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Abstract

We consider a hinged elastic beam subject to a nonlinear restoring force.
We show that the equilibrium position of the beam under the action of a
vertical load displays an oscillating profile. We compare the nonlinear model
with the linear model and we study the dependence of the solution with
respect to the physical parameters involved.

1 Introduction

Assume that a hinged beam, of finite length 2R, is subject to the restoring forces
of a large number of nonlinear two-sided springs as in Figure 1.

Figure 1: Beam subject to two-sided restoring springs.
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The beam may be seen as a simplified model for the roadway of a suspension
bridge and the springs are intended to model the hangers which, in turn, are
linked to sustaining cables. Assume that, besides the nonlinear restoring force g
due to the springs there is a downwards distributed load p = p(x) acting on the
beam. Then, the vertical deformation w of the beam is governed by the semilinear
equation

EI w′′′′(x)− Tw′′(x) = p(x)− g(w(x)) (−R < x < R) (1)

complemented with the hinged boundary conditions

w(±R) = w′′(±R) = 0 . (2)

This is the general equation of a beam having flexural rigidity EI > 0, constant
tension T ≥ 0, and subject to both a downwards load p (its weight) and to the
restoring action g = g(w) due to some elastic springs; we refer to [2] (see also [6])
for the derivation of (1). We assume here that

g ∈ C0(R) is increasing. (3)

It is well-known that the linear Hooke law of elasticity states that for relatively
small deformations of an object, the size of the deformation is directly propor-
tional to the deforming force or load. But for large values of the applied force,
the deformation of the elastic material is often larger than expected on the basis
of the Hooke law. This tells us that a linear law is reliable only for small elon-
gations of a spring. In recent years, the nonlinear behavior of several structures
became evident to the scientific community, see e.g. [12]; in particular, the nonlin-
ear behavior of cables [10] and of the restoring action of the hangers [3] has been
emphasized.

How different can be the response of a nonlinear restoring force was recently
studied by us in several papers [1, 7, 8, 9] in the case of ideal infinite beams.
A striking new phenomenon appears, namely a finite space blow up with self-
excited oscillation. More precisely, fourth order equations such as (1) exhibit
solutions which cannot be continued to the whole real line due to the appearance
of wide oscillations yielding lim sup w(x) = +∞ and lim inf w(x) = −∞ as x
approaches some finite limit position. We have shown that this phenomenon is
not visible in equations of order less than four or in linear equations.

In this paper we aim at studying the same phenomenon in the case of a beam
of finite length 2R, identified with the interval [−R, R]. We compare the difference
between the solutions of the nonlinear problem (1)-(2) and the solutions of the
corresponding linearized problem. We show that the profiles of the solutions of
the nonlinear problem exhibit a larger number of oscillations and we study how
this discrepancy varies in dependence of the physical parameters in the model.

Following a suggestion by Plaut-Davis [13, Section 3.5] we mainly consider

g(w) = kw + εw3 for some k, ε > 0; (4)

in fact, this nonlinearity is quite common in elasticity models, see e.g. [11, (1)].
Let us also mention that, in view of the general results in [9], we expect different
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nonlinearities to generate the same qualitative behavior within solutions. In order
to go directly into the heart of the matter, consider the initial value problem

w′′′′
δ (x)−w′′

δ (x)+wδ(x)+δwδ(x)
3=1, wδ(0)=w′

δ(0)=w′′
δ (0)=w′′′

δ (0)=0. (5)

In Figure 2 we plot the solutions wδ of (5) for δ = 0 (linear case), δ = 0.01, δ = 0.02.
Close to x = 0, say for x ∈ [0, 4.5], the solutions are almost identical. Then, the
larger is δ, the earlier the oscillation starts. For δ = 0.02 the solution numerically
appears to blow up for x ≈ 7.1.

Figure 2: Solutions of (5) when δ = 0 (thick), δ = 0.01 (intermediate), δ = 0.02
(thin).

The purpose of this paper is to explain these behaviors and to emphasize
the difference between the linear and the nonlinear regime in the case of a finite
hinged beam subject to superlinear restoring forces. We will show that the pres-
ence of δ > 0 creates a phenomenon of self-excited oscillations which increases
immeasurably the vibrations of the beam. As a conclusion, we may state that
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the nonlinear behavior of restoring forces creates fracture in ideal infinite beams
whereas it increases the number of vibrations in hinged bounded beams.

2 Preliminary results

2.1 Explicit solutions for the linear equation

Consider first the linear case where g(w) = kw, that is, the springs obey the
classical linear Hooke law. Then (1) reads

EI w′′′′(x)− Tw′′(x) + kw(x) = p(x) . (6)

The tension is usually small compared with the flexural rigidity; therefore, we
assume that

0 ≤ T < 2
√

k EI . (7)

This assumption gives the “right behavior” to the solutions of (6): indeed,
assuming that p is constant, p(x) ≡ p ∈ R, simple calculus arguments show
that if T ≥ 0 satisfies (7), then the solutions of (6) have the form
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with the coefficients a, b, c, d depending on the boundary or initial conditions. In
particular, if we further assume that w satisfies (2) then w is even and it has the
form

w(x)= a cosh
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(8)

for some a, b ∈ R depending on R. Too many parameters appear in the explicit
form (8) of the solution. For this reason, in Section 2.3 we reduce the problem to
an adimensional form.

2.2 Variational formulation and well posedness of the nonlinear problem

It is quite standard to prove that (1) is well-posed, it suffices to set up a suitable
variational formulation. Let us briefly sketch what is meant by weak solution and
under which assumptions it exists and is unique.

Consider the second order Sobolev space H2 ∩ H1
0(−R, R) and let H∗(−R, R)

denote its dual space. The space H2 ∩ H1
0(−R, R) is a Hilbert space when

endowed with the scalar product

(u, v) =
∫ R

−R
u′′(x)v′′(x) dx ∀u, v ∈ H2 ∩ H1

0(−R, R) .
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For all p ∈ H∗(−R, R) we say that w ∈ H2 ∩ H1
0(−R, R) is a weak solution of

(1)-(2) if

∫ R

−R

(
EI w′′(x)v′′(x) + T w′(x)v′(x) + g(w(x))v(x)

)
dx = 〈p, v〉

∀v ∈ H2 ∩ H1
0(−R, R) (9)

where 〈·, ·〉 denotes the duality between H∗(−R, R) and H2 ∩ H1
0(−R, R). Since

H2 ∩ H1
0(−R, R) ⊂ C1[−R, R], the integral

∫
g(w)v makes sense. Weak solutions

of (1)-(2), as defined in (9), are critical points of the energy functional

J(u) =
EI

2

∫ R

−R
u′′(x)2 dx +

T

2

∫ R

−R
u′(x)2 dx +

∫ R

−R
G(u(x)) dx − 〈p, u〉

∀u ∈ H2 ∩ H1
0(−R, R)

where G(s) =
∫ s

0 g(σ) dσ. If g satisfies (3) then G ∈ C1(R) is a convex function.
Hence, the functional J consists in the sum of two quadratic (convex) terms, of an
additional convex term containing G, and of a linear term. Therefore, J is convex
and since it is continuous and coercive in H2 ∩ H1

0(−R, R) it admits a unique
critical point, its absolute minimum, which is a weak solution w of (9). If we
additionally assume that p ∈ C0[−R, R] (in particular, if p is constant) then the
weak solution w belongs to C4[−R, R] and it is a classical solution of (1)-(2). Let
us summarize these facts in the following

Theorem 1. Assume (3) and (7). Then for all p ∈ H∗(−R, R) there exists a unique
w ∈ H2 ∩ H1

0(−R, R) satisfying (9). If p ∈ C0[−R, R] then w ∈ C4[−R, R] and w is a
classical solution of (1)-(2).

2.3 Adimensional form of the equation

With the choice (4), the equation (1) reads

EI w′′′′(x)− Tw′′(x) + kw(x) + εw(x)3 = p(x) (−R < x < R) .

To simplify the task, we restrict our attention to the case of a constant load
p(x) ≡ p. After the changes of variables

x 7→ x 4

√
k

4 EI , τ =
T

2
√

k EI
, δ =

4ε

k
, P =

4

k
p , L = R 4

√
k

4 EI ,

this equation becomes

w′′′′(x)− 4τw′′(x) + 4w(x) + δw(x)3 = P (−L < x < L) (10)

with τ < 1 in view of (7). The boundary conditions (2) simply become

w(±L) = w′′(±L) = 0 . (11)
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3 The number of oscillations of the solution of the linear

problem

When δ = 0, the equation (10) reads

w′′′′(x)− 4τw′′(x) + 4w(x) = P (−L < x < L) (12)

and the solution of (12) satisfying (11) is even for all L > 0; by (8), the general
solution of (12)-(11) is

w(x) = a cosh
[

x
√

1 + τ
]

cos
[

x
√

1 − τ
]
+ b sinh

[
x
√

1 + τ
]

sin
[

x
√

1 − τ
]
+

P

4

with a and b to be determined in dependence of L. For our convenience we restrict
the possible values of L by requiring that

a√
1 + τ

=
b√

1 − τ
=: γ (13)

in such a way that the solution reads

w(x) = γ
{√

1 + τ cosh
[

x
√

1 + τ
]

cos
[

x
√

1 − τ
]

+
√

1 − τ sinh
[

x
√

1 + τ
]

sin
[

x
√

1 − τ
] }

+
P

4
.

By differentiating we then find that

w′(x) = 2γ sinh
[

x
√

1 + τ
]

cos
[

x
√

1 − τ
]

and it is therefore quite simple to compute the number of critical points of w.
Restricting to the half-line x ≥ 0, we see that w′(x) = 0 if and only if

x = x0 := 0 or x = xj :=
(2j − 1)π

2
√

1 − τ
(j ∈ N , j ≥ 1) . (14)

A further differentiation yields

w′′(x) = 2γ
{√

1 + τ cosh
[

x
√

1 + τ
]

cos
[

x
√

1 − τ
]

−
√

1 − τ sinh
[

x
√

1 + τ
]

sin
[

x
√

1 − τ
] }

.

By imposing the second boundary condition in (11) we find

tan
[

L
√

1 − τ
]
=

√
1 + τ

1 − τ
coth

[
L
√

1 + τ
]

(15)

and it is clear that

∀k ∈ N (k ≥ 1) ∃! Lk ∈
(
(k − 1)π√

1 − τ
,
(2k − 1)π

2
√

1 − τ

)
s.t. Lk satisfies (15). (16)



The impact of nonlinear restoring forces acting on hinged elastic beams 565

Figure 3: Positions of Lk as defined in (16).

We refer to Figure 3, where Λk = (2k−1) π

2
√

1−τ
, for the qualitative description of the

position of Lk as defined in (16). In fact, since the right hand side of (15) is larger

than 1, we know that Lk >
(4k−3) π

4
√

1−τ
.

Once Lk is fixed we may compute γ = γk by imposing the first boundary
condition in (11) and by using (16):

γk = − P

8
√

1+τ cosh
[
Lk

√
1+τ

]
cos

[
Lk

√
1−τ

] . (17)

Since Lk satisfies (16) we have γk < 0.
Let us summarize the above results in the following statement.

Theorem 2. Assume that L = Lk and γ = γk for some k ∈ N (k ≥ 1), where Lk is
defined in (16) and γk is defined in (17). Then the function

wk(x) = γk

{√
1 + τ cosh

[
x
√

1 + τ
]

cos
[

x
√

1 − τ
]

+
√

1 − τ sinh
[

x
√

1 + τ
]

sin
[

x
√

1 − τ
] }

+
P

4

solves the problem

w′′′′
k (x)− 4τw′′

k (x)+ 4wk(x) = P ∀x ∈ (−Lk, Lk) , wk(±Lk) = w′′
k (±Lk) = 0 .

Therefore, wk admits 2k − 1 critical points given by x0 and ±xj for j = 1, ..., k − 1, see
(14); in particular, if k = 1 then w1 only admits the unique critical point x0 = 0.

Theorem 2 counts the number of critical points of wk. Recalling that
the vertical axis is oriented downwards

we see that the unique constant solution of (12) is given by

w̃(x) ≡ P

4
. (18)

Roughly speaking, we can say that the “target” of wk, who aims to minimize the
energy of the beam, is to approach as much as possible the equilibrium position
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Figure 4: Graphs of w1, w2, w3, as defined in Theorem 2.

w̃. In Figure 4 we plot the qualitative graphs of w1, w2, w3. One sees that the
first beam is not large enough to allow w1 to reach P/4. On the other hand,
the second beam is large enough and w2 goes beyond P/4 in order to get close
to it after the first maximum point. Finally, the third beam tends to hide the
oscillations of w3 around P/4; after the first maximum, w3 just slightly oscillates
around P/4 and w3 appears almost constant in the central part of the beam. The
same phenomenon becomes more and more evident as k increases, that is, as the
length of the beam increases.

As a complement to Theorem 2 we may add two more information on the
qualitative behavior of wk. First, we may distinguish between maxima and min-
ima points; we have

∀k ∈ N , k ≥ 1 (−1)k+jw′′
k (xj) > 0 ∀j = 0, ..., k − 1 . (19)

Then, we formalize the tendency to flatten in the center of the beam as follows

the map {0, ..., k − 1} → R+ defined by j 7→
∣∣∣∣wk(xj)−

P

4

∣∣∣∣ is strictly increasing.

(20)

Due to the linear nature of (12), it is clear that the number of critical points
of wk does not depend on P. Moreover, we have linked τ to Lk through (16).
Therefore, the number of critical points of the solution wk of (12)-(11) (for L = Lk)
merely depends on k. Theorem 2 states that it equals 2k − 1. In next section we
numerically compute the number of critical points of the solution of (10)-(11) and
we compare it with 2k − 1; however, for the nonlinear problem, the number of
critical points depends both on P and δ.

4 The number of oscillations of the solution of the nonlinear

problem

4.1 The numerical procedure and its test on the linear equation

In the nonlinear case δ 6= 0 we do not have explicit solutions of (10)-(11) and we
cannot proceed theoretically in order to find the number of critical points of the
corresponding solutions. Let us notice that, by the Cardano formula, the unique
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constant solution of (10) is given by

w(x) ≡ W(δ, P) :=

3 · 41/3 · P

[3P
√

3δ +
√

27P2δ + 256]2/3 + 44/3 + [3P
√

3δ −
√

27P2δ + 256]2/3
(21)

which coincides with (18) when δ = 0.
Assume again that, for a given τ ∈ (0, 1), the length of the beam is given by

(16) for some k ∈ N (k ≥ 1). We are interested in finding the number of critical
points of the solution of (10)-(11) when L = Lk and τ satisfies (16). By symmetry,
we may restrict our attention to the interval [0, Lk). This number also depends
both on the load P and on the nonlinear coefficient δ; let us denote it by

Z(Lk , P, δ) := the number of critical points of the solution of (10)-(11)

in the interval [0, Lk) . (22)

Note that Z(Lk , P, 0) = k for all P. By putting w(x) = αz(x), one sees that

Z(Lk , P, δ) = Z

(
Lk,

P

α
, δα2

)
∀α > 0 . (23)

In particular, (23) states that the number of critical points does not vary if we decrease
the nonlinearity and we increase the load (or viceversa) following a suitable rule.

In order to compute Z(Lk , P, δ) we proceeded numerically by using the bvptwp
code, whose MATLAB version was published in [4]. It is an optimized high-
quality code. We first tested this numerical approach on the linear case δ = 0.
We chose τ and k, then we computed Lk as defined in (16): by a bisection method

we found the root of (15) in the interval
(
(k−1) π√

1−τ
,
(2k−1) π

2
√

1−τ

)
with an accuracy of the

order of 10−12. This choice is motivated by our numerical accuracy requirement.
We note that any Newton (or Newton-type) method cannot be used since con-
vergence is not guaranteed by the function behavior close to the searched root.
Actually, the bvptwp code has an order which varies from 4 to 8; for the initial
mesh we used a stepsize of the order of 10−3, and tolerances of about 10−10 so we
can expect to compute the solution of (10) with about 10 correct digits.

We then compared the analytical results obtained in Section 3 with our
numerical results. To this end, we first note that values of γk in (17) decrease
very quickly when k increases; for example, γ6 = 4.2 · 10−32 and γ12 = 8.8 · 10−68

when P = 10 and τ = 0.9. Therefore, the computation of wk(x) in Theorem 2 can
exhibit a serious loss of significant digits due to the fact that the finite arithmetic
sum can be an ill-conditioned operation. Indeed, if one wishes to compute the
variations of the solution wk(x) (see Theorem 2) with respect to w̃(x) = P/4 (see
(18)), one is led to introduce the function

V(x) = wk(x)−
P

4
=

(
γkA(x) +

P

4

)
− P

4
(24)

where A(x) = {
√

1 + τ cosh[x
√

1 + τ] cos[x
√

1 − τ] +
√

1 − τ sinh[x
√

1 + τ]
sin[x

√
1 − τ]}.
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We notice that, even though V(x) 6= 0 one may find V(x) to be numerically zero
: i) if γkA(x) is less than the machine roundoff unit ǫ; ii) given P/A = m12q and
γk A(x) = m12p, with |m1| , |m2| ≥ 1, in a binary finite precision arithmetic, if the
sum (γk A(x) + P/4) = (m22p−q + m1)2

q has the same finite representation of
P/4; this happens when 2p−q

< ǫ. To avoid this problem we computed γk A(x)
only; this enabled us to compute correct scaled critical values corresponding to
the critical points given by (14). Whence, when we used the bvptwp code, we con-
sidered the function z(x) = w(x)− P/4 so that, instead of (12), we consider the
problem

z′′′′ − 4τz′′ + 4z = 0 , z(±L) = −P

4
, z′′(±L) = 0 . (25)

We consider here the case k = 12, τ = 0.9, P = 10, L = L12 = 113.535. In Table
1 in the Appendix we quote the analytical critical points xj (j = 1, ..., 12) given by
(14), the numerically evaluated critical points ξ j, the corresponding scaled critical
values V(xj) (that is, γk A(xj)) and z(ξ j), which were obtained solving numeri-
cally (25) by bvptwp. It appears clearly that the numerical critical values exhibit
a very good accordance with the analytical ones; indeed, they often exhibit more
than 7 correct digits. This was somehow expected since we have to consider the
effect of both the error by numerical integration and the error in estimating the
numerical critical points.

Critical points and critical values are computed as follows. We recall that the
bvptwp code provides two vectors: the vector of the grid points built by dividing
the integration interval [−Lk, Lk] into N subintervals, assuming the integration
stepsize h = 2Lk/N, and xn = (2n

N − 1)Lk for n = 0, 1, ...N, together with the
vector of the computed approximations zn of z(xn). Then we check if the origin
is a local maximum or minimum. If the origin is a maximum, our routine looks
for a local minimum, which is the first grid point where the solution value is
followed by a larger value and then it goes on seeking a local maximum, which
is the first grid point where the solution value is followed by a smaller value, and
so on. The contrary happens when the origin is a local minimum. It is clear that
for increasing N and decreasing h, the error is decreasing. For Table 1 we chose
N = 90000 so that h = 0.00252; therefore the absolute error in the estimated
critical point ξ j is not greater than 3 · 10−3. The corresponding values z(ξ j) may
not be the exact critical values, they are computed at the closest point ξ j of the
grid. We remark that we estimated critical points in [0, Lk) only.

4.2 Numerical results in the nonlinear case

We consider here (10)-(11) with δ > 0. In order to compute the critical points and
the critical values by the bvptwp code, we introduce the variable z(x) = w(x) −
W(δ, P) where W(δ, P) is defined in (21). Then, instead of (10)-(11), we consider
the problem

z′′′′−4τz′′+
(

4+3W(δ, P)2
)

z+3δW(δ, P)z2+δz3=0 ,

z(±L)=−W(δ, P) , z′′(±L)=0 . (26)
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If we fix δ = 0.1, L = L12 = 113.535 (k = 12), and we take τ = 0.9 and P = 10,
then we have W(δ, P) = 2.224723963 in (21). The computed critical points ξi and
corresponding critical values z(ξ j) are reported in Table 2 in the Appendix. In
this case the origin is a maximum and

the number of critical points is larger than in the linear case

and, consequently, the last maximum, which is the absolute maximum, is closer
to the right end of the integration interval. In order to check this behavior, we
considered some different values of δ and τ whereas we always assumed P = 10
in view of (23). The detailed results are contained in the Appendix. In Figure 5
we quote the plots of the map Z(Lk , P, δ) for different values of its arguments.

Figure 5: Plots of the maps k 7→ Z(Lk , 10, δ) for δ = 0, 0.1, 16. The values of τ are
0.1, 0.5, 0.9 from left to right.

It appears that the gap Z(Lk , P, δ)− k increases with τ.
We also consider the two numbers

Ml :=max{|z(x)|; z′(x) = 0, z solves (25)},
Mnl :=max{|z(x)|; z′(x) = 0, z solves (26)}

which represent the maximum deviation of critical points with respect to the
equilibrium positions (18) and (21).

If we compare Tables 3-4-5-6-7-8, and further numerical results that we
obtained for different values of the parameters, we can draw the following con-
clusions:

• Tables 3-4, Tables 5-6, and Tables 7-8 suggest that

the map δ 7→ Z(Lk , P, δ) is increasing;

• in turn, by (23), this enables us to infer that

the map P 7→ Z(Lk , P, δ) is increasing;

• Tables 3-5-7 on one hand and Tables 4-6-8 on the other hand, suggest that

the map τ 7→ Z(Lk , P, δ) is increasing;
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• Tables 3-5-7 on one hand and Tables 4-6-8 on the other hand, suggest that

the maps τ 7→ Ml and τ 7→ Mnl are decreasing.

Moreover, it seems that Ml > Mnl for small τ while Ml < Mnl for large τ.

Recalling the meaning of the parameters, we may conclude that a stronger
nonlinearity of the restoring force, an increasing load, an increasing tension of
the sustaining cable, all contribute to increase the number of vibrations within the
beam. Moreover, the displacements from equilibrium (Ml and Mnl) are
decreasing with respect to the tension τ. Finally, the map k 7→ Z(Lk , P, δ) − k
is increasing; since k somehow measures the length of the beam, as k → ∞ we
obtain the limit situation of an infinite number of oscillations, as shown in detail
in our previous papers [7, 9].
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[2] M.A. Biot, T. von Kármán, Mathematical methods in engineering: an introduction
to the mathematical treatment of engineering problems, XII, McGraw-Hill, New
York (1940)

[3] J.M.W. Brownjohn, Observations on non-linear dynamic characteristics of suspen-
sion bridges, Earthquake Engineering & Structural Dynamics 23, 1351-1367
(1994)

[4] J.R. Cash, D. Hollevoet, F. Mazzia, A.M. Nagy, Algorithm 927: The MATLAB
code bvptwp.m for the numerical solution of two point boundary value problems,
ACM Transactions on Mathematical Software 39 (2), Article 15, (February
2013)

[5] F. Gazzola, Nonlinearity in oscillating bridges, Electron. J. Diff. Equ. no.211,
2013, 1-47

[6] F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic boundary value problems,
LNM 1991, Springer (2010)

[7] F. Gazzola, R. Pavani, Blow up oscillating solutions to some nonlinear fourth order
differential equations, Nonlinear Analysis 74, 6696-6711 (2011)

[8] F. Gazzola, R. Pavani, Blow-up oscillating solutions to some nonlinear fourth or-
der differential equations describing oscillations of suspension bridges, IABMAS12,
6th International Conference on Bridge Maintenance, Safety, Management,
Resilience and Sustainability, 3089-3093, Stresa 2012, Biondini & Frangopol
(Editors), Taylor & Francis Group, London (2012)



The impact of nonlinear restoring forces acting on hinged elastic beams 571

[9] F. Gazzola, R. Pavani, Wide oscillations finite time blow up for solutions to non-
linear fourth order differential equations, Arch. Rat. Mech. Anal. 207, 717-752
(2013)

[10] H.M. Irvine, Cable structures, MIT Press Series in Structural Mechanics,
Massachusetts (1981)

[11] I.V. Ivanov, D.S. Velchev, M. Kneć, T. Sadowski, Computational models of
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5 Appendix: numerical tables

Here we present the tables referred in Section 4. Table 1 compares critical points
xj of (25) (as given by (14)), rounded to 5 digits, with their numerical approxima-
tion ξ j and critical values V(xj) with their numerical approximations z(ξ j), when
k = 12, τ = 0.9, P = 10.

xj ξ j V(xj) z(ξ j)

0 0 1.2100624e-67 1.2100624e-67

4.9770 4.9780 1.3061401e-65 1.3061399e-65

14.902 14.901 -1.1565620e-59 -1.1565606e-59

24.836 24.836 1.0241123e-53 1.0241123e-53

34.771 34.772 -9.0683073e-48 -9.0683013e-48

44.706 44.705 8.0298027e-42 8.0297981e-42

xj ξ j V(xj) z(ξ j)

54.640 54.640 -7.1102279e-36 -7.1102276e-36

64.575 64.578 6.2959630e-30 6.2959547e-30

74.509 74.509 -5.5749479e-24 -5.5749470e-24

84.444 84.444 4.9365037e-18 4.9365023e-18

94.378 94.377 -4.3711742e-12 -4.3711695e-12

104.31 104.313 3.8705863e-6 3.8705863e-6

Table 1: Comparison between the critical points (14) and their numerical approx-
imation when δ = 0, k = 12, τ = 0.9, P = 10.
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Table 2 shows the computed values of the critical points ξ j of the solution of
(10) together with their corresponding critical values z(ξ j), when δ = 0.1, k = 12,
τ = 0.9, P = 10. Note that the number of critical points has increased from 12 to
19.

ξ j z(ξ j)

0 -1.749333299e-72

5.328 -3.063586089e-68

11.363 1.811528011e-64

17.398 -1.071173729e-60

23.433 6.333952062e-57

29.468 -3.745326049e-53

35.503 2.214646886e-49

ξ j z(ξ j)

41.538 -1.309541750e-45

47.573 7.743444819e-42

53.608 -4.578772508e-38

59.643 2.707471696e-34

65.678 -1.600953743e-30

71.713 9.466591617e-27

ξ j z(ξ j)

77.748 -5.597685581e-23

83.783 3.309964677e-19

89.818 -1.957213566e-15

95.853 1.157318971e-11

101.888 -6.843337144e-8

107.923 4.046373241e-4

Table 2: Numerical values of the critical points and critical values of the solution
of (10) when δ = 0.1, k = 12, τ = 0.9, P = 10.
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We now consider different values of δ and τ whereas we keep P = 10 fixed: by
(23) the variations with respect to P may be deduced by corresponding variations
with respect to δ.

Table 3 shows our results for δ = 0.1, τ = 0.1, P = 10. The number Ml denotes
the absolute maximum of V(x) as defined in (24), while Mnl denotes the absolute
maximum of the solution z(x) of (26); in this case, we have W(δ, P) = 2.224723963
in (21). Finally, Z(Lk) denotes the number of critical points of the solution of
(10)-(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 1.00575 -1.3426264 1 -1.0779201

2 4.19236 1.1419585e-1 2 1.0047630e-1

3 7.50373 1.1786580e-1 3 1.0290371e-1

4 10.8153 1.1786933e-1 4 1.0290502e-1

5 14.1267 1.1786933e-1 5 1.0290503e-1

6 17.4383 1.1786933e-1 6 1.0290501e-1

7 20.7498 1.1786933e-1 7 1.0290492e-1

8 24.0614 1.1786933e-1 8 1.0290497e-1

9 27.3729 1.1786933e-1 9 1.0290499e-1

10 30.6844 1.1786933e-1 11 1.0290503e-1

13 40.6190 1.1786933e-1 14 1.0290503e-1

16 50.5536 1.1786933e-1 17 1.0290484e-1

18 57.1767 1.1786933e-1 19 1.0290496e-1

20 63.9977 1.1786933e-1 21 1.0290486e-1

Table 3: For varying k, absolute maximum and number of critical points of the
solution of (10) when δ = 0.1, τ = 0.1, P = 10.
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Table 4 shows our results for δ = 16, τ = 0.1, P = 10. The number Ml

denotes the absolute maximum of V(x) as defined in (24), while Mnl denotes the
absolute maximum of the solution z(x) of (26); in this case, we have W(δ, P) =
0.7579901138 in (21). Again, Z(Lk) denotes the number of critical points of the
solution of (10)-(11) in the interval [0, Lk), see (22). We also tried δ = 60 (with
τ = 0.1 and P = 10) which yields W(δ, P) = 0.5100184968 in (21): then for
k = 20, δ = 60, τ = 0.1, P = 10, we found Z(Lk) = 38 and Mnl = 0.0240770757.

k Lk Ml Z(Lk) Mnl

1 1.00575 -1.3426264 1 -3.3574287e-2

2 4.19236 1.1419585e-1 3 3.5323444e-2

3 7.50373 1.1786580e-1 4 3.5323677e-2

4 10.8153 1.1786933e-1 6 3.5323676e-2

5 14.1267 1.1786933e-1 8 3.5323670e-2

6 17.4383 1.1786933e-1 10 3.5323635e-2

7 20.7498 1.1786933e-1 11 3.5323667e-2

8 24.0614 1.1786933e-1 13 3.5323658e-2

9 27.3729 1.1786933e-1 15 3.5323613e-2

10 30.6844 1.1786933e-1 17 3.5323637e-2

13 40.6190 1.1786933e-1 22 3.5323656e-2

16 50.5536 1.1786933e-1 27 3.5323534e-2

18 57.1767 1.1786933e-1 30 3.5323645e-2

20 63.9977 1.1786933e-1 34 3.5323553e-2

Table 4: For varying k, absolute maximum and number of critical points of the
solution of (10) when δ = 16, τ = 0.1, P = 10.
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Then we varied τ. Table 5 shows our results for δ = 0.1, τ = 0.5, P = 10.
The number Ml denotes the absolute maximum of V(x) as defined in (24), while
Mnl denotes the absolute maximum of the solution z(x) of (26); in this case, we
have W(δ, P) = 2.224723963 in (21). Again, Z(Lk) denotes the number of critical
points of the solution of (10)-(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 1.51084 -7.9224393e-1 1 -5.7092275e-1

2 5.92384 1.5423589e-2 2 1.9924238e-2

3 10.3667 1.5490724e-2 3 1.9961029e-2

4 14.8096 1.5490725e-2 4 1.9961029e-2

5 19.2525 1.5490725e-2 5 1.9961021e-2

6 23.0954 1.5490725e-2 7 1.9961026e-2

7 28.1382 1.5490725e-2 8 1.9961028e-2

8 32.5811 1.5490725e-2 9 1.9961029e-2

9 37.0240 1.5490725e-2 10 1.9961029e-2

10 41.4669 1.5490725e-2 11 1.9961021e-2

13 54.7955 1.5490725e-2 15 1.9961004e-2

16 68.1242 1.5490725e-2 18 1.9961029e-2

18 77.0010 1.5490725e-2 21 1.9961018e-2

20 85.8957 1.5490725e-2 23 1.9961029e-2

Table 5: For varying k, absolute maximum and number of critical points of the
solution of (10) when δ = 0.1, τ = 0.5, P = 10.
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Table 6 shows our results for δ = 16, τ = 0.5, P = 10. The number Ml denotes
the absolute maximum of V(x) as defined in (24), while Mnl denotes the absolute
maximum of the solution z(x) of (26); in this case, we have W(δ, P) = 0.75799011
in (21). Again, Z(Lk) denotes the number of critical points of the solution of (10)-
(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 1.51084 -7.9224393e-1 1 3.0910297e-2

2 5.92384 1.5423589e-2 3 1.9736332e-2

3 10.3667 1.5490724e-2 5 1.9736281e-2

4 14.8069 1.5490725e-2 8 1.9736299e-2

5 19.2525 1.5490725e-2 10 1.9736281e-2

6 23.6954 1.5490725e-2 12 1.9736299e-2

7 28.1382 1.5490725e-2 14 1.9736326e-2

8 32.5811 1.5490725e-2 16 1.9736281e-2

9 37.0240 1.5490725e-2 18 1.9736308e-2

10 41.4669 1.5490725e-2 20 1.9736333e-2

13 54.7955 1.5490725e-2 27 1.9736326e-2

16 68.1242 1.5490725e-2 33 1.9736334e-2

18 77.0010 1.5490725e-2 38 1.9736334e-2

20 85.8957 1.5490725e-2 42 1.9736293e-2

Table 6: For varying k, absolute maximum and number of critical points of the
solution of (10) when δ = 16, τ = 0.5, P = 10.
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Table 7 shows our results for δ = 0.1, τ = 0.9, P = 10. The number Ml denotes
the absolute maximum of V(x) as defined in (24), while Mnl denotes the absolute
maximum of the solution z(x) of (26); in this case, we have W(δ, P) = 2.224723963
in (21). Again, Z(Lk) denotes the number of critical points of the solution of
(10)-(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 4.25417 -3.17518750e-2 1 -5.8961180e-3

2 14.1887 3.8705820e-6 3 4.0461082e-4

3 24.1233 3.8705863e-6 4 4.0453454e-4

4 34.0579 3.8705863e-6 6 4.0460479e-4

5 43.9925 3.8705863e-6 8 4.0463708e-4

6 53.9271 3.8705863e-6 9 4.0463704e-4

7 63.8616 3.8705863e-6 11 4.0463733e-4

8 73.7962 3.8705863e-6 13 4.0463504e-4

9 83.7309 3.8705863e-6 14 4.0463656e-4

10 93.6654 3.8705863e-6 16 4.0463711e-4

13 123.469 3.8705863e-6 21 4.0463703e-4

16 153.273 3.8705863e-6 26 4.0463634e-4

18 173.142 3.8705863e-6 29 4.0463636e-4

20 193.011 3.8705863e-6 32 4.0463622e-4

Table 7: For varying k, absolute maximum and number of critical points of the
solution of (10) when δ = 0.1, τ = 0.9, P = 10.
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Table 8 shows our results for δ = 16, τ = 0.9, P = 10. The number Ml

denotes the absolute maximum of V(x) as defined in (24), while Mnl denotes the
absolute maximum of the solution z(x) of (26); in this case, we have W(δ, P) =
0.7579901138 in (21). Again, Z(Lk) denotes the number of critical points of the
solution of (10)-(11) in the interval [0, Lk), see (22).

k Lk Ml Z(Lk) Mnl

1 4.25417 -3.17518750e-2 2 9.7003992e-3

2 14.1887 3.8705820e-6 7 9.6989325e-3

3 24.1233 3.8705863e-6 11 9.6989375e-3

4 34.0579 3.8705863e-6 15 9.6989332e-3

5 43.9925 3.8705863e-6 20 9.6989375e-3

6 53.9271 3.8705863e-6 24 9.6989130e-3

7 63.8616 3.8705863e-6 28 9.6988994e-3

8 73.7962 3.8705863e-6 33 9.6988819e-3

9 83.7309 3.8705863e-6 37 9.6989361e-3

10 93.6654 3.8705863e-6 42 9.6989292e-3

13 123.469 3.8705863e-6 55 9.6989373e-3

16 153.273 3.8705863e-6 69 9.6989275e-3

18 173.142 3.8705863e-6 77 9.6988885e-3

20 193.011 3.8705863e-6 85 9.6989346e-3

Table 8: For varying k, absolute maximum and number of critical points of the
solution of (10) when δ = 16, τ = 0.9, P = 10.
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