On nuclearity of the algebra of adjointable operators*

Massoud Amini

Mohammad B. Asadi

Abstract

We study nuclearity of the C^* -algebra $\mathbb{B}(\mathcal{E})$ of adjointable operators on a full Hilbert C^* -module \mathcal{E} over a C^* -algebra \mathcal{A} . When \mathcal{A} is a von Neumann algebra and \mathcal{E} is full and self dual, we show that $\mathbb{B}(\mathcal{E})$ is nuclear if and only if \mathcal{A} is nuclear and \mathcal{E} is finitely generated. In particular, when \mathcal{A} is a factor, then nuclearity of $\mathbb{B}(\mathcal{E})$ implies that \mathcal{E}, \mathcal{A} and $\mathbb{B}(\mathcal{E})$ are finite dimensional.

1 Introduction

In 1976, Simon Wassermann gave a characterization of nuclear W^* -algebras by showing that a W^* -algebra \mathcal{A} is nuclear if and only if it is a direct sum of finitely many type I W^* -algebras of the form $Z \otimes \mathbb{M}_n(\mathbb{C})$, with $n < \infty$ and Z an abelian W^* -algebra [12].

In this short note, we investigate the nuclearity of the C^* -algebra $\mathbb{B}(\mathcal{E})$ of adjointable operators on a Hilbert C^* -module \mathcal{E} over a C^* -algebra \mathcal{A} . The first thing which comes to mind is to use the well known fact that nuclearity is preserved under strong Morita equivalence of C^* -algebras [2, 13]. When \mathcal{E} is a full Hilbert \mathcal{A} -module, \mathcal{A} is strongly Morita equivalent to the C^* -algebra $\mathbb{K}(\mathcal{E})$ of compact operators on \mathcal{E} (where \mathcal{E} plays the role of imprimitivity bimodule [5]). In particular, nuclearity of $\mathbb{K}(\mathcal{E})$ and \mathcal{A} are equivalent. On the other hand, $\mathbb{B}(\mathcal{E})$ is the multiplier algebra of $\mathbb{K}(\mathcal{E})$. However, (strong) Morita equivalence of two C^* -algebras does not pass to their multiplier algebras (neither does the nuclearity; just consider the C^* -algebras \mathbb{C} and $\mathbb{K}(\mathcal{H})$ for both cases, where \mathcal{H} is an

Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 423-427

^{*}This research was supported by grants from IPM (No. 92430215, 92470123).

Received by the editors in December 2014.

Communicated by A. Valette.

²⁰¹⁰ Mathematics Subject Classification : 46L55, 18D05.

Key words and phrases : Hilbert C*-modules, nuclearity, Morita equivalence.

infinite dimensional Hilbert space). If \mathcal{A} is a von Neumann algebra and \mathcal{E} is a full self dual Hilbert \mathcal{A} -module, then $\mathbb{B}(\mathcal{E})$ is a von Neumann algebra and $\mathbb{B}(\mathcal{E})$ and \mathcal{A} are Morita equivalent as von Neumann algebras. This fact does not help the situation, as nuclearity is not preserved under Morita equivalence of von Neumann algebras (same example as above; in fact, $\mathbb{B}(\mathcal{H})$ is nuclear if and only if \mathcal{H} is finite dimensional [12]).

It seems that in order to get a characterization for nuclearity of $\mathbb{B}(\mathcal{E})$ one has to use the general characterization of Wassermann. This is possible only if $\mathbb{B}(\mathcal{E})$ is a von Neumann algebra. When \mathcal{A} is a von Neumann algebra and \mathcal{E} is full and self dual, we show that $\mathbb{B}(\mathcal{E})$ is nuclear if and only if \mathcal{A} is nuclear and \mathcal{E} is finitely generated.

2 Nuclearity

In this section, we assume that \mathcal{A} is a C^* -algebra and \mathcal{E} is a full Hilbert \mathcal{A} -module. We find conditions on \mathcal{A} and \mathcal{E} such that $\mathbb{B}(\mathcal{E})$ is nuclear, using the following general characterization due to Simon Wassermann [12, Corollary 1.9]. In fact, Wassermann proved that a von Neumann algebra is nuclear (as C^* -algebra), if and only if it is a finite direct sum of type I von Neumann algebras of the form $Z \otimes \mathbb{M}_n(\mathbb{C})$ with $n < \infty$ and Z an abelian von Neumann algebra.

In particular, using the above fact, the algebra $\mathbb{B}(\mathcal{H})$ of bounded operators on a Hilbert space \mathcal{H} is nuclear iff \mathcal{H} is finite dimensional. We show that essentially the same holds for the algebra $\mathbb{B}(\mathcal{E})$ of bounded adjointable operators on full self dual Hilbert C*-modules over factors (Corollary 2.5). More generally, when \mathcal{E} is full and self dual over a von Neumann algebra \mathcal{A} , we show that $\mathbb{B}(\mathcal{E})$ is nuclear if and only if \mathcal{A} is nuclear and \mathcal{E} is finitely generated (Corollary 2.4).

Marc Rieffel introduced two notions for Morita equivalence of C^* -algebras (and one for W^* -algebras). Two C^* -algebras are called (strongly) Morita equivalent if their categories of nondegenerate *-representations are equivalent (via an imprimitivity bimodule). Morita equivalence of two C^* -algebras could only guarantee (and indeed is equivalent to) the existence of an imprimitivity bimodule for their enveloping W^* -algebras [10].

If two C^* -algebras are (strongly) Morita equivalent then the centers of their enveloping W^* -algebras (multiplier algebras) are isomorphic [2, 10]. For the case of strong Morita equivalence, the result follows from Dauns-Hoffmann Theorem [7, Theorem 4.4.8] and the fact that these C^* -algebras should have homeomorphic spectra (and so homeomorphic primitive ideal spaces). Here, we give a direct proof of this fact (and write an explicit formula for the isomorphism) when A is unital.

We recall that a Hilbert \mathcal{A} -module \mathcal{E} is called full if the ideal $\langle \mathcal{E}, \mathcal{E} \rangle = Span\{\langle x, y \rangle : x, y \in \mathcal{E}\}$ is dense in \mathcal{A} . Also \mathcal{E} is called self dual if $\mathcal{E} = \mathcal{E}'$, where \mathcal{E}' is the set of all bounded linear \mathcal{A} -module maps from \mathcal{E} to \mathcal{A} .

Lemma 2.1. If \mathcal{A} is a unital C^* -algebra and \mathcal{E} is a full Hilbert C^* -module then $Z(\mathcal{A}) \simeq Z(\mathbb{B}(\mathcal{E}))$.

Proof. Given $a \in Z(\mathcal{A})$, define $t_a \in \mathbb{B}(\mathcal{E})$ by $t_a(x) = x \cdot a$, then for each $x \in \mathcal{E}$ and $T \in \mathbb{B}(\mathcal{E})$, $Tt_a(x) = T(x \cdot a) = T(x) \cdot a = t_a T(x)$, hence we have the isometry

 $t : Z(\mathcal{A}) \to Z(\mathbb{B}(\mathcal{E})); a \mapsto t_a$, which is clearly a *-homomorphism. If $T \in Z(\mathbb{B}(\mathcal{E}))$, then $T\theta_{x,y} = \theta_{x,y}T$, that is $T(x \cdot \langle y, z \rangle) = x \cdot \langle y, Tz \rangle$ for each $x, y, z \in \mathcal{E}$. Since \mathcal{E} is full, there are $y_1, \dots, y_n \in \mathcal{E}$ such that $\langle y_1, y_1 \rangle + \dots \langle y_n, y_n \rangle = 1$ [5]. Put $a = \langle y_1, Ty_1 \rangle + \dots \langle y_n, Ty_n \rangle$, then $Tx = x \cdot a$ and since T is a right \mathcal{A} -module map and \mathcal{E} is full, $a \in Z(\mathcal{A})$. Indeed, for each $x \in \mathcal{E}$ and $b \in \mathcal{A}$, x(ba - ab) = xba - xab = T(xb) - T(x)b = 0, hence ba - ab = 0, since \mathcal{E} is full. Therefore, t is surjective.

In the above lemma if $\mathbb{B}(\mathcal{E}) \simeq \bigoplus_{k=1}^{N} Z_k \otimes \mathbb{M}_{n_k}(\mathbb{C})$ where each Z_k is a commutative C^* -algebra (this holds by [12, Corollary1.9] when \mathcal{A} is a von Neumann algebra, \mathcal{E} is self dual and $\mathbb{B}(\mathcal{E})$ is nuclear) then $Z(\mathcal{A}) \simeq \bigoplus_{k=1}^{N} Z_k$.

Recall that every unital continuous trace C^{*}-algebra has a compact spectrum. If a unital C^{*}-algebra \mathcal{A} is strongly Morita equivalent to a commutative C^{*}-algebra $C_0(X)$, then \mathcal{A} is continuous trace and X is compact. Therefore, a commutative C^{*}-algebra is unital, whenever it is strongly Morita equivalent to a unital C^{*}-algebra (this fails in the non commutative case; see the example in the previous section). In particular, if \mathcal{A} is a unital C^{*}-algebra and \mathcal{E} is full Hilbert \mathcal{A} -module such that $\mathbb{K}(\mathcal{E})$ is abelian, then $\mathbb{K}(\mathcal{E})$ is unital.

William Paschke showed that if \mathcal{A} is a von Neumann algebra and \mathcal{E} is full and self dual Hilbert \mathcal{A} -module, then $\mathbb{B}(\mathcal{E})$ is a von Neumann algebra [6].

Theorem 2.2. If A is a unital C^{*}-algebra and \mathcal{E} is a full Hilbert A-module, then the following are equivalent:

- (*i*) $\mathbb{B}(\mathcal{E})$ is a nuclear von Neumann algebra,
- (*ii*) A is a nuclear von Neumann algebra and $\mathbb{K}(\mathcal{E})$ is unital.

Proof. $(i) \Rightarrow (ii)$. If $\mathbb{B}(\mathcal{E})$ is nuclear, then by [12, Corollary 1.9], $\mathbb{B}(\mathcal{E}) \simeq \bigoplus_{k=1}^{N} Z_k \otimes \mathbb{M}_{n_k}(\mathbb{C})$ where each Z_k is an abelian von Neumann algebra. Therefore, $\mathbb{K}(\mathcal{E}) \simeq \bigoplus_{k=1}^{N} I_k \otimes \mathbb{M}_{n_k}(\mathbb{C})$, where I_k is an ideal of Z_k such that $\mathcal{M}(I_k) = Z_k$, for each $1 \leq k \leq n$. Since $\mathbb{K}(\mathcal{E})$ and \mathcal{A} are strongly Morita equivalent, and $\mathbb{K}(\mathcal{E})$ is nuclear and continuous trace, \mathcal{A} is also nuclear and continuous trace. Hence the spectrum of \mathcal{A} is compact, and so is the spectrum of $\mathbb{K}(\mathcal{E})$. But $\mathbb{K}(\mathcal{E})$ is strongly Morita equivalent to $\bigoplus_{k=1}^{N} I_k$, hence the spectrum of the latter (which is the disjoint union of the spectra of I_k 's) is also compact. Thus each I_k is unital and so is $\mathbb{K}(\mathcal{E})$. Therefore $\mathbb{K}(\mathcal{E}) = \mathbb{B}(\mathcal{E})$ is a von Neumann algebra. Finally, since \mathcal{A} is unital and strongly Morita equivalent to a von Neumann algebra, it is a von Neumann algebra by [1, Theorem 3.3].

$$(i) \Rightarrow (ii)$$
. This is evident.

It is well known that being a C^* -algebra of compact operators is preserved under strong Morita equivalence of C^* -algebras (c.f. [4]; in particular, being finite dimensional is preserved under strong Morita equivalence for unital C^* -algebras). Indeed, $\mathbb{K}(\mathcal{E})$ is unital if and only if \mathcal{E} is finitely generated and self dual [11]. It is easy to see that if \mathcal{E} is a finitely generated Hilbert C^* -module over a finite dimensional C^* -algebra \mathcal{A} , then \mathcal{E} and $\mathbb{K}(\mathcal{E})$ are finite dimensional. On the other hand, if \mathcal{A} is unital, $\mathbb{K}(\mathcal{E})$ is finite dimensional if and only if \mathcal{E} is finite dimensional, if and only if \mathcal{E} and \mathcal{A} are both finite dimensional. Therefore, we have

Corollary 2.3. If A is a von Neumann algebra and \mathcal{E} is full self dual Hilbert A-module, then the following are equivalent:

- (*i*) $\mathbb{B}(\mathcal{E})$ is nuclear,
- (*ii*) \mathcal{A} *is nuclear and* $\mathbb{K}(\mathcal{E})$ *is unital.*
- (*iii*) A is nuclear and \mathcal{E} is finitely generated.

Corollary 2.4. If A is a factor and \mathcal{E} is a full self dual Hilbert A-module, then the following are equivalent:

- (*i*) $\mathbb{B}(\mathcal{E})$ is nuclear,
- (*ii*) both \mathcal{E} and \mathcal{A} are finite dimensional,
- (*iii*) $\mathbb{B}(\mathcal{E})$ is finite dimensional.

The above corollary also holds when \mathcal{A} is a unital C^* -algebra with trivial center and \mathcal{E} is a full Hilbert \mathcal{A} -module such that $\mathbb{B}(\mathcal{E})$ is a von Neumann algebra.

Finally, we remark that, since strongly Morita equivalent unital C^* -algebras have isomorphic centers, if any of the equivalent conditions in Corollary 2.3 hold then there are an integer N and some abelian von Neumann algebras Z_1, \dots, Z_N such that simultaneously $\mathcal{A} \simeq \bigoplus_{k=1}^N Z_k \otimes \mathbb{M}_{n_k}(\mathbb{C})$ and $\mathbb{B}(\mathcal{E}) \simeq \bigoplus_{k=1}^N Z_k \otimes \mathbb{M}_{n'_k}(\mathbb{C})$, for some integer numbers n_1, \dots, n_N and n'_1, \dots, n'_N .

In particular, if \mathcal{A} is a unital continuous trace C^* -algebra with vanishing Dixmier-Douady class, then \mathcal{A} is a von Neumann algebra if and only if its spectrum is a hyper-Stonean space. In this case, \mathcal{A} has a form $\bigoplus_{k=1}^{N} Z_k \otimes \mathbb{M}_{n_k}(\mathbb{C})$, where each Z_k is an abelian von Neumann algebra. Consequently, a unital continuous trace C^* -algebra with vanishing Dixmier-Douady class is a factor if and only if it is finite dimensional.

References

- [1] C.A. Akemman, M. Amini, and M.B. Asadi, *Which multiplier algebras are W**-*algebras*?, arXiv:1304.7453 [math.OA].
- [2] W. Beer, On Morita equivalence of nuclear C*-algebras, J. Pure Appl. Algebra 26 (1982), 249–267.
- [3] M. Frank and V.I. Paulsen, Injective envelopes of C*-algebras as operator modules, Pacific J. Math. 212 (2003), 57–69.
- [4] A. an Huef, I. Raeburn, and D.P. Williams, *Properties preserved under Morita equivalence of C*-algebras*, Proc. Amer. Math. Soc. **135** (2007), 1495–1503.
- [5] V.M. Manuilov and E.V. Troitsky, *Hilbert C*-modules*, Translations Math. Monographs, vol. **226**, Amer. Math. Soc., Providence, RI, 2005.
- [6] William L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468.
- [7] G.K. Pedersen, C*-algebras and their automorphism groups, Academic Press, New York, 1979.

- [8] I. Raeburn and D.P. Williams, *Morita equivalence and continuous-trace C***-algebras*, Amer. Math. Soc., Providence, 1998.
- [9] Marc A. Rieffel, *Induced representations of C*-algebras*, Advances in Math. **13** (1974), 176–257.
- [10] Marc A. Rieffel, *Morita equivalence for C*-algebras and W*-algebras*, J. Pure Appl. Alg. 5 (1974), 51–96.
- [11] Marc A. Rieffel, Morita equivalence for operator algebras, Proc. Symp. Pure Math. 38 (1982), 285–298.
- [12] S. Wassermann, *On tensor products of certain group C*-algebras*, J. Functional Analysis **23** (1976), 239–254.
- [13] H.H. Zettl, Strong Morita equivalence of C*-algebras preserves nuclearity, Arch. Math. 38 (1982), 448–452.

Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O.Box 14115-134, Tehran, Iran School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran email:mamini@modares.ac.ir, mamini@ipm.ir

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran email:mb.asadi@ut.ac.ir