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Abstract

Let L(E) be the algebra of all bounded linear operators on a Banach
space E. For A,B € L(E), define the basic elementary operator My p by
Map(X) = AXB, (X € L(E)). If S is a symmetric norm ideal of L(E), we
denote Ms 4 p the restriction of My p to S. In this paper, the norm equality
I+ Ms asll =1+ |A|l||B] is studied. In particular, we give necessary and
sufficient conditions on A and B for this equality to hold in the special case
when E is a Hilbert space and S is a Schatten p-ideal of L(E).

1 Introduction

Let E be a complex Banach space. We denote by L(E) the Banach algebra of all
bounded linear operators on E. For A and B in £(E), define the operators Ly
and Rp on L(E) by L4(X) = AX and Rp(X) = XB (X € L(E)), respectively.
The basic elementary operator M4 p induced by the operators A and B is the
multiplication defined by M4 p = LaoRp. An elementary operator on L(E) is
a finite sum R = }' | My, p, of basic ones. A familiar example of elementary
operators is the generalized derivation é4 p defined by 64 5 = L4 — Rp.

Let S be a non-zero two-sided ideal of the algebra £L(E). We say that S is a
symmetric norm ideal if it is equipped with a norm || . || s satisfying the following
conditions:
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(i) S is a Banach space with respect to the norm || . ||s;
(i) || X |ls = || X]| for all X € S with one-dimensional range;

(iii) [|AXB|s < |A|l IX|ls | B]| forall A,B € £(E) and X € S.

Familiar examples of symmetric norm ideals are the Schatten p-ideals
(Cp(H), ||-|lp) (1 < p < o0) of operators on a Hilbert space H (see [20, 21]). Here
we denote by Coo(H) the ideal of all compact operators on H.

Let S be a symmetric norm ideal of £(E), and let A,B € L(E). Then
Map(S) C S, and we denote by Mg 4 p the restriction of My p to S. Since
|AXB||ls < ||A]l || X]||s ||B|| for all X € & then obviously Ms a5 € L(S) and
|Ms agll < ||A]|l||B]|. In the special case when S is a Schatten ideal C,(H), we
denote MS,A,B by Mp,A,B-

Many facts about the relation between the spectrum of the operator
R = Y 1My, p, and spectra of its coefficients A; and B; are known. This is
not the case with the relation between the norm of R when restricted to a norm
ideal and norms of A; and B;. Apparently, the only elementary operators on a
norm ideal for which the norm is easily computed are the basic ones. For an
intensive study of norms of elementary operators on Banach spaces we refer to
[3,4,5,9,613,15,16,19, 22, 23, 24, 25, 26, 27].

In this paper we shall study the equation
1T+ Ms,a,8ll =1+ [ A[lIBI, (11)

where I denotes the identity operator, A and B are bounded operators on a
Banach space E and S is a symmetric norm ideal of £(E). Here we note that
we always have ||[I + Mg 4 || <1+ ||A||||B|. In the particular case where B = I,
the equation (1.1) is equivalent to the Daugavet equation

1T+ A|l=1+|A]. (1.2)

For more results about the Daugavet equation and its applications we refer to
[1, 11] and references therein.

In order to state our results in detail, we need to recall some notations.

Let E be a complex Banach space, and let E’ be its dual space. For T € L(E),
the spatial numerical range of T, denoted by W(T), is defined to be the set

W(T) = {f(Tx) x€E x| =1and f € D(x)},

where

D(x) = {f € E": f(x) = |fll = IIx]|}-
If H is a Hilbert space and T € £(H), then the numerical range of T is given by

W(T) = {<Tx,x> :x € Hand x| = 1}.
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Let T € L(E). The algebraic numerical range of T is defined by
V(T) = {F(T) . Fe (L(E)) and || F||=F(I) = 1}.

It is well-known that V(T) (T € L(E)) is a compact convex subset of the
plane, and that V(T) contains the spectrum of T (see [6]). Furthermore, V(T)
coincides with the closed convex hull of W(T) whenever T is a bounded operator
on a Banach space. For basic facts about numerical ranges we refer to [6, 7].

For T € L(E), let o0(T), 04p(T), r(T) and v(T) denote the spectrum, approx-
imate point spectrum, spectral radius and numerical radius of T, respectively.
Recall that when v(T) = ||T|| then T is said to be a normaloid operator. Given
x € Eand f € E', we write x ® f to denote the rank-one bounded linear operator

z— f(z)x (z €E),

whose norm is equal to ||x||||f||. If A is a complex number then we denote by A
its complex conjugate.

2 Main results

In this section, we shall study the Daugavet equation for a given multiplication
operator when it is restricted to a symmetric norm ideal.

We begin with the following lemma.
Lemma 2.1. Let A € L(E). Then
1. |1+ Al = 1+ || All ifand only if || A]| € V(4),

2. sup ||[I+ AA| =1+ ||Al| ifand only if v(A) = || Al|.
A|=1

Proof. (1): See [18, Corollary 1].
(2): By a compactness argument we can find a modulus one complex num-
ber Ag such that sup |, [[I + AA| = [[I + AgA||. The result then follows from

Part (1). ]

Recall that a Banach space E is said to be uniformly convex whenever for each
sequences {x,}, and {y,}, in F, |x,]] < 1, |lyu|| < 1 for all n and

There is a concept that is dual to uniform convexity. A Banach space is said to
be uniformly smooth whenever for each € > 0, there exists some § > 0 such that
el < 1, lyll < 1,and [lx—y]| > & imply x+y| < [lx]| + v — ellx -yl

A Banach space is uniformly smooth (respectively, uniformly convex) if and
only if its norm dual is uniformly convex (respectively, uniformly smooth), (see

[14]).

As a consequence of Lemma 2.1, we have the following corollary proved
in [1].
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Corollary 2.2. Suppose E is a uniformly convex or uniformly smooth Banach space.
Then for A € L(E), we have

L [T+ Al = 1+ | A] ifand only if | A]| € 0ap(A);

2. sup ||[I+ AA| =1+ ||A]| ifand only if r(A) = || Al|.
Al=1

Proof. This follows from Lemma 2.1 and the facts that: For every bounded linear
operator T on a uniformly convex or uniformly smooth Banach space E (see for
example [7]), we have

i) ||T|| € 04p(T) if and only of || T|| € V(T);
ii) »(T) = || T if and only if v(T) = ||T||. ]
Lemma 2.3. Let A, B € L(E), and let S be a symmetric norm ideal of L(E). Then

IMs, a8l = [[Alll[Bl

Proof. Letx,y € Eand f € E be such that || x| = ||y|| = ||f|| = 1. Since x ® f lies
in S (see [17, Lemma 4.1]), and

[FBYI[Ax]| = [[Map(x @ )W) < [IMs,ap(x@ flls < [[Ms,a,p

then it follows that

| < AllIBI,

IMs,a,8ll = [[A][llBI =

Remark 2.4. Let A,B € L(E), and let S be a symmetric norm ideal of L(E). Since
|Ms 4l = ||A||||B|| by the above lemma, then it follows from Lemma 2.1 that
Mg 4 p is normaloid if and only if SUPp| )| _1 I+ AMs apll =1+ ||A|llB]-

In what follows H denotes a complex separable Hilbert space.

Theorem 2.5. Let A, B € L(H), and suppose that 1 < p < oo. Then the following are
equivalent:

L [T+ Mp,apll =1+ [|A[BI|;
2. There exists A € C with |A| = 1 such that A||A|| € o(A) and A||B|| € o(B);
3. There exists A € C with |A| = 1 such that A||A|| € V(A) and A||B|| € V(B).

Proof. (1) < (2): Itis well-known that, for 1 < p < o0, C,(H) is a uniformly con-
vex Banach space (see, e.g., [21, P. 23]). Therefore, Corollary 2.2 can be applied; it
shows that M, 4 p satisfies the equality in (1.2) if and only if || A[|[| B|| € (M, 4 3).
But (M, 4,8) = 0(A)c(B) (see [8]); hence we derive that there exists A € C with
|A| = 1 such that A||A]| € c(A) and A||B|| € ¢(B).

The equivalence (2) < (3) follows from the general fact: For any bounded
operator T on H, ||T|| lies in V(T) if and only if ||T|| lies in 03,(T), (see [12]). This
completes the proof. n
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Remark 2.6. Let A,B € L(H), and suppose that and 1 < p < co. From the above
theorem, it follows that ||I + M, 4 || = 1+ ||Al|||B|| if and only if || + M, p 4| =
1+ [[All[B]-

Lemma 2.7. Let A, B € L(E), and let S be a norm ideal of L(E). Then
1. V(A) V(B) € V(Ms,a,8),
(A

2.

V(AB) C V(Ma,p).

Proof. (1) Let x,y € E be such that ||x| = |ly|| = 1, and let f,¢ € E’ be such
that f(x) = ||fll = g(y) = |||l = 1. Define a linear functional ® on S by
d(X) = g(Xx). We easily check that ® is continuous with ||®|| = ®(y ® f) = 1.
Hence

O (Ms,a5(y® f)) = f(Bx)g(Ay) € V(Ms,a,8)-

From this we derive that

V(A)V(B) € V(Ms,aB)-

(2) Letx € E and f € E be such that f(x) = 1. Define a linear functional ®
on L(E) by ®(X) = f(Xx). Then ® is continuous with ||®| = &(I) = 1. Hence

®(Ma(1)) = f(ABx) € V(May,p).

Consequently,
V(AB) C V(Map). m

Remark 2.8. Tt follows from Lemma 2.7 that, for two operators A,B € L(E),
v(A)v(B) < v(Msap) < ||A||B||, for every norm ideal S. Hence Mg 4 p is
normaloid whenever A and B are normaloid.

Theorem 2.9. Let A,B € L(H), and suppose that 1 < p < oco. Then My ap is
normaloid if and only if A and B are normaloid.

Proof. To prove that the condition is sufficient recall that, for 1 < p < oo, the space
Cp(H) is uniformly convex. Hence, by virtue of Corollary 2.2, (2) and Lemma 2.3,
we have r(My, 48) = My, = [AN[BI. But r(Mj,45) = r(A)r(B) see (8],
and r(A) <v(A) < ||A|l and 7(B) < v(B) < ||B||. Then we get v(A) = ||A|| and
v(B) = ||BJ|

The necessary condition follows from Remark 2.8. m

Let us give an example showing that the equivalences in Theorem 2.5 and
Theorem 2.9 do not hold when S = L(H).

Example 2.10. Let A — {8 (1)} and B = {(1’ 8} Then |Maz| = ||A|l = |IB| =
1. Since AB = {(1) 8], it follows from Lemma 2.7, (2) that 1 € V(Map). Thus
v(Map) = 1, and ||I + Mag|| = 2 because 1+ V(AB) = V(I + AB) C

V(I+ Myg). However v(A) = v(B) = L.
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Proposition 2.11. Let A,B € L(H). Then
1T+ My all = [T+ Meo,apll = [IT+ Map-

Proof. Recall that if E is a Banach space and T € L(E), then ||T| = ||T*|
(T*: the adjoint of T). By [10, Theorem 3.13], we have (Ms 4 5)** = My p, so
|1+ Meo, a8l = [[I+ Mapll. From [10], we also have (M, 4,8)* = M, 4, SO
that

I+ Mypall = [[(I+Me,ap)ll = Il +Ms,asl =1+ Mag]. u

Let T € L(H). Following [24], the maximal numerical range Wy(T) of T is
defined by

Wo(T) = {)\ € C: there exists {x,} C H, ||x,|| = 1 such that
lim < Txy, X, >= A and lim || Tx,| = ||T||}.
n n

The normalized maximal numerical range of T is given by

S

Theorem 2.12. If A, B € L(H) then the following conditions are equivalent:

L [T+ My a8l =1+ [l A|[IB];
2. [T+ Meo,a8ll = 1+ [[Alll[B];
3. IT+Mapll =1+ [[A[llIBI|;

4, WN(A*) N WN(B) # Q.

Proof. The equivalences (1) < (2) < (3) follow from Proposition 2.11. The
equivalence (3) < (4) follows from [4, Theorem 1]. u

In connection with Lemma 2.1 and Corollary 2.2, it is natural to ask when a
given multiplication Mg 4 p is spectraloid, that is, when its spectral radius and its
numerical radius coincide. The next proposition gives necessary and sufficient
conditions for the multiplication Mg 4 p to be spectraloid.

Proposition 2.13. Let A,B € L(H), and let S be a symmetric norm ideal of L(H).
Then Mg a p is spectraloid if and only if A and B are spectraloid operators in H and

v(Ms,a) =v(A)o(B).
Proof. If Mg 4 p is spectraloid then
v(Ms ap) =1(Ms ap) =r(A)r(B) <v(A)v(B).
Since by Lemma 2.7, v(A)v(B) < v(Mg 4 p), then it follows that
r(A)r(B) =v(A)v(B) = v(Ms aB)-

Thus r(A) = v(A) and r(B) = v(B).
The converse is obvious. n
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