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Abstract

In the present paper, considering a recent technique, which is used by
Wardowski [24] for fixed points of single-valued mappings, we give a new
and general class of multivalued weakly Picard operators on complete met-
ric spaces and show that the class of multivalued almost contractions (both
linear and nonlinear cases in the sense of Berinde and Berinde [9]) is a proper
subset of this new class. We also give a nontrivial example showing this fact.

1 Introduction and preliminaries

Let (X, d) be a metric space, P(X) be the collection of all nonempty subsets of X,
CB(X) be the collection of all nonempty closed and bounded subsets of X and
K(X) be the collection of all nonempty compact subsets of X. It is well known
that H : CB(X) x CB(X) — R defined by

H(A, B) = max {sup D(x,B),sup D(y, A) }
XEA YEB
is a metric on CB(X), which is called the Pompeiu-Hausdorff metric induced
by d, where D(x,B) = inf{d(x,y) : y € B}. We can find detailed information
about the Pompeiu-Hausdorff metric in [2, 10, 13]. An element x € X is said to
be a fixed point of a multivalued mapping T : X — P(X) if x € Tx. In 1991,
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Rus [19] introduced the concept of multivalued weakly Picard (MWP) operator
on a metric space (X,d) as follows. A multivalued mapping T : X — P(X) is
MWP operator if there exists a sequence {x,} in X such that x, ;1 € Tx, for any
initial point xg, which converges to a fixed point of T (see [20, 21]). We shall
denote the class of all MWP operators on X by My p(X).

LetT : X — CB(X). T is said to be a multivalued nonlinear almost contraction
[9] if there exist a constant L > 0 and a function ¢ : [0,00) — [0, 1) satisfying

limsupg(t) <1, Vs >0, (1.1)
t—sst
such that
H(Tx,Ty) < ¢(d(x,y))d(x,y) + LD(y, Tx) (1.2)

forall x,y € X. A function ¢ : [0,00) — [0, 1) satisfying (1.1) is called Mizoguchi-
Takahashi function (M7 -function [11, 12]) in the literature.

Note that, by the symmetry property of the distance, the nonlinear almost
contractive condition implicitly includes the following dual one

H(Tx,Ty) < ¢(d(x,y))d(x,y) + LD(x, Ty) (1.3)

for all x,y € X. So, in order to check the nonlinear almost contractiveness of a
multivalued mapping T, it is necessary to check both (1.2) and (1.3). Specially, if
@ : [0,00) — [0,1) is a constant, then T is called multivalued almost contraction.
If L = 0, then (1.2) turns to the famous Mizoguchi-Takahashi [14] contractive
condition, which includes the multivalued contractions in sense of Nadler [16].
We denote show the class of all multivalued nonlinear almost contractions on X
by Mya(X).

Berinde and Berinde [9] proved that if (X, d) is a complete metric space and
T : X — CB(X) is a multivalued nonlinear almost contraction, then T has a
fixed point. Analyzing the proof of this result, we can observe that T is MWP
operator. Therefore, if (X, d) is complete then My4(X) C Mpyp(X). We can find
some important information about single-valued and multivalued weakly Picard
operators on complete metric space in [5, 6, 7, 8].

In this paper, by considering the recent technique of Wardowski [24], we give
anew class of MWP operators, which is more general than M n4(X) on complete
metric spaces. First, we recall the Wardowski’s technique.

Let F : (0,00) — R be a function. Consider the following conditions for F :

(F1) F is strictly increasing, ie., for all o, € (0,00) such that « < B,
F(x) < E(B),

(F2) For each sequence {a,} of positive numbers

lim a, = 0if and only if lim F(a,) = —oo,
n—oo n—00

(F3) There exists k € (0,1) such that lim,_,y+ a*F(a) = 0,

(F4) F(inf A) = inf F(A) forall A C (0, 0) with inf A > 0.

By considering the conditions (F1)-(F3), Wardowski [24] introduced the con-
cept of F-contractions, which more general than ordinary contraction, for single
valued maps and show that every F-contraction on a complete metric space has a
unique fixed point. (See [24] for more detailed information about F-contractions).
Then, considering this new concept, some studies have been made.
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Remark 1. In [23] Udo-Utun shows that F-contractions are closely related to
(6, k)-weak contractions (almost contractions) in the sense of Berinde. Therefore in The-
orem 2.1 (ii) of [23], it has been shown that every F-contraction T is a (9, k)-weak con-
traction, where T is a self map of a bounded closed and convex subset of a real Banach
space. But we know that this two concepts are independent on a (complete) metric space as
shown in the following two examples. We can find them in [24] and in [18], respectively.

In the following example, the mapping T is not (J, k)-weak contraction, but it
is F-contraction on a complete metric space.

Example 1. Let X = {x, = n(n2+1) :n € N}and d(x,y) = |x —y|. Then (X,d) isa

complete metric space. Define a mapping T : X — X by:

X1 ;X=X
Tx =

Then, as shown in Example 2.5 of [24], T is F-contraction with F(a) = a + Ina and
T=1.

On the other hand, since d(x,,_1, Tx,) = 0 and
d(Txy, Tx,_1) 2n—2

lim = lim =
n—oo  d(xy, Xy_1) n—oo  2n !

then we can not find § € (0,1) and k > 0 satisfying
d(Tx, Ty) < dd(x,y) + kd(y, Tx)
forall x,y € X. Therefore, T is not a (J, k)-weak contraction.

In the following example, the mapping T is (9, k)-weak contraction, but it is
not F-contraction on a complete metric space.

Example 2. Let X = [0, 2] with the usual metricand T : X — X be defined by

, x€][0,1)

Tx =
2, xe€ll,2]

Then T is a (0, k)-weak contraction with § = 1 and k = 3 (Example 1.3.19 of [18]). But,
since T is not continuous and so it is not an F-contraction.

NI=

We denote by F and F. the set of all functions F satistying (F1)-(F3) and
(F1)-(F4), respectively. It is clear that F, C F. Some examples of functions

belonging F, are Fj(¢) = Ina, F(¢) = a +1Ina, F(a) = —ﬁ and Fy(a) =

In (a® + a). If we define Fs(a) = Ina for « < 1 and F5(a) = 2« for & > 1, then
F5 € F\F.. If F is nondecreasing, then it satisfies (F4) if and only if it is right
continuous.

Later, the technique of Wardowski was used for multivalued mappings by
many authors (see [1, 3, 4, 15, 17, 22]). Here, we shall mentioned some important
of them.
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Theorem 1 ([17]). Let (X, d) be a complete metric space and T : X — CB(X). If there
exist F € Fyand T: (0,00) — (0, 00) such that

liminfr(t) > 0, Vs > 0, (1.4)

t—st

satisfying
t(d(x,y)) + F(H(Tx, Ty)) < F(d(x,y))

forall x,y € X with H(Tx, Ty) > 0. Then T has a fixed point in X.

Theorem 2 ([3]). Let (X, d) be a complete metric space and T : X — CB(X). If T isa
multivalued almost F-contraction with F € F,, that is, there exist two constants T > 0
and A > 0 satisfying

T+ F(H(Tx, Ty)) < F((d(x,y) + AD(y, Tx))
forall x,y € X with H(Tx, Ty) > 0, then T has a fixed point in X.

If we examine the proofs of Theorem 1 and Theorem 2, we can see that the
mentioned maps belong to Myp(X). In Theorem 1 (or in Theorem 2), the condi-
tion (F4) on F cannot be removed as shown in Example 1 of [3]. However, if we
take T : X — K(X) in these theorems, we can remove the condition (F4) on F.

2 Main result

Our main results are based on the following new definition.

Definition 1. Let (X, d) be a metric space and T : X — CB(X). We say that T is a
multivalued nonlinear almost F-contraction with F € F if there exist a constant A > 0
and a function T : (0,00) — (0, c0) such that

liminfz(t) > 0, foralls >0
t—st

satisfying
t(d(x,)) + F(H(Tx, Ty)) < F((d(x,y) + AD(y, Tx)) 1)

forall x,y € X with H(Tx, Ty) > 0.

We shall denote the class of all multivalued nonlinear almost F-contractions
on X by Myar(X).

Remark 2. Taking T(t) = T > 0 in Definition 1, we deduce that every multivalued
almost F-contraction is also multivalued nonlinear almost F-contraction.

Remark 3. Every multivalued nonlinear almost contraction is also multivalued nonlin-
ear almost F-contraction with a special F, that is, Mna(X) C Mnap(X). Indeed, let
(X, d) be metric space and T € Mya(X). Then, there exist a constant L > 0 and an
MT -function ¢ satisfying

H(Tx,Ty) < ¢(d(x,y))d(x,y) + LD(y, Tx) (2.2)
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forall x,y € X. Define B(t) = 1+(”( , then B is also an M'T -function. Therefore from
(2.2),

H(Tx,Ty) < ¢(d(x,y))d(x,y) +LD(y, Tx)
X

< DO 4 y) 4101+ pla(e )DLy, T

= Bd(x,y))d(x,y) +2LE(d(x,y))D(y, Tx)
= pld(x,y))ld(x,y) +2LD(y, Tx)]

forall x,y € X with H(Tx, Ty) > 0. Thus, we get
—In(B(d(x,y))) +In(H(Tx, Ty)) <In(d(x,y) +2LD(y, Tx))  (2.3)

forall x,y € X with H(Tx,Ty) > 0. Now, define ©(t) = —Inp(t). Since B is an
MT -function, then

liminft(¢t) > 0 foralls > 0.
f—st

Therefore, from (2.3), T is a multivalued nonlinear almost F-contraction with
Flo) =Ina, A =2Land t(t) = —In (%), thatis T € Myarp(X).

Theorem 3. Let (X, d) be a complete metric space and T € Myap(X) with F € F,,
then T € Myp(X).

Proof. Let xo € X. As Tx is nonempty for all x € X, we can choose x; € Txo.
If x; € Txq, then x; is a fixed point of T. In this case, we construct a sequence
{xn} by x, = x1 for n > 1, then x,41 € Tx, and {x,} converges to a fixed
point of T, thatis T € Myp(X). Now, suppose x1 ¢ Tx1. Then, as Tx; is closed,
D(xq,Tx1) > 0. On the other hand, as D(xq, Tx1) < H(Txq, Tx1), from (F1) we
have

F(D(x1,Tx1)) < F(H(Txg, Tx1)).

Since T € My ar(X), we have

F(D(x1, Tx1)) F(H(Txo, Tx1))
F(d(x1,x0) + AD(x1, Txo)) — T(d(x1,%0))
F(d(x1,x0)) — T(d(x1,%0)).- (2.4)

From (F4) we can write (note that D(x1, Tx1) > 0)
F(D(x1,Tx1)) = inf F(d(x1,v)),
yeTx

I IA A

and so from (2.4) we have

inf F(d(x1,y)) < F(d(x1,x0)) — t(d(x1,x0))

yeTx;
< F(d(x1,x0)) — M. (2.5)
Then, from (2.5) there exists x, € Tx; such that
T(d(xl,xo)).

F(d(x1,x2)) < F(d(x1,x0)) — 5
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If x; € Tx, we are finished. Otherwise, by the same way we can find x3 € Tx;

such that
F(d(x2,x3)) < F(d(x2,x1)) — M

By induction, we can find a sequence {x,} in X such that x,11 € Tx, (We may
assume x, ¢ Tx;,) and

T(d(xfl/ xn—l))

F(d(xp,xp4+1)) < F(d(xn, xp-1)) — .

(2.6)

for all n € IN. Denote a, = d(x,, x,11) for n € N, then a, > 0 and from (2.6)
{a,} is decreasing. Therefore there exists & > 0 such that lim,_,c 4, = 6. Now let
0 > 0. Using (2.6), the following holds:

F(ay) < F(ay_q)— T(a;—l)
< F(ﬂn—Z) - T(a;_l) — T(a;—z)

< F(ao) o T(”Tl—l) + T(”n—;) + ot T(ao) ) (27)

Let p,, be a greatest number in {0,1,--- ,n — 1} such that

w(ap,) = min{t(ap), t(ar),- -, T(an-1)}

for all n € IN. In this case, {p, } is a nondecreasing sequence. From (2.7), we get

F(x) < F(a) = 5 7(ap,). (2.8)

Now consider the sequence {7(ay,)}. We distinguish two cases.
Case 1. For each n € N there is m > n such that 7(ap,) > 7(ap,). Then
we obtain a subsequence {ay, } of {a,,} with 7(ap, ) > 7( ) for all k. Since

ap,, — 5" we deduce that

a
Pryiq

liminf > 0.
im in T(ap,, )

Hence F(ay, ) < F(ag) — %T(apnk) for all k. Consequently limy_,o F(a,,) = —oo,
and by (F2), limy_, Ap,, = 0, which contradicts that lim,, . a,, > 0.

Case 2. There is np € N such that 7(ay, ) = 7(ap,) for all m > ng. Then
F(am) < F(ag) — 3t(ap,, ) for all m > ng. Hence limy o F(am) = —oo, so
lim,; e a;; = 0, which contradicts that lim,; .. a,; > O.

Thus limy,_,« a, = 0. From (F3), there exists k € (0, 1) such that

lim a*F(a,) = 0.

n—o0

By (2.7), the following holds for all n € IN

n
a’fll-“(an) — al,‘lF(ao) < —a’flir(apn) <0,
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that is,
0< a]flgr(apn) < a¥F(ay) — akF(ay). (2.9)
Letting n — oo in (2.9), we obtain that
Tim al,‘lgr(apn) — 0. (2.10)
Since
n = 1rilrggonfr(apn) >0,

then there exists g € IN such that 7(ap,) > 5 for alln > ng. Thus

no n

ok — < a’flir(apn) (2.11)
for all n > ng. Letting n — oo in (2.11), we obtain that
R PR TPV 3 L _
0< lim a7 < lim a,57(ap,) =0,

that is

lim na* = 0. (2.12)

n—soco 1

From (2.12), there exits n; € IN such that na’fl < 1for all n > nq. So, we have, for
alln > ny

(2.13)

In order to show that {x,} is a Cauchy sequence consider m,n € IN such that
m > n > ny. Using the triangular inequality for the metric and from (2.13), we
have
d(xn/ xm) < d(xn/ xn+1) + d(xn—H/ xn+2) + 4+ d(xm—ll xm)
= ap+ap 1+ -+ am

m—1 00 © q
= Zﬂiﬁ Z%‘ﬁ Zl—/k
i=n i:nl

i=n

By the convergence of the series )’ il%’ passing to limit n — oo, we get
i=1
d(xn, xm) — 0. This yields that {x,} is a Cauchy sequence in (X, d). Since (X, d)
is a complete metric space, there exists z € X such that lim;,_,« X, = z. From (2.1),
for all x,y € X with H(Tx, Ty) > 0, we get

H(Tx, Ty) < d(x,y) + AD(y, Tx)
and so
H(Tx, Ty) < d(x,y) + AD(y, Tx)
for all x,y € X. Then
D(xp11,Tz) H(Txn, Tz)
d(xp,z) +AD(z, Txy)
d(xn,z) + Ad(z,xp41)

Passing to limit # — oo, we obtain D(z, Tz) = 0. Thus, we getz € Tz = Txz.
Therefore T € Mpyp(X). ]

VAN VANRPAN
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Remark 4. If we take T : X — K(X) in Theorem 3, we can remove the condition (F4)
on F. Indeed, let xo € X and x1 € Txg. If xy € Txy, then the proof is complete. Let
x1 ¢ Txq. Then, as Txq is closed, D(x1, Tx1) > 0. On the other hand, as D(xq, Tx1) <
H(Txo, Tx1), from (F1) we have

F(D(x1,Tx1)) < F(H(Txo, Tx1)).
From (2.1), we can write that

F(D(x1, Tx1)) F(H(Txo, Tx1))

(d(xl,xo) —|—/\D(X1, TXO)) (d(xl,xo))
(d(xllx())) (d(xllx()))' (214)

VARRVAN

Since Txy is compact, there exists xo € Txy such that d(x1,x3) = D(x1,Tx1). Then
from (2.14) we have

F(d(xl, xz)) < F(d(xl, xo)) — T(d(xl, XO)).
The rest of the proof can be completed as in the proof of Theorem 3.

Example 3. Consider the complete metric space (X, d), where X = {# :n € N,
n>2yU{0}andd: X x X — [0,00) is given by d(x,y) = |x —y|. Define T : X —
CB(X) and F : (0,00) — R by
1 _ 1
{0,(71_"_—1)2} , X—?,T’l>2

xy , xe {O'}L}

Tx =

and
Ina 0 < g < e?
F(DC) = ’

%, ax>é

B

respectively. We can see that Fe Foandsup, .xd(x,y) = 1<eé

Since H(TO,T}) = § = d(0,}), then for all F € F. and T : (0,oo) — (0, 00)
satisfying inequality (1.4), we have

1)+ E(H(TO,T3)) > F(d(0, 7).

T(d(0, 1

Therefore Theorem 1 can not be applied to this example.

Now we show that T is not a multivalued nonlinear almost contraction. Indeed, sup-
pose that there exist a constant L > 0 and a MT -function ¢ satisfying (1.2). Therefore,
for x = % and y = @ +1)2’ then D(y, Tx) =0,

2n+3 2n+1
dd(x,y) = 5——5-
i 12 (n 2R ) = Sy

H(Tx, Ty) =
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Thus
H(Tx,Ty) < ¢(d(x,y))d(x,y) + LD(y, Tx)
2n43 2n41 2n+1
< e < 9Ganee) e
(2n+3)n? i
S e < ?Game):
Taking limit supremum as n — oo, we have
2n+1
1 <limsu —— ) <limsupg(t) <1,
< n%pfp(nz(n - 1)2) < HO+pqv( )

which is a contradiction. Therefore T is not multivalued nonlinear almost contraction
and so T ¢ Mya(X).
On the other hand, T € Myap(X) with A = 1and T = In %. To see this have to
show that
100 .
In s F(H(Tx,Ty)) < F(d(x,y) + min{D(y, Tx), D(x,Ty)}), (2.15)
forall x,y € X with H(Tx, Ty) > 0. First, observe that if H(Tx, Ty) > 0, then x # y.

Case 1: For x = % and Y= L withm > n > 2, we obtain
n m

1 _

1
H(Tx, Ty) VEM=Td(x,y) Vi)

1 1

= 1 __ 1 <n+11>2’<mi1>2 1 _ 1 2
(n+1)2 (m+1)2 n2  m?

_ _(m+)(m+1) __ nm
— (M) (m+1)2—(n+1)2 (M) Vm2—n2
U (n+1)2(m+1)2 n2m?2
(n+)(m+1)  am 1
_ ((m+1)2—(n+1)2> V12— (n+1)2 \/mz_nz( (m-+n+2)n*m? ) 2 —n2
= iz ) (DO 12 :

Omn the other hand, since

(m+1)2—(n+1)2<1
(n+12(m+12 —2
(n4+1)(m+1) nm

V12— (n+12 VmZ—n2 =1
(m +n + 2)n’m?
(m+mn)(n+1)2(m+1)2

<1

and
nm

— > 1,
then we have :

1
H(Tx, Ty) VH(TxTy) d(x, y) dxy) <
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Thus we obtain

n 0 L FH(Tx, Ty) < F(d(xy)

81
< F(d(x,y) +min{D(y, Tx),D(x,Ty)}),

that is (2.15) is satisfied.
Case 2. For x = #, n > 2and y = 0, we obtain

1 _ 1 1 1 1 - 1
H(Tx,Ty) d(xy) — (n+1)2 i n2
H(Tx, Ty) VAT d(x,y) Vaes <(n - 1)2) ( )

n2n
(n+1)2(n+1)

n 2n 1 2
- <n—|—1) (n—l—l)

1

< 2

and so (2.15) is satisfied.
Case 3. For x = 3 and y = 0, since H(Tx, Ty) = d(x,y) = min{D(y, Tx),
D(x, Ty)} = 1, we obtain
1 _ 1
H(Tx, Ty) VH™™) [d(x,y) + min {d(y, Tx),d(x, Ty)}] vy min{dlyTx)d0xTy))
1,1, _s5 1
SV (= ~ 4=
(G <
that is (2.15) is satisfied.
Case 4. For x = %, n > 2 and y = }, since H(Tx, Ty) = } and
n

— 4
: 1 1
d(x,y) =min{D(y, Tx),D(x,Ty)} = 1~
since
1 2 1 2 5
Lt > _Z2_ 2
2 n2=2 9 18

for n > 3, we obtain

1 1

H(Tx’ Ty) H(Tx,Ty) [d(x’ y) + min {d(y’ T.X'), d(x, Ty)}]_ \/d(x,y)+min{d(y,Tx),d(x,Ty)}

o120 -3
16" 5
1,18,

< 16(5)

_ s

100

This shows that all conditions of Theorem 3 are satisfied and so T € Myp(X).
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