover, $\tilde{\mathfrak{e}}|_{L^1(H)} = \mathfrak{e}$ which is defined in Example 2.12. It is well-known that *H* is amenable if and only if $L^1(H)$ is \mathfrak{e} -amenable with a \mathfrak{e} -mean of norm one; see [14]. Thus, it follows from Theorem 2.23 that *H* is amenable if and only if M(H) is $\tilde{\mathfrak{e}}$ -amenable with a $\tilde{\mathfrak{e}}$ -mean of norm one.

Example 2.25. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \Delta(\mathcal{B})$. Then the θ -*Lau product* of two Banach algebras \mathcal{A} and \mathcal{B} , denoted by $\mathcal{A} \times_{\theta} \mathcal{B}$, is defined as the space $\mathcal{A} \times \mathcal{B}$ endowed with the norm ||(a, b)|| = ||a|| + ||b|| and the product

$$(a,b)(a',b') = (aa' + \theta(b)a' + \theta(b')a,bb'), \quad (a,a' \in \mathcal{A},b,b' \in \mathcal{B}).$$

It is clear that with this norm and product, $\mathcal{A} \times_{\theta} \mathcal{B}$ is a Banach algebra and \mathcal{A} is a closed two-sided ideal of $\mathcal{A} \times_{\theta} \mathcal{B}$. Also, recall from [9, Proposition 2.4] that

$$\Delta(\mathcal{A} \times_{\theta} \mathcal{B}) = \Delta(\mathcal{A}) \times \{\theta\} \cup \{0\} \times \Delta(\mathcal{B}).$$

Since $(\phi, \theta)|_{\mathcal{A}} = \phi$ for all $\phi \in \Delta(\mathcal{A})$, it follows from above theorem that if $\|\phi\| = 1$, then \mathcal{A} is ϕ -amenable with a ϕ -mean of norm one if and only if $\mathcal{A} \times_{\theta} \mathcal{B}$ is (ϕ, θ) -amenable with a (ϕ, θ) -mean of norm one. This result was originally obtained in [10, Proposition 2.8].

Acknowledgements

The author would like to thank the referee for his/her careful reading of the paper. This research was in part supported by a grant from IPM (No. 93470058) and was partially carried out at the IPM-Isfahan Branch.

References

- [1] S. DESAULNIERS, R. NASR-ISFAHANI AND M. NEMATI, Common fixed point properties and amenability of a class of Banach algebras, *J. Math. Anal. Appl.* **402** (2013), 536-544.
- [2] R. I. JEWETT, Spaces with an abstract convolution of measures, *Adv. Math.* **18** (1975), 1-101.
- [3] Z. HU, M. S. MONFARED AND T. TRAYNOR, On character amenable Banach algebras, *Studia Math.* **193** (2009), 53-78.
- [4] E. KANIUTH, A. T. LAU AND J. PYM, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85-96.
- [5] E. KANIUTH, A. T. LAU AND J. PYM, On character amenability of Banach algebras, *J. Math. Anal. Appl.* **344** (2008), 942-955.
- [6] A. T. LAU AND J. LUDWIG, Fourier-Stieltjes algebra of a topological group, *Adv. Math.* **229** (2012), 2000-2023

- [7] A. T. LAU, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, *Fund. Math.* 118 (1983), 161-175.
- [8] A. T. LAU, Uniformly continuous functionals on Banach algebras, Colloq. Math. LI (1987), 195-205.
- [9] M. S. MONFARED, On certain products of Banach algebras with applications to harmonic analysis, *Studia Math.* **178** (2007), 277-294.
- [10] M. S. MONFARED, Character amenability of Banach algebras, *Math. Proc. Camb. Philos. Soc.* **144** (2008), 697-706.
- [11] R. NASR-ISFAHANI AND M. NEMATI, Ergodic characterizations of character amenability and contractibility of Banach algebras, *Bull. Belg. Math. Soc. Simon Stevin*, **18** (2011), 623-633
- [12] M. NEMATI, Ergodic properties and harmonic functionals on locally compact quantum group, *Int. J. Math.* 25 (2014), no. 5, 1450051, 16 pp.
- [13] A. SAHAMI AND A. POURABBAS, On ϕ -biflat and ϕ -biprojective Banach algebras, *Bull. Belg. Math. Soc. Simon Stevin*, **20** (2013) 789-801.
- [14] M. SKANTHARAJAH, Amenable hypergroups, Illinois J. Math. 36 (1992), 15-46.

Department of Mathematical Sciences, Isfahan University of Technology Isfahan 84156-83111, Iran E-mail: m.nemati@cc.iut.ac.ir and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, P. O. Box: 19395-5746, Iran