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Abstract

In this paper, we give the value of the approximation exponent of the
hyperquadratic power series satisfying the equation

Cxr − Axr−1 − 1 = 0

where r > 2 is a power of a prime number p, A and C are nonzero polyno-
mials over a finite field K of characteristic p and deg A > deg C. Further, we
exhibit explicitly its continued fraction expansion when C divides A.

1 Introduction

Let p be a given prime number and K be a finite field of characteristic p. We
denote by K[X] the ring of polynomials with coefficients in K and K(X) the field
of fractions of K[X]. Let K((X−1)) be the field of formal power series:

K((X−1)) =
{

α = ∑
i≤n0

uiX
i : n0 ∈ Z and ui ∈ K

}

.

Let α = ∑ uiX
i be any formal power series, we define its polynomial part,

denoted [α], by [α] := ∑
i≥0

uiX
i. If α 6= 0, then the degree of α is deg(α) =

sup{i : ui 6= 0} and deg(0) = −∞. Thus, we define the not archimedean

absolute value over K((X−1)) by |α| = |X|deg(α) where |X| > 1, and |0| = 0.
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There is a strong analogy between the classical construction of the field of real
numbers and the field of power series which we are considering here. The role of
{±1}, Z, Q and R are played by K∗, K[X], K(X) and K((X−1)). As in the classi-
cal context of real numbers, we have a continued fraction algorithm in K((X−1)).
If α ∈ K((X−1)) we can write

α = a0 +
1

a1 +
1

a2 +
1

. . .

= [a0, a1, a2, . . .]

where ai ∈ K[X]. The ai are called the partial quotients and we have deg ai > 0
for i > 0. This continued fraction is finite if and only if α ∈ K(X). We define
two sequences of polynomial (Pn) and (Qn) by P0 = a0, Q0 = 1, P1 = a0a1 + 1,
Q1 = a1 and for any n ≥ 2,

Pn = anPn−1 + Pn−2, Qn = anQn−1 + Qn−2.

Pn

Qn
= [a0, a1, a2 . . . , an] is called the nth−convergent of α and we have

PnQn−1 − Pn−1Qn = (−1)n−1. Further, we have the following important equality

|α − Pn

Qn
| = |an+1|−1|Qn|−2. (∗)

One of the basic question in Diophantine approximation is how the irrational
elements of K((X−1)) can be approximated by rational elements. Our aim is to
study the irrationality exponent of power series that are algebraic over the field
of rational functions. In order to measure the quality of rational approximation,
we introduce the following notation and definition. Let α be an irrational element
of K((X−1)).
For all real numbers µ, we define

B(α, µ) = lim inf
|Q|→∞

|Q|µ|Qα − P|

where P and Q run over polynomials in K[X] with Q 6= 0. Now the approxima-
tion exponent of α is defined by

ν(α) = sup{µ ∈ R : B(α, µ) < ∞}.

Note that if
Pn

Qn
is a convergent to α then the equality (∗) gives that

|Qnα − Pn| = |Qn|−(
deg Qn+1

deg Qn
)
.

Since the best rational approximation to α are its convergents, with the above
notation, we have

ν(α) = lim sup(
deg Qk+1

deg Qk
) = 1 + lim sup(

deg ak+1

∑
1≤i≤k

deg ai

).
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It is clear that the approximation exponent can be determined when the contin-
ued fraction of the element is explicitly known. Since |Qnα − Pn| ≤ |Qn|−1, for
all irrational α ∈ K((X−1)) we have ν(α) ≥ 1. Furthermore Mahler’s version of
Liouville’s Theorem says that if α ∈ K((X−1)) is algebraic over K(X) of degree
n > 1 then B(α, n − 1) 6= 0. Consequently, for α ∈ K((X−1)) algebraic over K(X)
of degree n > 1 we have ν(α) ∈ [1, n − 1].
We say that α ∈ K((X−1)) is badly approximable by rational elements, which is
equivalent to saying that α admits bounded partial quotients if ν(α) = 1 and
B(α, 1) 6= 0. We also say that α ∈ K((X−1)) is well approximable by ratio-
nales, which is equivalent to saying that α admits unbounded partial quotients
if ν(α) > 1. The reader who is interested in a survey on the different contribu-
tions to this topic and for full references can consult for example [2], [9] and [[10],
Chap. 9].
We define now a specific class of power series noted by H, which is called the
class of hyperquadratic. It contains the irrational elements α in K((X−1)), satis-
fying an algebraic equation of the form

x =
Axr + B

Cxr + D
(1.1)

where A, B, C, D ∈ K[X] and r = pt, t ≥ 0. A famous example of well approx-
imable element in Fp((X−1)) is given by K. Mahler [3] in 1949, which belongs to

H, and satisfies the algebraic equation α = X−1 + αp.
It gradually became apparent that the elements of class H deserve special consid-
eration.
Rational approximation of elements of class H has been studied also by J. Voloch
[11] and more deeply by B. de Mathan [4]. They could show that if the partial
quotients in the continued fraction expansion of such elements α are unbounded,
then ν(α) > 1. By the work of B.de Mathan [4], we know moreover that for el-
ements of class H, the approximation exponent ν(α) is a rational number and
B(α, ν(α)) 6= 0, ∞. The possibility of describing the two subsets of H, formed
on the one hand by badly approximable elements and on the other hand by well
approximable elements remain open.
Now we will show how it is possible in some cases to compute the approxima-
tion exponent for an algebraic element, without knowing the whole continued
fraction. This will be possible if this approximation exponent is large enough,
that is to say not close to 1. A. Lasjaunias [2] has given applications to algebraic
elements which are of class H and also to others which are not. The basic idea in
the following result is due to J. Voloch [11]. We state below an improved version
derived from B. de Mathan [5].

Theorem 1.1. Let α ∈ K((X−1)). Assume that there is a sequence (Pn, Qn)n≥0, with
Pn, Qn ∈ K[X], satisfying the following conditions:

(1) There are two real constants λ > 0 et µ > 1, such that

|Qn| = λ|Qn−1|µ and |Qn| > |Qn−1| f or all n ≥ 1.
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(2) There are two real constants ρ > 0 and γ > 1 +
√

µ, such that

|α − Pn

Qn
| = ρ|Qn|−γ f or all n ≥ 0.

Then we have ν(α) = γ − 1. Further, if gcd(Pn, Qn) = 1 for n ≥ 0, we have
B(α, ν(α)) = ρ, and if the sequence (gcd(Pn, Qn))n≥0 is bounded then B(α, ν(α)) 6=
0, ∞.

In this work, we consider an irreducible equation of the form

Cxr − Axr−1 − 1 = 0 (1)

where r > 2 is a power of p, A and C are nonzero polynomial with coefficients
in K such that deg A > deg C. Note that the case C ∈ K∗ was studied by W.
Schmidt (see [9]. p 158). This equation has a unique solution of strictly positive

degree, furthermore, if we note by α this solution then [α] = [
A

C
] (see [8]. p 243).

Note that the equation (1) satisfied by α can be written as x = Axr/(Cxr − 1), so
α is an hyperquadratic power series and its approximation exponent belongs to
[1, r − 1].
We are interested on computing the approximation exponent of α. Further, we
describe its continued fraction expansion when C divides A. For this, we recall
the following notations. Let Pn/Qn ∈ K(X) such that Pn/Qn := [a1, a2, . . . , an].
For all x ∈ K(X), we will note

[

[a1, a2, . . . , an], x
]

:=
Pn

Qn
+

1

x

We state now a basic and technical Lemma concerning continued fractions. The
idea involved in this Lemma appears for the first time in works of M. Mendes
France [6] on finite continued fraction in the context of real numbers.

Lemma 1.2. Let a1, . . . , an, x ∈ Fq(X). We have the following equality:

[

[a1, a2, . . . , an], x
]

= [a1, a2, . . . , an, y], where y = (−1)n−1Q−2
n x − Qn−1Q−1

n .

Particularly we have

[

[a1, a2], x
]

= [a1, a2, y], where y = −a−2
2 x − a−1

2 .

The proof of this Lemma can be found in Lasjaunias’s paper [1].

2 Results

Theorem 1.1 allows us to compute the approximation exponent of well approx-
imable formal series. We obtain as application of this Theorem, interesting results
for the approximation exponent of the solution of the equation (1) by giving a
precise value of the exponent.
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Theorem 2.1. Let α be the irrational solution of equation (1) such that gcd(A, C) = 1.

Suppose that |α| = |C|s with s >

√
r

r −√
r − 1

. Then

ν(α) =
sr + 1

s + 1
and B(α, ν(α)) = |C|−

s2(r2−r)
s+1

Proof.
We consider the following sequence: P0 = A, Q0 = C and for n ≥ 1

Pn = APr
n−1

Qn = CPr
n−1 + Qr

n−1.

Then for all n ≥ 0 :

|α − Pn

Qn
| = | Aαr

Cαr + 1
−

APr
n−1

CPr
n−1 + Qr

n−1

| =
|A||αrQr

n−1 − Pr
n−1|

|C||α|r |C||Pr
n−1|

=

1

|C||α|2r−1
|α − Pn−1

Qn−1
|r.

We show by recursion that for all n ≥ 0:

|α − Pn

Qn
| = |C|−

(rn−1)
r−1 |α|−

(2r−1)(rn−1)
r−1 |α − P0

Q0
|rn

since |α − P0

Q0
| = |α − A

C
| =

|A|
|C||C||α|r =

1

|C||α|(r−1)
then |α − P0

Q0
|rn

=

|C|−rn |α|−rn(r−1). So

|α − Pn

Qn
| = |C|− rn+1−1

r−1 |α|− rn+2−2r+1
r−1 = |C|− srn+2+rn+1−2sr+s−1

r−1 .

Secondly, we have for all n ≥ 1 Qn = CPr
n−1 +Qr

n−1 and since |Pn−1| = |C|s|Qn−1|
then

|Qn| = |C|sr+1|Qn−1|r.

Again by recursion we show that

|Qn| = |C|
(sr+1)(rn−1)

r−1 |Q0|r
n
= |C|

(s+1)rn+1−sr−1
r−1 .

So we obtain for all n ≥ 0 :

|α − Pn

Qn
| = |C|−

s2(r2−r)
s+1 |Qn|−

sr+1
s+1 . (2.2)

We can verifies that if s >

√
r

r −√
r − 1

then
sr + 1

s + 1
> 1 +

√
r. Hence by Theo-

rem 1.1 we conclude that ν(α) =
s(r − 1)

s + 1
. Further, since gcd(A, C) = 1 then

gcd(Pn, Qn) = 1 for all n ≥ 0 and so B(α, ν(α)) = |C|−
s2(r2−r)

s+1 .

Note that, in this Theorem, the condition |α| = |C|s together with s >

√
r

r −√
r − 1

are obtained if (r −√
r − 1)deg A > (r − 1)deg C.
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Example 2.1. Let α ∈ F5((X
−1)) be the irrational solution of strictly positive degree of

the equation:

(X2 − 2)α5 + X5α4 − 1 = 0.

We have |α| = |X|3 = |X2 − 2| 3
2 . Since

3

2
>

√
5

5 −
√

5 − 1
, then we get that ν(α) =

12

5
.

Now, we will see the case when C divides A. For this case, we will give explic-
itly the continued fraction expansion for the solution of the equation (1). Know-
ing all the partial quotients of the solution of (1), we can compute the exact value
of its approximation exponent.

Theorem 2.2. Let α be the irrational solution of the equation (1). Assume that C divides
A. Then

α = [a0, · · · , an, · · · ]
where a0 = A/C and for all n ≥ 0:

a2n = (−1)na0,

a2n+1 =

{

−Ca−1
0 ar

n if n is even;
−ar

n/a0C if n is odd.

Furthermore, ν(α) = r − 1.

Proof. It is clear that if C divides A then the first partial quotient of α is

a0 = A/C and α = a0 +
1

α1
. If α is a solution of (1) then we have

αr =
α

−A + Cα
=

a0α1 + 1

C
.

Then Cαr = a0α1 + 1. So Car
0 +

C

αr
1

= a0α1 + 1. This implies that

[[Car−1
0 ,−a0],

a0αr
1

C
] = α1

then, from Lemma 1.2, we obtain that [Car−1
0 ,−a0, α3] = α1. Hence a1 = Car−1

0

(since deg Car−1
0 > 0) and a2 = −a0 and α3 = − a0αr

1

a2
0C

+
1

a0
. We apply again the

same reasoning and we obtain α3 =
−Crar2−r

0

a0C
+

1

a0
− 1

a0Cαr
2

. Hence

α3 = [[−Cr−1ar2−r−1
0 , a0],−a0Cαr

2] = [−Cr−1ar2−r−1
0 , a0, α5]

with

α5 =
a0Cαr

2

a2
0

− 1

a0
=

C

a0
αr

2 −
1

a0
.
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We get a3 = −Cr−1ar2−r−1
0 , a4 = a0. Further

α5 =
C

a0
ar

2 +
C

a0αr
3

− 1

a0
= −Car−1

0 +
C

a0αr
3

− 1

a0
.

So

α5 = [[−Car−1
0 ,−a0],

a0αr
3

C
] = [−Car−1

0 ,−a0, α7],

with α7 = − a0αr
3

a2
0C

+
1

a0
. Then a5 = −Car−1

0 , a6 = −a0. Further

α7 = − ar
3

a0C
+

1

a0
− 1

a0Cαr
4

= [[−Cr2−r−1ar3−r2−r−1
0 , a0],−a0Cαr

4] =

[−Cr2−r−1ar3−r2−r−1
0 , a0, α9]

So a7 = −Cr2−r−1ar3−r2−r−1
0 , a8 = a0 and

α9 = − a0Cαr
4

a2
0

− 1

a0
=

C

a0
αr

4 −
1

a0
.

=
C

a0
ar

4 −
1

a0
+

C

a0αr
5

.

Then again

α9 = [[Car−1
0 ,−a0],

a0αr
5

C
] = [Car−1

0 ,−a0, α11],

with a9 = Car−1
0 , a10 = −a0 and α11 =

−αr
5

a0C
+

1

a0
. This gives that

a11 = −Cr−1ar2−r−1
0 , a12 = a0, so one.

In general by an easy recurrences on k ≥ 1, we obtain:

a2k = (−1)ka0,

a2k+1 =

{

−Ca−1
0 ar

k if k is even;
−ar

k/a0C if k is odd.

We come now to compute the approximation exponent of α. Set um = deg am,
λ = deg a0 and µ = deg C. So we have for k ≥ 1

u2k = λ

and

u2k+1 =

{

(r − 1)λ + µ if k is even;
ruk − λ − µ if k is odd.

Note that we will obtain this approximation exponent by computing

lim sup(
un

∑
0≤i≤n−1

ui

)
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and for this, we will follow [[9]. p 158] fairly closely.
We have for odd k,
u2k+1 = λ(rl − rl−1 − . . .− r − 1)+ µ(rl−1 − rl−2 − . . .− r − 1) when 2l−1‖(k+ 1).
For a given n, n + 1 = 2t with t > 0. We have that

un = λ(rt − rt−1 − . . . − r − 1) + µ(rt−1 − rt−2 − . . . − r − 1) =

λ(
(r − 2)rt + 1

r − 1
) + µ(

(r − 2)rt−1 + 1

r − 1
)

and

u1 + u2 + . . . + un−1 = λ(rt−1 − rt−2 − . . . − r) + µ(rt−2 − rt−3 − . . . − r) =

λ(
rt − r

r − 1
) + µ(

rt−1 − r

r − 1
).

Therefore as n runs through the numbers rt − 1(t = 1, 2, . . .), then

lim sup(
un

∑
0≤i≤n−1

ui

) = r − 2

and then ν(α) = 1 + r − 2 = r − 1.

We conclude this work by giving a sufficient condition on A and C to obtain
a solution α of (1) with ν(α) > 1, without giving the exact value of ν(α). In fact,
in [[7]. p 403], it has been proved that if an hyperquadratic element satisfying
an equation of the type (1.1) (with AD − BC = ∆), has a partial quotient other

than the first with degree >
deg ∆

r − 1
, then it will have unbounded partial quotients.

According to the equation (1), we have deg ∆ = deg A.

Theorem 2.3. Let α be the irrational solution of (1). Suppose that there exist H and

D ∈ K[X] such that DA − HrC = 1 and |H| = |A

C
|. Suppose moreover that

deg([
A

C
]− H) <

(r − 2)deg A

r(r − 1)
. Then α admits unbounded partial quotients.

Proof. Let [
A

C
] = S then |H| = |S| = |α|. We have :

|α − Hr

D
| = | Aαr

Cαr + 1
− Hr

D
| = |αr − Hr|

|D||C||α|r | =
1

|D||C| |1 −
α

H
|r.

Consider that α = S + u1X−1 + u2X−2 + . . . and S − H = T.

α

H
=

S + u1X−1 + . . .

H
=

H + T + u1X−1 + . . .

H
.

So if T 6= 0 then |1 − α

H
|r = |T|r

|H|r . Consequently, since |DA| = |HrC| then

|α − Hr

D
| = 1

|C||D|
|T|r
|H|r =

1

|D|2
|T|r
|A| .
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Since deg T <
(r − 2)deg A

r(r − 1)
then there exists a partial quotient of α of degree

deg A − r deg T >
deg A

r − 1
. So we conclude that α admits unbounded partial quo-

tients.

Now if T = 0. Suppose that u1 6= 0 then |1 − α

H
|r = 1

|X|r |H|r . So we obtain :

|α − Hr

D
| = 1

|D|2
1

|X|r |A| .

Hence, there exists a partial quotient of α of degree deg A + r >
deg A

r − 1
.

So we conclude that α admits unbounded partial quotients.

Example 2.2. Let Let α be the irrational solution of the equation (1) with K = F3,
r = 3, A = X4 + 2X2 + 1 and C = X3. Then α admits unbounded partial quotients.

For this example, there exists H = [
A

C
] = X and D = X2 + 1 such that

DA − H3C = 1, so by the previous Theorem we conclude that α admits un-
bounded partial quotients.
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