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Abstract

Let L(E) be the algebra of all bounded linear operators on a Banach
space E. For A, B ∈ L(E), define the basic elementary operator MA,B by
MA,B(X) = AXB, (X ∈ L(E)). If S is a symmetric norm ideal of L(E), we
denote MS ,A,B the restriction of MA,B to S . In this paper, the norm equality
‖I + MS ,A,B‖ = 1 + ‖A‖‖B‖ is studied. In particular, we give necessary and
sufficient conditions on A and B for this equality to hold in the special case
when E is a Hilbert space and S is a Schatten p-ideal of L(E).

1 Introduction

Let E be a complex Banach space. We denote by L(E) the Banach algebra of all
bounded linear operators on E. For A and B in L(E), define the operators LA

and RB on L(E) by LA(X) = AX and RB(X) = XB (X ∈ L(E)), respectively.
The basic elementary operator MA,B induced by the operators A and B is the
multiplication defined by MA,B = LARB. An elementary operator on L(E) is
a finite sum R = ∑

n
i=1 MAi,Bi

of basic ones. A familiar example of elementary
operators is the generalized derivation δA,B defined by δA,B = LA − RB.

Let S be a non-zero two-sided ideal of the algebra L(E). We say that S is a
symmetric norm ideal if it is equipped with a norm ‖ . ‖S satisfying the following
conditions:
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(i) S is a Banach space with respect to the norm ‖ . ‖S;

(ii) ‖ X ‖S = ‖X‖ for all X ∈ S with one-dimensional range;

(iii) ‖AXB‖S ≤ ‖A‖ ‖X‖S ‖B‖ for all A, B ∈ L(E) and X ∈ S .

Familiar examples of symmetric norm ideals are the Schatten p-ideals
(Cp(H), ||.||p) (1 ≤ p ≤ ∞) of operators on a Hilbert space H (see [20, 21]). Here
we denote by C∞(H) the ideal of all compact operators on H.

Let S be a symmetric norm ideal of L(E), and let A, B ∈ L(E). Then
MA,B(S) ⊂ S , and we denote by MS ,A,B the restriction of MA,B to S . Since
‖AXB‖S ≤ ‖A‖ ‖X‖S ‖B‖ for all X ∈ S then obviously MS ,A,B ∈ L(S) and
‖MS ,A,B‖ ≤ ‖A‖‖B‖. In the special case when S is a Schatten ideal Cp(H), we
denote MS ,A,B by Mp,A,B.

Many facts about the relation between the spectrum of the operator
R = ∑

n
i=1 MAi,Bi

and spectra of its coefficients Ai and Bi are known. This is
not the case with the relation between the norm of R when restricted to a norm
ideal and norms of Ai and Bi. Apparently, the only elementary operators on a
norm ideal for which the norm is easily computed are the basic ones. For an
intensive study of norms of elementary operators on Banach spaces we refer to
[3, 4, 5, 9, 13, 15, 16, 19, 22, 23, 24, 25, 26, 27].

In this paper we shall study the equation

‖I + MS ,A,B‖ = 1 + ‖A‖‖B‖, (1.1)

where I denotes the identity operator, A and B are bounded operators on a
Banach space E and S is a symmetric norm ideal of L(E). Here we note that
we always have ‖I + MS ,A,B‖ ≤ 1 + ‖A‖‖B‖. In the particular case where B = I,
the equation (1.1) is equivalent to the Daugavet equation

‖I + A‖ = 1 + ‖A‖. (1.2)

For more results about the Daugavet equation and its applications we refer to
[1, 11] and references therein.

In order to state our results in detail, we need to recall some notations.

Let E be a complex Banach space, and let E
′

be its dual space. For T ∈ L(E),
the spatial numerical range of T, denoted by W(T), is defined to be the set

W(T) =
{

f (Tx) : x ∈ E, ‖x‖ = 1 and f ∈ D(x)
}

,

where

D(x) =
{

f ∈ E′ : f (x) = ‖ f‖ = ‖x‖
}

·

If H is a Hilbert space and T ∈ L(H), then the numerical range of T is given by

W(T) =
{

〈Tx, x〉 : x ∈ H and ‖x‖ = 1
}

.
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Let T ∈ L(E). The algebraic numerical range of T is defined by

V(T) =
{

F(T) : F ∈
(

L(E)
)
′

and ‖ F ‖= F(I) = 1
}

.

It is well-known that V(T) (T ∈ L(E)) is a compact convex subset of the
plane, and that V(T) contains the spectrum of T (see [6]). Furthermore, V(T)
coincides with the closed convex hull of W(T) whenever T is a bounded operator
on a Banach space. For basic facts about numerical ranges we refer to [6, 7].

For T ∈ L(E), let σ(T), σap(T), r(T) and v(T) denote the spectrum, approx-
imate point spectrum, spectral radius and numerical radius of T, respectively.
Recall that when v(T) = ‖T‖ then T is said to be a normaloid operator. Given

x ∈ E and f ∈ E
′
, we write x ⊗ f to denote the rank-one bounded linear operator

z 7−→ f (z)x (z ∈ E),

whose norm is equal to ‖x‖‖ f‖. If λ is a complex number then we denote by λ

its complex conjugate.

2 Main results

In this section, we shall study the Daugavet equation for a given multiplication
operator when it is restricted to a symmetric norm ideal.

We begin with the following lemma.

Lemma 2.1. Let A ∈ L(E). Then

1. ‖I + A‖ = 1 + ‖A‖ if and only if ‖A‖ ∈ V(A),

2. sup
|λ|=1

‖I + λA‖ = 1 + ‖A‖ if and only if v(A) = ‖A‖.

Proof. (1): See [18, Corollary 1].
(2): By a compactness argument we can find a modulus one complex num-

ber λ0 such that sup|λ|=1 ‖I + λA‖ = ‖I + λ0 A‖. The result then follows from

Part (1).

Recall that a Banach space E is said to be uniformly convex whenever for each
sequences {xn}n and {yn}n in F, ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 for all n and
limn ‖xn + yn‖ = 2 imply limn ‖xn − yn‖ = 0.

There is a concept that is dual to uniform convexity. A Banach space is said to
be uniformly smooth whenever for each ǫ > 0, there exists some δ > 0 such that
‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x − y‖ ≥ δ imply ‖x + y‖ ≤ ‖x‖+ ‖y‖ − ǫ‖x − y‖.

A Banach space is uniformly smooth (respectively, uniformly convex) if and
only if its norm dual is uniformly convex (respectively, uniformly smooth), (see
[14]).

As a consequence of Lemma 2.1, we have the following corollary proved
in [1].
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Corollary 2.2. Suppose E is a uniformly convex or uniformly smooth Banach space.
Then for A ∈ L(E), we have

1. ‖I + A‖ = 1 + ‖A‖ if and only if ‖A‖ ∈ σap(A);

2. sup
|λ|=1

‖I + λA‖ = 1 + ‖A‖ if and only if r(A) = ‖A‖.

Proof. This follows from Lemma 2.1 and the facts that: For every bounded linear
operator T on a uniformly convex or uniformly smooth Banach space E (see for
example [7]), we have

i) ‖T‖ ∈ σap(T) if and only of ‖T‖ ∈ V(T);

ii) r(T) = ‖T‖ if and only if v(T) = ‖T‖.

Lemma 2.3. Let A, B ∈ L(E), and let S be a symmetric norm ideal of L(E). Then

‖MS ,A,B‖ = ‖A‖‖B‖.

Proof. Let x, y ∈ E and f ∈ E
′

be such that ‖x‖ = ‖y‖ = ‖ f‖ = 1. Since x ⊗ f lies
in S (see [17, Lemma 4.1]), and

| f (By)|‖Ax‖ = ‖MA,B(x ⊗ f )(y)‖ ≤ ‖MS ,A,B(x ⊗ f )‖S ≤ ‖MS ,A,B‖ ≤ ‖A‖‖B‖,

then it follows that
‖MS ,A,B‖ = ‖A‖‖B‖.

Remark 2.4. Let A, B ∈ L(E), and let S be a symmetric norm ideal of L(E). Since
‖MS ,A,B‖ = ‖A‖‖B‖ by the above lemma, then it follows from Lemma 2.1 that
MS ,A,B is normaloid if and only if sup|λ|=1 ‖I + λMS ,A,B‖ = 1 + ‖A‖‖B‖.

In what follows H denotes a complex separable Hilbert space.

Theorem 2.5. Let A, B ∈ L(H), and suppose that 1 < p < ∞. Then the following are
equivalent:

1. ‖I + Mp,A,B‖ = 1 + ‖A‖‖B‖;

2. There exists λ ∈ C with |λ| = 1 such that λ‖A‖ ∈ σ(A) and λ‖B‖ ∈ σ(B);

3. There exists λ ∈ C with |λ| = 1 such that λ‖A‖ ∈ V(A) and λ‖B‖ ∈ V(B).

Proof. (1) ⇔ (2): It is well-known that, for 1 < p < ∞, Cp(H) is a uniformly con-
vex Banach space (see, e.g., [21, P. 23]). Therefore, Corollary 2.2 can be applied; it
shows that Mp,A,B satisfies the equality in (1.2) if and only if ‖A‖‖B‖ ∈ σ(Mp,A,B).
But σ(Mp,A,B) = σ(A)σ(B) (see [8]); hence we derive that there exists λ ∈ C with

|λ| = 1 such that λ‖A‖ ∈ σ(A) and λ‖B‖ ∈ σ(B).

The equivalence (2) ⇔ (3) follows from the general fact: For any bounded
operator T on H, ‖T‖ lies in V(T) if and only if ‖T‖ lies in σap(T), (see [12]). This
completes the proof.
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Remark 2.6. Let A, B ∈ L(H), and suppose that and 1 < p < ∞. From the above
theorem, it follows that ‖I + Mp,A,B‖ = 1+ ‖A‖‖B‖ if and only if ‖I + Mp,B,A‖ =
1 + ‖A‖‖B‖.

Lemma 2.7. Let A, B ∈ L(E), and let S be a norm ideal of L(E). Then

1. V(A)V(B) ⊆ V(MS ,A,B),

2. V(AB) ⊆ V(MA,B).

Proof. (1) Let x, y ∈ E be such that ‖x‖ = ‖y‖ = 1, and let f , g ∈ E′ be such
that f (x) = ‖ f‖ = g(y) = ‖g‖ = 1. Define a linear functional Φ on S by
Φ(X) = g(Xx). We easily check that Φ is continuous with ‖Φ‖ = Φ(y ⊗ f ) = 1.
Hence

Φ(MS ,A,B(y ⊗ f )) = f (Bx)g(Ay) ∈ V(MS ,A,B).

From this we derive that

V(A)V(B) ⊆ V(MS ,A,B).

(2) Let x ∈ E and f ∈ E
′

be such that f (x) = 1. Define a linear functional Φ

on L(E) by Φ(X) = f (Xx). Then Φ is continuous with ‖Φ‖ = Φ(I) = 1. Hence

Φ(MA,B(I)) = f (ABx) ∈ V(MA,B).

Consequently,
V(AB) ⊆ V(MA,B).

Remark 2.8. It follows from Lemma 2.7 that, for two operators A, B ∈ L(E),
v(A)v(B) ≤ v(MS ,A,B) ≤ ‖A‖‖B‖, for every norm ideal S . Hence MS ,A,B is
normaloid whenever A and B are normaloid.

Theorem 2.9. Let A, B ∈ L(H), and suppose that 1 < p < ∞. Then Mp,A,B is
normaloid if and only if A and B are normaloid.

Proof. To prove that the condition is sufficient recall that, for 1 < p < ∞, the space
Cp(H) is uniformly convex. Hence, by virtue of Corollary 2.2, (2) and Lemma 2.3,
we have r(Mp,A,B) = ‖Mp,A,B‖ = ‖A‖‖B‖. But r(Mp,A,B) = r(A)r(B) see ([8]),
and r(A) ≤ v(A) ≤ ‖A‖ and r(B) ≤ v(B) ≤ ‖B‖. Then we get v(A) = ‖A‖ and
v(B) = ‖B‖.

The necessary condition follows from Remark 2.8.

Let us give an example showing that the equivalences in Theorem 2.5 and
Theorem 2.9 do not hold when S = L(H).

Example 2.10. Let A =

[

0 1
0 0

]

and B =

[

0 0
1 0

]

. Then ‖MA,B‖ = ‖A‖ = ‖B‖ =

1. Since AB =

[

1 0
0 0

]

, it follows from Lemma 2.7, (2) that 1 ∈ V(MA,B). Thus

v(MA,B) = 1, and ‖I + MA,B‖ = 2 because 1 + V(AB) = V(I + AB) ⊆
V(I + MA,B). However v(A) = v(B) = 1

2 .
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Proposition 2.11. Let A, B ∈ L(H). Then

‖I + M1,B,A‖ = ‖I + M∞,A,B‖ = ‖I + MA,B‖.

Proof. Recall that if E is a Banach space and T ∈ L(E), then ‖T‖ = ‖T∗‖
(T∗: the adjoint of T). By [10, Theorem 3.13], we have (M∞,A,B)

∗∗ = MA,B, so
‖I + M∞,A,B‖ = ‖I + MA,B‖. From [10], we also have (M∞,A,B)

∗ = M1,B,A, so
that

‖I + M1,B,A‖ = ‖(I + M∞,A,B)
∗‖ = ‖I + M∞,A,B‖ = ‖I + MA,B‖.

Let T ∈ L(H). Following [24], the maximal numerical range W0(T) of T is
defined by

W0(T) =
{

λ ∈ C : there exists {xn} ⊆ H, ‖xn‖ = 1 such that

lim
n

< Txn, xn >= λ and lim
n

‖Txn‖ = ‖T‖
}

.

The normalized maximal numerical range of T is given by

WN(T) =

{

W0(
T

‖T‖
) if T 6= 0

0 if T = 0.

Theorem 2.12. If A, B ∈ L(H) then the following conditions are equivalent:

1. ‖I + M1,A,B‖ = 1 + ‖A‖‖B‖;

2. ‖I + M∞,A,B‖ = 1 + ‖A‖‖B‖;

3. ‖I + MA,B‖ = 1 + ‖A‖‖B‖;

4. WN(A∗) ∩ WN(B) 6= ∅.

Proof. The equivalences (1) ⇔ (2) ⇔ (3) follow from Proposition 2.11. The
equivalence (3) ⇔ (4) follows from [4, Theorem 1].

In connection with Lemma 2.1 and Corollary 2.2, it is natural to ask when a
given multiplication MS ,A,B is spectraloid, that is, when its spectral radius and its
numerical radius coincide. The next proposition gives necessary and sufficient
conditions for the multiplication MS ,A,B to be spectraloid.

Proposition 2.13. Let A, B ∈ L(H), and let S be a symmetric norm ideal of L(H).
Then MS ,A,B is spectraloid if and only if A and B are spectraloid operators in H and
v(MS ,A,B) = v(A)v(B).

Proof. If MS ,A,B is spectraloid then

v(MS ,A,B) = r(MS ,A,B) = r(A)r(B) ≤ v(A)v(B).

Since by Lemma 2.7, v(A)v(B) ≤ v(MS ,A,B), then it follows that

r(A)r(B) = v(A)v(B) = v(MS ,A,B).

Thus r(A) = v(A) and r(B) = v(B).
The converse is obvious.
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