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Abstract

Integer multiplication in Jacobians of genus 2 curves over a finite field
Fq is a fundamental operation for hyperelliptic curve cryptography. Algo-
rithmically, the result of this operation is given by the very well known al-
gorithms of Cantor. One method to reverse duplication in these cases con-
sists in associating, to every preimage of the desired doubled divisor defined
over Fq, a root in Fq of the so called bisection polynomial. We generalize this
approach to genus 2 curves with two points at infinity, both in even and odd
characteristics. We attach a bisection polynomial to each possible type of
Mumford coordinate, we show the factorization of these in terms of Galois
orbits in the set of bisections, and we compare the efficiency of our approach
versus brute-force adaptations of the existing methods to our setting.

1 Introduction

The state of the art for reversing the multiplication-by-two map in the group of
points Jac(C)(Fq) of Jacobians of genus 2 curves over finite fields can be found
in [10]. In there the very particular properties that multiplication-by-2 acquires
in the Kummer surface of C are exploited to find preimages by essentially com-
puting 4 square roots (with a few other basic field operations). This is the most
efficient algorithm currently available. Previously methods (see [9] for example)
consisted in finding the roots of certain degree 16 polynomial obtained after a
Gröbner basis computation.
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In this paper we extend the works [13, 14] (see also [2, 3]) on curves of genus 2
with an imaginary model, to curves of genus 2 with a real model over a finite field
Fq of any characteristic. In them it is shown how to reverse the multiplication-
by-two map by finding the roots of an explicit polynomial of degree 16 (thus
avoiding the Gröbner computations). The main advantage of this approach is its
potential generalization to find preimages of multiplication-by-n for other (small)
values of n.

Certainly, if a curve in the real model admits an imaginary model then our
purpose can be accomplished with [13, 14]. However, only hyperelliptic curves
with at least one rational Weierstrass point admit imaginary models over the
same base field. Our work in the present paper covers the cases without a rational
Weierstrass point over the base field. Without our approach, the only alternative
left would be to lift the curve to an extension of the base field where an isomor-
phism to an imaginary model exists (it is sufficient to take an extension of degree
2, 3 or 6), and perform the halving computations there. The same applies when
using the Kummer surface, although in this case the field extension must contain
all the Weierstrass points. Nevertheless, the increased computational complex-
ity due to the lifting makes this alternative more costly than ours. We provide
evidence of the efficiency gain of our method with two examples over fields of
sizes 100 and 400 bits.

The plan of the paper is the following. We first survey how to represent
divisors in Jacobians of curves with a real model, including those for which the
standard Mumford representation is not available. In Section 3 we explain how
to construct the bisection polynomials that reverse multiplication-by-2. In Section
4 we show how these polynomials factor, using the Frobenius endomorphism.
In Section 5 we show some examples, and in the last section we illustrate the ef-
ficiency gains of using our polynomials compared to the obvious adaptation of
those in [14].

2 Generalities

For us C is a genus 2 curve over a finite field Fq split at infinity. Therefore C
has two different points ∞1, ∞2 above the infinity point of the singular model,
both defined over Fq or else quadratic-conjugate, which are permuted by the
hyperelliptic involution. Under this assumption, C has a real model

C : y2 + h(x)y = f (x),

where f (x) = f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0 ∈ Fq[x] is a separable

sextic and h(x) = 0 if q is odd, and where deg( f ) ≤ 6 and h(x) = x3 + h2x2 +
h1x + h0 ∈ Fq[x] if q is even. The points at infinity are defined over Fq when

f6 is a square a2 in odd characteristic or it is of the form a2 + a, a ∈ Fq, in even
characteristic. We choose the root a to be associated to ∞1. Then ∞2 will be
associated to the root −a in odd characteristic or a + 1 in even characteristic.

We now recall the coordinates (u(x), v(x)) of a degree 0 divisor class in the
Jacobian of a genus 2 curve with a real model both in odd and even characteris-
tics. More details can be found in [7, 8, 12, 15]. We follow the representation by
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Galbraith, Harrison and Mireles [8] since it is the one used in Magma [4, Hand-
book, Section “Points on the Jacobian”], which we use for our practical examples.
The only difference is that Magma specifies the weight of the divisor while we do
not need to. In particular, we can assume that efficient group addition operations
are readily available. Also, following the divisor representation in [8], divisors of
weight 2 are always balanced at infinity for us, in the sense that their non-affine
support is ∞2 + ∞1.

Consider first the cases with the two points at infinity are defined over Fq. It
is well known that the points at infinity are represented using the Puiseux series
in x−1 of y (see [11] for example), where the leading term (in x) corresponds to
the root associated to either ∞1 or ∞2. In odd characteristic ∞1 is represented

by ax3 +
f5
2a x2 + ∑

∞
i=−1 aix

−i and in even characteristic by ax3 + (ah2 + f5)x
2 +

∑
∞
i=−1 aix

−i.
Since all affine-reduced divisors can be written as the sum of a balanced affine-

reduced divisor with a number of copies of the divisor ∞2 − ∞1, we can restrict
ourselves to working with divisors of the following forms:

• Balanced affine-supported divisors of weight two P1 + P2 − (∞1 + ∞2) are
given the Mumford representation (x2 + u1x + u0, v1x + v0).

• Affine-supported divisors of weight one P1 − ∞1 (resp. P1 − ∞2) are given
the representation (x − x1, ax3 + v0) with v0 = y1 − ax3

1 (resp. replace a with
−a).

• Infinity-supported divisors ∞2 − ∞1 and ∞1 − ∞2 (from now on ”weight
zero divisors”) are represented in odd characteristic by

(1,±(ax3 +
f5

2a
x2))

and in even characteristic by

(1, ax3 + ( f5 + ah2)x
2), (1, (a + 1)x3 + ( f5 + (a + 1)h2)x

2).

When the points at infinity are not defined over Fq, they are Galois conjugates,
and therefore only balanced divisors can be Fq-rational. In terms of reduced divi-
sors, this means that all non-zero reduced divisors are balanced, affine-supported
of weight 2, so of the form P1 + P2 − (∞1 + ∞2), and therefore all divisors are
given the Mumford representation.

Since our halving algorithm takes balanced, affine-reduced divisors or
±(∞2 − ∞1), and returns divisors of these same types, for us unbalanced divi-
sors are not a problem. On the other hand, the 2-torsion divisors are of the form
Pi + Pj − (∞1 + ∞2) where {Pi, Pj} is a pair of Weierstrass points fixed (as a pair)
under the Frobenius. It is well known [14, pg. 56, Prop. 1] that the rank of
Jac(C)(Fq)[2∞] depends on the Fq-factorisation of the hyperelliptic polynomials
as shown in Table 1 (we indicate the degrees of the irreducible factors, and use
exponents for the repeated factors in even characteristic).

We see that the 2-rank of curves without an imaginary model is at most 2 in
odd characteristic, and always 0 in even characteristic.
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Table 1: 2-ranks for curves with a real model.

odd characteristic
factorisation types of f (x) 2-rank
[6], [1, 5], [3, 3] 0
[2, 4], [1, 2, 3], [1, 1, 4] 1
[2, 2, 2], [1, 1, 2, 2], [1, 1, 1, 3] 2
[1, 1, 1, 1, 2] 3
[1, 1, 1, 1, 1, 1] 4

even characteristic
factorisation types of h(x) 2-rank

[3], [13] 0
[1, 2], [1, 12] 1
[1, 1, 1] 2

3 Bisection in real models

For the rest of the paper, we use the notation

1

2
D2 := {D1 ∈ Jac(C)(Fq) | 2D1 = D2}

and Di = (x2 + ui1x + ui0, vi1x + vi0), Di = (x + ui0, vi0), etc. for i = 1, 2. We
call the D1’s in 1

2 D2 the bisections of the given D2, and the divisor D2 to bisect the
bisectee. It is clear that two different bisections of the same bisectee differ by a
divisor of order 2. Our goal is to provide an algorithm to find the bisections of
generic bisectees for genus 2 curves with a real model.

3.1 Bisections of weight 1 and bisections of weight 0

We consider the generic case of weight 2 bisections in the next section. Here we
show that if any given bisectee D2 of any weight 0, 1 or 2 has a weight 1 bisection
or a weight 0 bisection, then such bisections are found by extracting a square root.

Assume first that D2 has weight 1 or 2, and that ∞1 − ∞2 exists – otherwise
there are no weight 1 divisors at all in Jac(C)(Fq). If 2D1 = D2 with D1 = P1 −∞1

(the same argument works if we take D1 = P1 − ∞2), and say P1 = (x1, y1) ∈
C(Fq), then D2 = 2P1 − 2∞1. Therefore, since D2 is not ∞2 − ∞1, then

D2 + (∞1 − ∞2) = 2P1 − (∞1 + ∞2)

is a non-zero divisor in the balanced representation form. In this case, P1 − ∞1 =
(x − x1, ax3 + (y1 − ax3

1)) belongs to 1
2 D2, and from the algorithmic point of view,

such bisections are easy to find: since the doubling algorithm squares the first
coordinate x− x1 [6, pg. 319], one only needs to check whether the first coordinate
of D2 ± (∞1 − ∞2) is a square or not. If it is, then the first coordinate of D1 is the
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square root and we are done (the other bisections are obtained by adding the
divisors of order 2). If D2 − (∞1 − ∞2) = 2P1 − (∞1 + ∞2), then P1 − ∞2 ∈ 1

2 D2

and the argument works symmetrically.

For weight 1 bisections of weight 0 bisectees we have the following result.

Proposition 1. Let Pi ∈ C(Fq). Then Pi − ∞1 ∈ 1
2(∞2 − ∞1) and Pi − ∞2

∈ 1
2(∞1 − ∞2) if and only if Pi is a Weierstrass point of C.

Proof. Put xi = x(Pi). For Pi − ∞1 we have

2(Pi − ∞1) = (2Pi − ∞1 − ∞2) + (∞2 − ∞1),

and this is equal to ∞2 − ∞1 if and only if

2Pi − ∞1 − ∞2 = div(x − xi),

which is true if and only if Pi is a Weierstrass point. The same holds for
Pi − ∞2.

In chasing weight 0 bisections, the situation is even more straightforward.
Checking whether D2 = ±2(∞1 − ∞2) is naturally done as above: if one of D2 ±
(∞1 −∞2) is ∓(∞1 −∞2) (with the sign reversed), then D2 admits ∓(∞1 −∞2) as
a bisection, and all other bisections are obtained by adding the divisors of order 2.

3.2 Weight two bisections

In this section we show how to attach, to any given bisectee D2 ∈ Jac(C)(Fq), a
polynomial

pD2
(x) =

#Jac(C)(F̄q)[2]

∑
i=0

cix
i ∈ Fq[x],

whose roots allow to build up the first coordinate of the weight 2 bisections in
1
2 D2. We call this polynomial the bisection polynomial of D2.

The coefficients ci are functions ci( f6, . . . , f0, h2, . . . , h0, u21, u20, v21, v20) of the
coefficients of the curve and of the coordinates of the bisectee D2, and give values
in the base field Fq. They are different if the weight of the bisectee D2 is 2, 1 or 0.
We reflect the structure of the support of the bisectee in the bisection polynomial
by writing pw2(x), pw1

(x), pw0(x) accordingly.

Although completely analogous to the case of genus 2 curves with an imagi-
nary model (see [14]), we recall the general method. In order to obtain the bisec-
tion polynomial, the idea is to “reverse” the reduction step in Cantor’s addition
algorithm [5] (see also [6, pg. 308]). In the reduction part of this algorithm, the
transformation of the “unreduced coordinates” (u′

2(x), v′2(x)) into a reduced divi-
sor D2 = (u2(x), v2(x)) consists in the operations

u2(x) =
f (x)− v′2(x)h(x) − v′2(x)

2

u′
2(x)

, v2(x) = −(h(x) + v′2(x))mod u2(x).
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We say “to dereduce” for describing the use of an auxiliary polynomial
k(x) = k1x + k0 (as first appeared in [13]) to equate the dashed coordinates in
the reduction equalities above:

v′2(x) = −(h(x) + v2(x)) + k(x)u2(x), u′
2(x) =

f (x)− v′2(x)h(x) − v′2(x)
2

u2(x)
.

In the next paragraphs we refer to a dereduced divisor of a given divisor D to mean
“a divisor D′ in the same divisor class of D, dereduced with k(x)”. Our goal is to
find a particular k(x) that fits the reversion of the multiply-by-2 map.

From the doubling algorithm [6, pg. 319], we see that 2D1 = D2 clearly
implies the equality between the first coordinate u′

2(x) of the dereduced divisor
of the bisectee D2, and the square of the first coordinate u1(x) of D1:

u1(x)
2 = u′

2(x). (1)

Since we are searching for weight 2 bisections, in the remaining the left hand side
of (1) is of the form

u1(x)
2 = x4 + 2u11x3 + (2u10 + u2

11)x
2 + 2u10u11x + u2

10,

and the right hand side is the quotient of a sextic by a quadratic polynomial. The
actual quotient depends on the different possibilities for the polynomials that
define the coordinates of the bisectee D2, which we surveyed in Section 2. The
equality (1) is obtained by making the resulting quartic monic.

Equating u11 and u10 from the terms of degree 3 and 2 in u′
2(x) respectively

one obtains expressions in terms of k0 and k1. Replacing these expressions for u11

and u10 into the monomials of degree 1 and 0 and eliminating the denominators,
we find two bivariate polynomials s1(k0, k1), s2(k0, k1) which share a non-constant
factor. The resultant of s1 and s2 with respect to k0,

pw2(x) = Resk0
(s1(k0, x), s2(k0, x)),

is a degree 16 univariate polynomial whose Fq-rational roots are the values of
k1 we are searching for. This is how some coefficients ci of pw2(x) look like for
bisectees of weight 2 and curves with f5 = f3 = 0:

c0 = − 65536(4u20 − u2
21)

6,

c1 = 1048576(4u20 − u2
21)

5v21,

c2 = − 524288(4u20 − u2
21)

4(8 f2 − 8 f4u20 + 14 f4u2
21 − 30u20u2

21 + 15u4
21),

...
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c16 = − 268435456
(

−4 f2 + ( f4 − u20)( f4 + 3u20) + 4v2
21

)

v4
21 − 49807360(8 f4 − 51u20)u

10
21

+ 536870912( f4 − 3u20)v20v3
21u21 + 8388608(717u20 − 263 f4)v

2
21u6

21

+ 134217728
(

( f4 − 3u20)(−15 f2 + 4 f 2
4 + 6 f4u20 − 9u2

20) + 2(10 f4 − 33u20)v
2
21

)

v2
21u2

21

+ 134217728
(

−27 ( f2 + u20(−2 f4 + 3u20)) + 32v2
21

)

v20v21u3
21 − 4152360960v20v21u7

21

− 8388608
(

(8 f4 − 51u20)(9 f2 − 4 f 2
4 + 6 f4u20 − 9u2

20) + 270v2
20

)

u6
21 − 591462400u12

21

− 3145728(570 f2 − 232 f 2
4 + 108 f4u20 + 297u2

20 − 60v2
21)u

8
21

− 16777216
(

81 f 2
2 + 16 f 4

4 − 48 f 3
4 u20 + 81(u4

20 − 4u20v2
20) + 1134u2

20v2
21 − 88v4

21

)

u4
21

− 301989888
(

(14 f4 − 51u20)v20v21u21 − f4(6u3
20 − 6v2

20 + 37u20v2
21)

)

u4
21

+ 16777216
(

6 f2(12 f 2
4 − 18 f4u20 + 27u2

20 + 8v2
21)− 4 f 2

4 (27u2
20 + 28v2

21)
)

u4
21

The procedure is completely analogous for obtaining pw1
(x) (of degree 16)

and pw0(x) (of degree 10). It is noticeable that none of the bisection polynomials
depend on the coefficients f1, f0.

In even characteristic the maximum number of bisections of a given bisectee is
4. Since u1(x)

2 = x4 + u2
11x2 + u2

10, equating the linear and cubic terms with u′
2(x)

one readily obtains a closed formula for k0 in terms of k1, and for k1 the analogous
pw2(x), pw1

(x) (of degree 4), and pw0(x) (linear). This is how they look:

pw2(x) = u3
21x4 + u21(h1 + h2

2)x
2 + (h0 + h1h2)x + (h2 + u21)v21 + v20

+ f3 + f4u21 + f5(h1 + u20 + u21( f5 + u21))

+ f6u21(h1 + ( f6 + 1)u2
21),

pw1
(x) = x4 + (h1 + h2

2)x
2 + (h0 + h1h2)x + au20(h0 + h1h2 + h2u2

20)

+ a2u2
20(h1 + h2

2) + (h0 + h1h2)v20 + f2 + f3u20

+ f4( f4 + h1 + u2
20) + f5u20( f5u20 + h1 + u2

20) + f6h1(h1 + u2
20),

pw0(x) = x −
( f1 + h1( f3 + ah0 + f5h1 + ah1h2)

h1h2 + h0

)

.

4 Factorization of the bisection polynomials

In this section we relate the possible factorisations of pw1
(x), pw2(x) and pw0(x)

with the factorisations of f (x) and h(x). We are able to factor the bisection poly-
nomials because of the correspondence between factors of pwi

(x) defined over
the base field and Galois orbits of bisections.
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4.1 Odd characteristic

By construction, whenever our method finds a pair of values (k0, k1), we have
a bisection. For instance, if pwi

(x) has a linear simple factor x − k1, then k0 is a
root of a degree 1 factor of gcd(s1(x, k1), s2(x, k1)). Therefore multiplicity 1 linear
factors of pwi

(x) have always a corresponding bisection, and we say we have a
successful factorisation of pwi

(x).

However, there is not always a bijection between the roots of pwi
(x) and the

set of bisections. Indeed, the bijection fails for certain multiple roots of pwi
(x). By

definition of resultant, the degree of gcd(s1(x, k1), s2(x, k1)) is in fact the multi-
plicity of k1 as a root of pwi

(x). It can therefore happen that pwi
(x) contains some

factors with multiplicity 2, 3 or 4. This corresponds to gcd(s1(x, k1), s2(x, k1)) of
degree 2, 3 or 4. When such a gcd has 2, 3 or 4 roots in Fq, we have 2, 3 or 4
different sets of pairs (k0, k1), and the corresponding set of bisections. In these
cases we say we have a successful factorisation of pwi

(x) as well. On the contrary,
even if pwi

(x) does actually have a root over Fq, if gcd(s1(x, k1), s2(x, k1)) does
not have a linear factor we consider the factorisation of pwi

(x) to be unsuccessful.

The case of pairs (k1, k0) of multiplicity greater than 1 as a pair do have a
geometric interpretation: they correspond to the divisors of order 4.

For simplicity, in Theorem 1 below we consider the factorisation of pwi
(x) to

be that of the full factorisation for pairs (k0, k1). For instance, a double Fq-rational
root k1 that gives rise to an irreducible gcd of degree 2, will be considered a de-
gree 2 irreducible factorisation of pwi

(x) over Fq, and labeled as “unsuccessful
factorisation” in the table of Theorem 1. Also, in accordance to this, a double Fq-
rational root k1 which gives rise to a gcd that factors into 2 distinct linear factors,
we will label as a successful factorisation of type [1, 1] and not [12]. This notation
aims to distinguish between the roots of pwi

(x) that lead to bisections (over Fq)
from those that do not (unless we go to an extension of Fq).

Factors that appear multiple times in the factorisation of pwi
(x) can then be

equivalent to [1, 1] or [2] (for a factor of pwi
(x) of type [12]), [1, 1, 1], [1, 2] or [3]

(for a factor of pwi
(x) of type [13]), [1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], or [4] (for a factor

of pwi
(x) of type [14]), [2, 2] or [4] (for a factor of pwi

(x) of type [22]), [2, 2, 2], [2, 4]
or [6] (for a factor of pwi

(x) of type [23]) etc., depending on the factorisation of the
gcd polynomial for k0.

Theorem 1. The degrees of the irreducible factors of pw1
(x) and pw2(x) depend on the

degrees of the irreducible factors of f (x) as follows:
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f (x) pwi
(x), i = 1, 2

successful factorisations unsuccessful factorisations
[2, 2, 2] [1, 1, 1, 1, 2, ..., 2] [4, 4, 4, 4]
[2, 4] [1, 1, 2, 4, 4, 4] [8, 8]
[3, 3] [1, 3, 3, 3, 3, 3]
[6] [1, 3, 6, 6]

[1, 1, 1, 1, 1, 1] [1, 1, ..., 1] [2, ..., 2]
[1, 1, 1, 1, 2] [1, ..., 1, 2, 2, 2, 2] [2, ..., 2], [4, 4, 4, 4]
[1, 1, 1, 3] [1, 1, 1, 1, 3, 3, 3, 3] [2, 2, 6, 6]
[1, 1, 2, 2] [1, 1, 1, 1, 2, ..., 2] [4, 4, 4, 4]
[1, 2, 3] [1, 1, 2, 3, 3, 6] [4, 12]
[1, 1, 4] [1, 1, 2, 4, 4, 4] [8, 8]
[1, 5] [1, 5, 5, 5]

Proof. The curves for which there exists an isomorphic imaginary model are dealt
with in [14] (we include them for completeness). It remains to deal with the first
four factorisation types of f (x). Since the Frobenius automorphism π commutes
with the multiplication-by-two map, the Galois action in the preimage 1

2 D2 is

given by addition of the elements in Jac(C)(Fq)[2]. In order to factor pw2(x) and

pw1
(x), the goal is to find Galois orbits in 1

2 D2. There is a bijection between the
Galois orbits and the factors of pw2(x) and pw1

(x).
The full 2-torsion group of the curve C (over Fq) is given by the set of 15 pairs

of Weierstrass points {Pi, Pj} (which is associated to the divisor Pi + Pj − (∞1 +
∞2)) with the divisor 0. Note that when computing sums of divisors of order 2,
one must keep in mind that the sum of the 6 Weierstrass points −3(∞1 + ∞2) is a
divisor in the class 0. Given a specific set of Weierstrass points, we define a basis
for Jac(C)(Fq)[2] that keeps the matrix representing the effect of the Frobenius as
“simple” as possible.

Table 2: Basis of the 2-torsion group depending on the factorization of f (x).

f (x) Weierstrass points W1 W2 W3 W4

[2, 2, 2] {P, Pπ, Q, Qπ, R, Rπ} {P, Pπ} {Q, Qπ} {P, Q} {P, R}
[2, 4] {P, Pπ, Q, Qπ, Qπ

2
, Qπ

3} {P, Pπ} {Q, Qπ
2} {Q, Qπ} {P, Q}

[3, 3] {P, Pπ, Pπ
2
, Q, Qπ, Qπ

2} {P, Pπ} {Pπ, Pπ
2} {Q, Qπ} {Qπ, Qπ

2}
[6] {P, Pπ, Pπ

2
, Pπ

3
, Pπ

4
, Pπ

5} {P, Pπ
3} {Pπ, Pπ

4} {P, Pπ} {Pπ, Pπ
2}

[1, 1, 1, 1, 1, 1] {P, Q, R, S, T, U} {P, Q} {P, R} {P, S} {P, T}
[1, 1, 1, 1, 2] {P, Q, R, S, T, Tπ} {P, Q} {P, R} {P, S} {P, T}
[1, 1, 1, 3] {P, Q, R, S, Sπ, Sπ

2} {P, Q} {P, R} {S, Sπ} {Sπ , Sπ
2}

[1, 1, 2, 2] {P, Q, R, Rπ, S, Sπ} {R, Rπ} {P, R} {S, Sπ} {P, S}
[1, 2, 3] {P, Q, Qπ, R, Rπ, Rπ

2} {Q, Qπ} {P, Q} {R, Rπ} {Rπ , Rπ
2}

[1, 1, 4] {P, Q, R, Rπ, Rπ
2
, Rπ

3} {P, Q} {R, Rπ
2} {R, Rπ} {P, R}

[1, 5] {P, Q, Qπ, Qπ2
, Qπ3

, Qπ4} {P, Q} {P, Qπ} {P, Qπ2} {P, Qπ3}

Table 2 contains the basis used for each factorisation type. The matrices
representing the effect on the Frobenius are then given below.
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



1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1









1 1 0 1
0 1 1 0
0 0 1 1
0 0 0 1









0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1









0 1 0 1
1 1 0 0
0 0 0 1
0 0 1 1





[2,2,2] [2,4] [3,3] [6]





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1









1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1





[1,1,1,1,1,1] [1,1,1,1,2] [1,1,1,3] [1,1,2,2]





1 1 0 0
0 1 0 0
0 0 0 1
0 0 1 1









1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1









0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1





[1,2,3] [1,1,4] [1,5]

Given a basis {W1, W2, W3, W4} and the associated matrix M for the effect of
the Frobenius π on the 2-torsion group, we now consider the effect of the π on
the set of bisections of D2. Given a specific bisection D1, the set S is given by
D1, D1 + Wi, 1 ≤ i ≤ 4, D1 + Wi + Wj, i 6= j, 1 ≤ i, j ≤ 4, D1 + Wi + Wj + Wh,
i 6= j, i 6= h, j 6= h, 1 ≤ i, j, h ≤ 4, D1 + W1 + W2 + W3 + W4, where π acts as
a permutation on S . If we divide this permutation into disjoint cycles, then the
length of each cycle corresponds to the degree of an irreducible factor of pwi

(x),
with singletons corresponding to roots in Fq (i.e. bisections defined over F). Note
that the cycle decomposition is completely fixed once we have the image of D1

under π.
To work out all the possible factorisations of pwi

(x), we work our way through
each of the 16 possible images π(D1), computing the cycle decomposition of the
permutation π|(D1 ,π(D1))

. For example, for f (x) of type [6], with π(D1) = D1, we
find the cycles

{D1},
{D1 + W1, D1 + W2, D1 + W1 +W2},
{D1 + W3, D1 +W4, D1 +W1 + W3 + W4, D1 +W1 + W2 + W3,

D1 +W1 + W4, D1 + W1 +W2 + W3 + W4},
{D1 + W3 +W4, D1 + W1 + W3, D1 + W2 +W4,

D1 +W2 + W3 + W4, D1 +W2 + W3, D1 + W1 + W2 +W4},

which corresponds to the decomposition [1, 3, 6, 6].
Since the Galois–orbit structure of 1

2 D2 is independent of the weight of the bi-
sectee D2, and taking into account Proposition 1, we deduce that the polynomial
pw0(x) · f (x) (as a degree 16 polynomial) follows the same factorisation types as
pw1

(x) and pw2(x).

4.2 Even characteristic

We see that there is a one to one correspondence between bisections and the roots
of the quartic pwi

(x). We may say that the roots k1 over Fq of pwi
(x) have now a

direct geometric interpretation.
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Theorem 2. The degrees of the irreducible factors of pwi
(x) depend on the degrees of the

irreducible factors of h(x) as follows:

h(x) pwi
(x), i = 1, 2

successful factorisations unsuccessful factorisations
[1, 1, 1] [1, 1, 1, 1] [2, 2]
[1, 12] [12, 2] [22]
[13] [14]
[1, 2] [1, 1, 2] [4]
[3] [1, 3]

Proof. From h(x), we define the polynomial H(x) = x4 + c2x2 + c1x = x · h(x +
h2). Since we are in characteristic two, H(x) acts as a linear operator on Fq and its
algebraic extensions. Furthermore, pw1

(x) and u21 pw2(
x

u21
) are of the form H(x)+

c0. The factorisation of pwi
(x) can therefore be obtained from the factorisation of

H(x) + c0.

Let x + γ1 and x + γ2 be two factors of H(x) + c0. Since H(x) is a linear
operator, γ1 + γ2 must be a root of H(x) = x · h(x + h2). If h(x) is separable,
then c1 6= 0 (since x3 + c2x = h(x + h2) = x(x +

√
c2)

2), so pwi
(x) has four

distinct roots (over the closure of Fq). The factorisation form of pwi
(x) is also

obtained from that of h(x). If h(x) is [12, 1], then c1 = 0 and c2 6= 0, so H(W) =
W2(W +

√
c2)

2, so each root of pwi
(x) (whether Fq-rational or Fq2-rational) is a

double root. If h(x) is [13], then c1 = c2 = 0 and H(W) = W4, so pwi
(x) has a

quadruple Fq-rational root.

Note that the polynomial pw0(x) · h(x) (as a degree 4 polynomial) follows the
same factorisation types as pwi

(x).

5 Examples

In this section we illustrate the results above. We show examples of our method
to compute bisections over fields of even and odd characteristic. We leave large
characteristics for the next section, where we discuss the efficiency of our algo-
rithm.

Example 1. Consider the curve y2 = x6 + 5x4 + 3x2 + 1 over F19. Our method for
the random bisectee D2 = (x2 + 14x+ 1, 12) finds v′2(x) = k1x3 + (k0 + 14k1)x

2 +
(14k0 + k1)x + k0 − 12, so that u′

2(x) equals

x4 +
(14k2

1 + 2k0k1 + 14)

k2
1 − 1

x3 +
(k2

0 + k2
1 + 9k0k1 + 9)

k2
1 − 1

x2

+
(14k2

0 + 14k1 + 2k0k1 + 12)

k2
1 − 1

x +
(k2

0 + 14k0 + 10)

k2
1 − 1

.

Equating this against u1(x)
2 = x4 + 2u11x3 + (2u10 + u2

11)x
2 + 2u10u11x + u2

10, in
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the terms of degree 3 and 2 one obtains the formulas

u11 = 1
(k2

1−1)
(7k2

1 + k0k1 + 7),

u10 = 1
(k2

1−1)2

(

16k4
1 + 8k3

1k0 + 11k2
1 + 14k1k0 + 13k2

0 + 13
)

.

Substituting these in the terms of lower degree and taking the resultant w.r.t. k0

we obtain the following polynomial satisfied by k1:

pw2(x) = (x − 3)(x + 2)(x2 + 6x + 15)(x4 + 4x3 + 3x2 + 16x + 6)
(x4 + 13x3 + 15x2 + 4x + 4)(x4 + 16x3 + 11x2 + 2x + 1).

With the choice k1 = 3, then s1(x, 3) = 5x3 + 8x2 + 17x, s2(x, 3) = 3x4 + 8x3 +
9x2 + 7x and k0 is the root of gcd(s1(x, 3), s2(x, 3)) = x. The formulas for u10, u11

yield u1(x) = x2 + 4x + 5, and with the right choice of the second coordinate one
finds that a bisection of D2 is

D1 = (x2 + 4x + 5, x + 9) ∈ 1

2
D2.

Note that this curve has 2-rank 1, and the bisection corresponding to k1 = −2 is
D1 + (x2 + 14, 0) = (x2 + 17x, 15x + 18).
For the bisectee D2 = (x2 + 16, 14) our method finds that

pw2(x) = x4(x4 + 7x2 + 15)(x4 + 3x3 + 5x2 + 6x + 10)
(x4 + 16x3 + 5x2 + 13x + 10).

With the quadruple root k1 = 0 of pw2(x) we find s1(x, 0) = 0 and s2(x, 0) =
3x4 + 11x2 + 6x + 1 = 3(x + 15)(x + 16)(x2 + 7x + 9). Since there are two roots
k0 over F19 of s2, we say that the factorisation type of pw2(x) is not [14, 4, 4, 4]
but [1, 1, 2, 4, 4, 4]. The formulas for u10, u11 at the values {k0, k1} = {3, 0} and
{k0, k1} = {4, 0} yield that the two bisections of D2 are (x2 + 9, 7), (x2 + 15, 9),
whose difference is again (x2 + 14, 0).

Example 2. Take the curve y2 + (x3 + x2 + α
17)y = αx6 + x + α

5 over F27 . Here
α = f6 is a generator of F27 that satisfies α

7 + α + 1 = 0, and the values a such
that a2 + a = α are α

16, α
112. For the infinity-supported bisectee D2 = (1, α

112x3 +
α

112x2), we obtain k1 = α
110, k0 = α

12, u11 = α
50, u10 = α

87, so that

D1 = (x2 + α
50x + α

87, α
45x + α

60) ∈ 1

2
D2.

Note that since h(x) factors as (x + α
16)(x2 + . . .) this curve has 2-rank 1, and D2

has a second weight 1 bisection (x + α
16, α

112x3 + α
84).

6 Efficiency

At this point a natural question arises: what is the benefit of using tailored bisec-
tion polynomials for real models, when most curves with a real model admit an
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imaginary model (after perhaps an extension of the base field), and when bisec-
tion polynomials are already available for them (see [13, 14])? The answer, apart
from the completeness issue alluded to in the introduction, is clear: efficiency.
Indeed, given polynomials of fixed degree and assuming the Extended Riemann
Hypothesis, and using efficient factorisation algorithms (for example, Cantor and
Zassenhaus’ modification of Berlekamp’s algorithm, see [1]), the running time of

our halving algorithm is between O∼(log2 q) and O(log3 q). However, depend-
ing on the polynomial f (x) defining the model of C, one may need to cope with
an extension of the base field of degree up to 6 to find an imaginary model where
to use the bisection polynomials in [14]. In this worst case scenario, the penalty
constant involved for a degree 6 extension is (a priori) between 62 and 63.

However, another issue complicates the cost estimate: going to an extension of
Fq where some of the Weierstrass points of the curve are defined also implies an
increase in the 2-rank of the the curve. This results in an increase in the number of
linear factors of the bisection polynomial (which is what the algorithm is looking
for). Not only some of the roots found will not correspond to bisections defined
over Fq (and must be eliminated), but they will increase the cost of finding all
linear factors. For example, when f (x) is a degree 6 irreducible, we go from
having a single linear factor (corresponding to the bisection) to having 16 linear
factors, 15 of which correspond to bisections in Fq6 but not in Fq. The increase in

cost will then be by a factor significantly higher than 62.
The next example shows that in practice our predictions are realistic. The size

of the primes we chose for this example is larger, around 100 bits and 400 bits.

Example 3. Consider the prime p = 2100 + 277 and the curve over Fp

C : y2 = x6 + 2x3 + 3x2 + 17x + 31.

Over Fp6 , C admits an imaginary model C′. Using a machine with 4 Intel(R)
Xeon(R) CPU’s X5460 @ 3.16GHz, and a total of 16GiB System Memory, we found
that the average time for a halving computation in Jac(C′) over Fp6 with the
bisection polynomials appeared in [14] is around 290 times slower than an
average halving in Jac(C) over Fp with our polynomials.

Using the same machine, with the 400 bit prime p = 2400 + 181 and

C : y2 = x6 + 4x4 + 3x2 + 17x + 31

over Fp, an average halving with [14] in the imaginary model over Fp6 is around
460 times slower than an average halving with our method over Fp.

References

[1] Bach, E., Shallit, J.: Algorithmic Number Theory, pg. 167. MIT Press, Cam-
bridge, MA (1996).

[2] Birkner, P.: Efficient divisor class halving on genus two curves, Selected Areas
in Cryptography 2006, LNCS 4356, 317–326 (2007).



602 J. M. Miret – J. Pujolàs – N. Thériault
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Dept. de Matemàtica, Universitat de Lleida, Spain
email :{miret, jpujolas}@matematica.udl.cat
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