A note on the norm of a basic elementary operator

Mohamed Boumazgour Mohamed Barraa

Abstract

Let $\mathcal{L}(E)$ be the algebra of all bounded linear operators on a Banach space E. For $A, B \in \mathcal{L}(E)$, define the basic elementary operator $M_{A,B}$ by $M_{A,B}(X) = AXB$, $(X \in \mathcal{L}(E))$. If \mathcal{S} is a symmetric norm ideal of $\mathcal{L}(E)$, we denote $M_{\mathcal{S},A,B}$ the restriction of $M_{A,B}$ to \mathcal{S} . In this paper, the norm equality $\|I + M_{\mathcal{S},A,B}\| = 1 + \|A\| \|B\|$ is studied. In particular, we give necessary and sufficient conditions on A and B for this equality to hold in the special case when E is a Hilbert space and \mathcal{S} is a Schatten p-ideal of $\mathcal{L}(E)$.

1 Introduction

Let E be a complex Banach space. We denote by $\mathcal{L}(E)$ the Banach algebra of all bounded linear operators on E. For A and B in $\mathcal{L}(E)$, define the operators L_A and R_B on $\mathcal{L}(E)$ by $L_A(X) = AX$ and $R_B(X) = XB$ ($X \in \mathcal{L}(E)$), respectively. The basic elementary operator $M_{A,B}$ induced by the operators A and B is the multiplication defined by $M_{A,B} = L_A R_B$. An elementary operator on $\mathcal{L}(E)$ is a finite sum $R = \sum_{i=1}^n M_{A_i,B_i}$ of basic ones. A familiar example of elementary operators is the generalized derivation $\delta_{A,B}$ defined by $\delta_{A,B} = L_A - R_B$.

Let S be a non-zero two-sided ideal of the algebra $\mathcal{L}(E)$. We say that S is a symmetric norm ideal if it is equipped with a norm $\|.\|_{S}$ satisfying the following conditions:

Received by the editors in March 2015.

Communicated by F. Bastin.

2010 Mathematics Subject Classification: 47A12, 47A30, 47B47.

Key words and phrases: Norms, elementary operators, norm ideals, numerical range.

- (i) S is a Banach space with respect to the norm $\|.\|_S$;
- (ii) $||X||_{\mathcal{S}} = ||X||$ for all $X \in \mathcal{S}$ with one-dimensional range;
- (iii) $||AXB||_{\mathcal{S}} \le ||A|| \, ||X||_{\mathcal{S}} \, ||B||$ for all $A, B \in \mathcal{L}(E)$ and $X \in \mathcal{S}$.

Familiar examples of symmetric norm ideals are the Schatten p-ideals $(C_p(H), ||.||_p)$ $(1 \le p \le \infty)$ of operators on a Hilbert space H (see [20, 21]). Here we denote by $C_\infty(H)$ the ideal of all compact operators on H.

Let \mathcal{S} be a symmetric norm ideal of $\mathcal{L}(E)$, and let $A, B \in \mathcal{L}(E)$. Then $M_{A,B}(\mathcal{S}) \subset \mathcal{S}$, and we denote by $M_{\mathcal{S},A,B}$ the restriction of $M_{A,B}$ to \mathcal{S} . Since $\|AXB\|_{\mathcal{S}} \leq \|A\| \|X\|_{\mathcal{S}} \|B\|$ for all $X \in \mathcal{S}$ then obviously $M_{\mathcal{S},A,B} \in \mathcal{L}(\mathcal{S})$ and $\|M_{\mathcal{S},A,B}\| \leq \|A\| \|B\|$. In the special case when \mathcal{S} is a Schatten ideal $\mathcal{C}_p(H)$, we denote $M_{\mathcal{S},A,B}$ by $M_{p,A,B}$.

Many facts about the relation between the spectrum of the operator $R = \sum_{i=1}^{n} M_{A_i,B_i}$ and spectra of its coefficients A_i and B_i are known. This is not the case with the relation between the norm of R when restricted to a norm ideal and norms of A_i and B_i . Apparently, the only elementary operators on a norm ideal for which the norm is easily computed are the basic ones. For an intensive study of norms of elementary operators on Banach spaces we refer to [3, 4, 5, 9, 13, 15, 16, 19, 22, 23, 24, 25, 26, 27].

In this paper we shall study the equation

$$||I + M_{S,A,B}|| = 1 + ||A|| ||B||,$$
 (1.1)

where I denotes the identity operator, A and B are bounded operators on a Banach space E and S is a symmetric norm ideal of $\mathcal{L}(E)$. Here we note that we always have $||I + M_{S,A,B}|| \le 1 + ||A|| ||B||$. In the particular case where B = I, the equation (1.1) is equivalent to the Daugavet equation

$$||I + A|| = 1 + ||A||. (1.2)$$

For more results about the Daugavet equation and its applications we refer to [1, 11] and references therein.

In order to state our results in detail, we need to recall some notations.

Let *E* be a complex Banach space, and let *E'* be its dual space. For $T \in \mathcal{L}(E)$, the spatial numerical range of *T*, denoted by W(T), is defined to be the set

$$W(T) = \{ f(Tx) : x \in E, ||x|| = 1 \text{ and } f \in D(x) \},$$

where

$$D(x) = \left\{ f \in E' : f(x) = ||f|| = ||x|| \right\}.$$

If *H* is a Hilbert space and $T \in \mathcal{L}(H)$, then the numerical range of *T* is given by

$$W(T) = \{ \langle Tx, x \rangle : x \in H \text{ and } ||x|| = 1 \}.$$

Let $T \in \mathcal{L}(E)$. The algebraic numerical range of T is defined by

$$V(T) = \{ F(T) : F \in (\mathcal{L}(E))^{'} \text{ and } || F || = F(I) = 1 \}.$$

It is well-known that V(T) ($T \in \mathcal{L}(E)$) is a compact convex subset of the plane, and that V(T) contains the spectrum of T (see [6]). Furthermore, V(T) coincides with the closed convex hull of W(T) whenever T is a bounded operator on a Banach space. For basic facts about numerical ranges we refer to [6, 7].

For $T \in \mathcal{L}(E)$, let $\sigma(T)$, $\sigma_{ap}(T)$, r(T) and v(T) denote the spectrum, approximate point spectrum, spectral radius and numerical radius of T, respectively. Recall that when v(T) = ||T|| then T is said to be a normaloid operator. Given $x \in E$ and $f \in E'$, we write $x \otimes f$ to denote the rank-one bounded linear operator

$$z \longmapsto f(z)x \quad (z \in E),$$

whose norm is equal to ||x|| ||f||. If λ is a complex number then we denote by $\overline{\lambda}$ its complex conjugate.

2 Main results

In this section, we shall study the Daugavet equation for a given multiplication operator when it is restricted to a symmetric norm ideal.

We begin with the following lemma.

Lemma 2.1. *Let* $A \in \mathcal{L}(E)$ *. Then*

- 1. ||I + A|| = 1 + ||A|| if and only if $||A|| \in V(A)$,
- 2. $\sup_{|\lambda|=1} ||I + \lambda A|| = 1 + ||A||$ if and only if v(A) = ||A||.

Proof. (1): See [18, Corollary 1].

(2): By a compactness argument we can find a modulus one complex number λ_0 such that $\sup_{|\lambda|=1} \|I + \lambda A\| = \|I + \lambda_0 A\|$. The result then follows from Part (1).

Recall that a Banach space E is said to be uniformly convex whenever for each sequences $\{x_n\}_n$ and $\{y_n\}_n$ in F, $\|x_n\| \le 1$, $\|y_n\| \le 1$ for all n and $\lim_n \|x_n + y_n\| = 2$ imply $\lim_n \|x_n - y_n\| = 0$.

There is a concept that is dual to uniform convexity. A Banach space is said to be uniformly smooth whenever for each $\epsilon > 0$, there exists some $\delta > 0$ such that $\|x\| \le 1$, $\|y\| \le 1$, and $\|x - y\| \ge \delta$ imply $\|x + y\| \le \|x\| + \|y\| - \epsilon \|x - y\|$.

A Banach space is uniformly smooth (respectively, uniformly convex) if and only if its norm dual is uniformly convex (respectively, uniformly smooth), (see [14]).

As a consequence of Lemma 2.1, we have the following corollary proved in [1].

Corollary 2.2. Suppose E is a uniformly convex or uniformly smooth Banach space. Then for $A \in \mathcal{L}(E)$, we have

- 1. ||I + A|| = 1 + ||A|| if and only if $||A|| \in \sigma_{ap}(A)$;
- 2. $\sup_{|\lambda|=1} ||I + \lambda A|| = 1 + ||A||$ if and only if r(A) = ||A||.

Proof. This follows from Lemma 2.1 and the facts that: For every bounded linear operator T on a uniformly convex or uniformly smooth Banach space E (see for example [7]), we have

- i) $||T|| \in \sigma_{av}(T)$ if and only of $||T|| \in V(T)$;
- ii) r(T) = ||T|| if and only if v(T) = ||T||.

Lemma 2.3. Let $A, B \in \mathcal{L}(E)$, and let S be a symmetric norm ideal of $\mathcal{L}(E)$. Then

$$||M_{S,A,B}|| = ||A|| ||B||.$$

Proof. Let $x, y \in E$ and $f \in E'$ be such that ||x|| = ||y|| = ||f|| = 1. Since $x \otimes f$ lies in S (see [17, Lemma 4.1]), and

$$|f(By)| ||Ax|| = ||M_{A,B}(x \otimes f)(y)|| \le ||M_{S,A,B}(x \otimes f)||_{S} \le ||M_{S,A,B}|| \le ||A|| ||B||,$$

then it follows that

$$||M_{S,A,B}|| = ||A|| ||B||.$$

Remark 2.4. Let $A, B \in \mathcal{L}(E)$, and let \mathcal{S} be a symmetric norm ideal of $\mathcal{L}(E)$. Since $\|M_{\mathcal{S},A,B}\| = \|A\| \|B\|$ by the above lemma, then it follows from Lemma 2.1 that $M_{\mathcal{S},A,B}$ is normaloid if and only if $\sup_{|\lambda|=1} \|I + \lambda M_{\mathcal{S},A,B}\| = 1 + \|A\| \|B\|$.

In what follows *H* denotes a complex separable Hilbert space.

Theorem 2.5. Let $A, B \in \mathcal{L}(H)$, and suppose that 1 . Then the following are equivalent:

- 1. $||I + M_{p,A,B}|| = 1 + ||A|| ||B||$;
- 2. There exists $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ such that $\lambda ||A|| \in \sigma(A)$ and $\overline{\lambda} ||B|| \in \sigma(B)$;
- 3. There exists $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ such that $\lambda ||A|| \in V(A)$ and $\overline{\lambda} ||B|| \in V(B)$.

Proof. (1) \Leftrightarrow (2): It is well-known that, for $1 , <math>\mathcal{C}_p(H)$ is a uniformly convex Banach space (see, e.g., [21, P. 23]). Therefore, Corollary 2.2 can be applied; it shows that $M_{p,A,B}$ satisfies the equality in (1.2) if and only if $\|A\| \|B\| \in \sigma(M_{p,A,B})$. But $\sigma(M_{p,A,B}) = \sigma(A)\sigma(B)$ (see [8]); hence we derive that there exists $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ such that $\lambda \|A\| \in \sigma(A)$ and $\overline{\lambda} \|B\| \in \sigma(B)$.

The equivalence $(2) \Leftrightarrow (3)$ follows from the general fact: For any bounded operator T on H, ||T|| lies in V(T) if and only if ||T|| lies in $\sigma_{ap}(T)$, (see [12]). This completes the proof.

Remark 2.6. Let $A, B \in \mathcal{L}(H)$, and suppose that and $1 . From the above theorem, it follows that <math>||I + M_{p,A,B}|| = 1 + ||A|| ||B||$ if and only if $||I + M_{p,B,A}|| = 1 + ||A|| ||B||$.

Lemma 2.7. Let $A, B \in \mathcal{L}(E)$, and let S be a norm ideal of $\mathcal{L}(E)$. Then

- 1. $V(A) V(B) \subseteq V(M_{S,A,B})$,
- 2. $V(AB) \subseteq V(M_{A,B})$.

Proof. (1) Let $x,y \in E$ be such that $\|x\| = \|y\| = 1$, and let $f,g \in E'$ be such that $f(x) = \|f\| = g(y) = \|g\| = 1$. Define a linear functional Φ on $\mathcal S$ by $\Phi(X) = g(Xx)$. We easily check that Φ is continuous with $\|\Phi\| = \Phi(y \otimes f) = 1$. Hence

$$\Phi(M_{\mathcal{S},A,B}(y \otimes f)) = f(Bx)g(Ay) \in V(M_{\mathcal{S},A,B}).$$

From this we derive that

$$V(A) V(B) \subseteq V(M_{S,A,B}).$$

(2) Let $x \in E$ and $f \in E'$ be such that f(x) = 1. Define a linear functional Φ on $\mathcal{L}(E)$ by $\Phi(X) = f(Xx)$. Then Φ is continuous with $\|\Phi\| = \Phi(I) = 1$. Hence

$$\Phi(M_{A,B}(I)) = f(ABx) \in V(M_{A,B}).$$

Consequently,

$$V(AB) \subseteq V(M_{A,B}).$$

Remark 2.8. It follows from Lemma 2.7 that, for two operators $A, B \in \mathcal{L}(E)$, $v(A)v(B) \leq v(M_{\mathcal{S},A,B}) \leq ||A|| ||B||$, for every norm ideal \mathcal{S} . Hence $M_{\mathcal{S},A,B}$ is normaloid whenever A and B are normaloid.

Theorem 2.9. Let $A, B \in \mathcal{L}(H)$, and suppose that $1 . Then <math>M_{p,A,B}$ is normaloid if and only if A and B are normaloid.

Proof. To prove that the condition is sufficient recall that, for $1 , the space <math>C_p(H)$ is uniformly convex. Hence, by virtue of Corollary 2.2, (2) and Lemma 2.3, we have $r(M_{p,A,B}) = \|M_{p,A,B}\| = \|A\| \|B\|$. But $r(M_{p,A,B}) = r(A)r(B)$ see ([8]), and $r(A) \le v(A) \le \|A\|$ and $r(B) \le v(B) \le \|B\|$. Then we get $v(A) = \|A\|$ and $v(B) = \|B\|$.

The necessary condition follows from Remark 2.8.

Let us give an example showing that the equivalences in Theorem 2.5 and Theorem 2.9 do not hold when $S = \mathcal{L}(H)$.

Example 2.10. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Then $||M_{A,B}|| = ||A|| = ||B|| = 1$. Since $AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, it follows from Lemma 2.7, (2) that $1 \in V(M_{A,B})$. Thus $v(M_{A,B}) = 1$, and $||I + M_{A,B}|| = 2$ because $1 + V(AB) = V(I + AB) \subseteq V(I + M_{A,B})$. However $v(A) = v(B) = \frac{1}{2}$.

Proposition 2.11. *Let* A, $B \in \mathcal{L}(H)$. *Then*

$$||I + M_{1,B,A}|| = ||I + M_{\infty,A,B}|| = ||I + M_{A,B}||.$$

Proof. Recall that if E is a Banach space and $T \in \mathcal{L}(E)$, then $||T|| = ||T^*||$ (T^* : the adjoint of T). By [10, Theorem 3.13], we have $(M_{\infty,A,B})^{**} = M_{A,B}$, so $||I + M_{\infty,A,B}|| = ||I + M_{A,B}||$. From [10], we also have $(M_{\infty,A,B})^* = M_{1,B,A}$, so that

$$||I + M_{1,B,A}|| = ||(I + M_{\infty,A,B})^*|| = ||I + M_{\infty,A,B}|| = ||I + M_{A,B}||.$$

Let $T \in \mathcal{L}(H)$. Following [24], the maximal numerical range $W_0(T)$ of T is defined by

$$W_0(T) = \Big\{\lambda \in \mathbb{C} : \text{ there exists } \{x_n\} \subseteq H, \|x_n\| = 1 \text{ such that } \Big\}$$

$$\lim_{n} \langle Tx_{n}, x_{n} \rangle = \lambda \text{ and } \lim_{n} ||Tx_{n}|| = ||T|| \Big\}.$$

The normalized maximal numerical range of *T* is given by

$$W_N(T) = \left\{ egin{array}{ll} W_0(rac{T}{\|T\|}) & ext{if } T
eq 0 \\ 0 & ext{if } T = 0. \end{array}
ight.$$

Theorem 2.12. *If* A, $B \in \mathcal{L}(\mathcal{H})$ *then the following conditions are equivalent:*

- 1. $||I + M_{1,A,B}|| = 1 + ||A|| ||B||$;
- 2. $||I + M_{\infty,A,B}|| = 1 + ||A|| ||B||$;
- 3. $||I + M_{A,B}|| = 1 + ||A|| ||B||$;
- 4. $W_N(A^*) \cap W_N(B) \neq \emptyset$.

Proof. The equivalences $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ follow from Proposition 2.11. The equivalence $(3) \Leftrightarrow (4)$ follows from [4, Theorem 1].

In connection with Lemma 2.1 and Corollary 2.2, it is natural to ask when a given multiplication $M_{S,A,B}$ is spectraloid, that is, when its spectral radius and its numerical radius coincide. The next proposition gives necessary and sufficient conditions for the multiplication $M_{S,A,B}$ to be spectraloid.

Proposition 2.13. Let $A, B \in \mathcal{L}(H)$, and let S be a symmetric norm ideal of $\mathcal{L}(H)$. Then $M_{S,A,B}$ is spectraloid if and only if A and B are spectraloid operators in H and $v(M_{S,A,B}) = v(A)v(B)$.

Proof. If $M_{\mathcal{S},A,B}$ is spectraloid then

$$v(M_{\mathcal{S},A,B}) = r(M_{\mathcal{S},A,B}) = r(A)r(B) \le v(A)v(B).$$

Since by Lemma 2.7, $v(A)v(B) \leq v(M_{S,A,B})$, then it follows that

$$r(A)r(B) = v(A)v(B) = v(M_{S,A,B}).$$

Thus r(A) = v(A) and r(B) = v(B).

The converse is obvious.

Acknowledgement

The research of the first author was supported by the Deanship of Scientific Research at Sattam bin Abdulaziz University under the Research Project 1787/01/2014.

References

- [1] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, *The Daugavet equation in uniformly convex Banach spaces*, J. Func. Anal. **97**(1991), 215-230.
- [2] M. Barraa, *A formula for the numerical range of elementary operators*, ISRN Math. Anal. 2014, Art. ID 246301, 4 pp.
- [3] M. Barraa and M. Boumazgour, *Inner derivations and norm equality*, Proc. Amer. Math. Soc. **130**(2002), 471-476.
- [4] M. Barraa and M. Boumazgour, *Norm equality for the basic elementary operator*, J. Math. Anal. Appl. **286**(2003), 359-362.
- [5] A. Blanco, M. Boumazgour and T.J. Ransford, On the norm of elementary operators, J. London Math. Soc. 70 (2004), 479-498.
- [6] F.F. Bonsall and J. Duncan, *Numerical Ranges I*, Cambridge: Cambridge university press, 1973.
- [7] F.F. Bonsall and J. Duncan, *Numerical Ranges, II*, Cambridge: Cambridge university press, 1973.
- [8] M. Embry and M. Rosenblum, *Spectra*, tensor products and linear operator equations, Pacific J. Math. **53**(1974), 95-107.
- [9] L. Fialkow, *Structural properties of elementary operators*, in Elementary operators and applications (M. Mathieu, ed), (Proc. Int. Workshop, Blaubeurn 1991), World Scientific, Singapore, 1992, pp. 55-113.
- [10] L. Filkow, *A note on the operator* $X \rightarrow AX XB$, Trans. Amer. Math. Soc. **243**(1978), 147-168.
- [11] C. L. Lin, *The unilateral shift and norm equality for bounded linear operators*, Proc. Amer. Math. Soc. **127**(1999), 1693-1696.
- [12] P.R. Halmos, A Hilbert Space problem Book, Van Nostrand, Princeton, 1970.
- [13] B. E. Johnson, Norms of derivations on $\mathcal{L}(X)$, Pacific. J. Math. **38**(1971), 465-469.
- [14] G. Köthe, *Topological vector spaces I*, Springer-Verlag, New York/Heidelberg, 1969
- [15] M. Mathieu, *The norm problem for elementary operators*, in Recent progress in functional analysis (Valencia, 2000), 363-368, North-Holland Math. Stud., 189, North-Holland, Amsterdam, 2001.

- [16] M. Mathieu, Elementary operators on Calkin algebras, Ir. Math. Soc. Bull. **46**(2001), 33-42.
- [17] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Cambridge Philos. Soc. **96**(1984), no. 3, 483-493.
- [18] R. Nakamoto and S.E. Takahasi, *Norm equality condition in triangular inequality*, Sci. Math. Jpn. **55**(2002), no. 3, 463-466.
- [19] E. Saksman and H.-O. Tylli, *Multiplications and elementary operators in the Banach space setting*. Methods in Banach space theory, 253-292, London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006.
- [20] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.
- [21] B. Simon, *Trace ideals and their applications*, Cambridge Univ. Press, Cambridge, UK, 1979.
- [22] L. L. Stacho and B. Zalar, *On the norm of Jordan elementary operators in standard operator algebras*, Publ. Math. Debrecen. **49**(1996), 127-134.
- [23] L. L. Stacho and B. Zalar, *Uniform primeness of the Jordan algebra of symmetric operators*, Proc. Amer. Math. Soc. **126**(1998), 2241-2247.
- [24] J. Stampfli, The norm of a derivation, Pac. J. Math., 33(1970), 737-747.
- [25] R. M. Timoney, Norms of elementary operators, Ir. Math. Soc. Bull. 46(2001), 13-17.
- [26] R. M. Timoney, Computing the norm of elementary operators, Illinois J. Math. 47(2003), 1207-1226.
- [27] R. M. Timoney, *Some formulae for norms of elementary operators*, J. Operator Theory **57**(2007), no. 1, 121-145.

Department of Mathematics, Faculty of Science and Humanitarian Studies, Sattam bin Abdulaziz University, P.O. Box 83, Alkharj 11942, Saudi Arabia. email: boumazgour@hotmail.com

Department of Mathematics, Faculty of Sciences Semlalia, P.O. Box 2390, Marrakesh, Morocco. email:barraa@hotmail.com