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Abstract

In the present paper, considering a recent technique, which is used by
Wardowski [24] for fixed points of single-valued mappings, we give a new
and general class of multivalued weakly Picard operators on complete met-
ric spaces and show that the class of multivalued almost contractions (both
linear and nonlinear cases in the sense of Berinde and Berinde [9]) is a proper
subset of this new class. We also give a nontrivial example showing this fact.

1 Introduction and preliminaries

Let (X, d) be a metric space, P(X) be the collection of all nonempty subsets of X,
CB(X) be the collection of all nonempty closed and bounded subsets of X and
K(X) be the collection of all nonempty compact subsets of X. It is well known
that H : CB(X) × CB(X) → R defined by

H(A, B) = max

{

sup
x∈A

D(x, B), sup
y∈B

D(y, A)

}

is a metric on CB(X), which is called the Pompeiu-Hausdorff metric induced
by d, where D(x, B) = inf {d(x, y) : y ∈ B}. We can find detailed information
about the Pompeiu-Hausdorff metric in [2, 10, 13]. An element x ∈ X is said to
be a fixed point of a multivalued mapping T : X → P(X) if x ∈ Tx. In 1991,
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Rus [19] introduced the concept of multivalued weakly Picard (MWP) operator
on a metric space (X, d) as follows. A multivalued mapping T : X → P(X) is
MWP operator if there exists a sequence {xn} in X such that xn+1 ∈ Txn for any
initial point x0, which converges to a fixed point of T (see [20, 21]). We shall
denote the class of all MWP operators on X by MWP(X).

Let T : X → CB(X). T is said to be a multivalued nonlinear almost contraction
[9] if there exist a constant L ≥ 0 and a function ϕ : [0, ∞) → [0, 1) satisfying

lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0, (1.1)

such that
H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + LD(y, Tx) (1.2)

for all x, y ∈ X. A function ϕ : [0, ∞) → [0, 1) satisfying (1.1) is called Mizoguchi-
Takahashi function (MT -function [11, 12]) in the literature.

Note that, by the symmetry property of the distance, the nonlinear almost
contractive condition implicitly includes the following dual one

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + LD(x, Ty) (1.3)

for all x, y ∈ X. So, in order to check the nonlinear almost contractiveness of a
multivalued mapping T, it is necessary to check both (1.2) and (1.3). Specially, if
ϕ : [0, ∞) → [0, 1) is a constant, then T is called multivalued almost contraction.
If L = 0, then (1.2) turns to the famous Mizoguchi-Takahashi [14] contractive
condition, which includes the multivalued contractions in sense of Nadler [16].
We denote show the class of all multivalued nonlinear almost contractions on X
by MNA(X).

Berinde and Berinde [9] proved that if (X, d) is a complete metric space and
T : X → CB(X) is a multivalued nonlinear almost contraction, then T has a
fixed point. Analyzing the proof of this result, we can observe that T is MWP
operator. Therefore, if (X, d) is complete then MNA(X) ⊂ MWP(X). We can find
some important information about single-valued and multivalued weakly Picard
operators on complete metric space in [5, 6, 7, 8].

In this paper, by considering the recent technique of Wardowski [24], we give
a new class of MWP operators, which is more general than MNA(X) on complete
metric spaces. First, we recall the Wardowski’s technique.

Let F : (0, ∞) → R be a function. Consider the following conditions for F :
(F1) F is strictly increasing, i.e., for all α, β ∈ (0, ∞) such that α < β,

F(α) < F(β),
(F2) For each sequence {αn} of positive numbers

lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) = −∞,

(F3) There exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0,
(F4) F(inf A) = inf F(A) for all A ⊂ (0, ∞) with inf A > 0.
By considering the conditions (F1)-(F3), Wardowski [24] introduced the con-

cept of F-contractions, which more general than ordinary contraction, for single
valued maps and show that every F-contraction on a complete metric space has a
unique fixed point. (See [24] for more detailed information about F-contractions).
Then, considering this new concept, some studies have been made.
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Remark 1. In [23] Udo-Utun shows that F-contractions are closely related to
(δ, k)-weak contractions (almost contractions) in the sense of Berinde. Therefore in The-
orem 2.1 (ii) of [23], it has been shown that every F-contraction T is a (δ, k)-weak con-
traction, where T is a self map of a bounded closed and convex subset of a real Banach
space. But we know that this two concepts are independent on a (complete) metric space as
shown in the following two examples. We can find them in [24] and in [18], respectively.

In the following example, the mapping T is not (δ, k)-weak contraction, but it
is F-contraction on a complete metric space.

Example 1. Let X = {xn = n(n+1)
2 : n ∈ N} and d(x, y) = |x − y| . Then (X, d) is a

complete metric space. Define a mapping T : X → X by:

Tx =







x1 , x = x1

xn−1 , x = xn

.

Then, as shown in Example 2.5 of [24], T is F-contraction with F(α) = α + ln α and
τ = 1.

On the other hand, since d(xn−1, Txn) = 0 and

lim
n→∞

d(Txn, Txn−1)

d(xn, xn−1)
= lim

n→∞

2n − 2

2n
= 1,

then we can not find δ ∈ (0, 1) and k ≥ 0 satisfying

d(Tx, Ty) ≤ δd(x, y) + kd(y, Tx)

for all x, y ∈ X. Therefore, T is not a (δ, k)-weak contraction.

In the following example, the mapping T is (δ, k)-weak contraction, but it is
not F-contraction on a complete metric space.

Example 2. Let X = [0, 2] with the usual metric and T : X → X be defined by

Tx =







x
2 , x ∈ [0, 1)

2 , x ∈ [1, 2]
.

Then T is a (δ, k)-weak contraction with δ = 1
2 and k = 3 (Example 1.3.19 of [18]). But,

since T is not continuous and so it is not an F-contraction.

We denote by F and F∗ the set of all functions F satisfying (F1)-(F3) and
(F1)-(F4), respectively. It is clear that F∗ ⊂ F . Some examples of functions
belonging F∗ are F1(α) = ln α, F2(α) = α + ln α, F3(α) = − 1√

α
and F4(α) =

ln
(

α2 + α
)

. If we define F5(α) = ln α for α ≤ 1 and F5(α) = 2α for α > 1, then
F5 ∈ F\F∗. If F is nondecreasing, then it satisfies (F4) if and only if it is right
continuous.

Later, the technique of Wardowski was used for multivalued mappings by
many authors (see [1, 3, 4, 15, 17, 22]). Here, we shall mentioned some important
of them.
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Theorem 1 ([17]). Let (X, d) be a complete metric space and T : X → CB(X). If there
exist F ∈ F∗ and τ : (0, ∞) → (0, ∞) such that

lim inf
t→s+

τ(t) > 0, ∀s ≥ 0, (1.4)

satisfying
τ(d(x, y)) + F(H(Tx, Ty)) ≤ F(d(x, y))

for all x, y ∈ X with H(Tx, Ty) > 0. Then T has a fixed point in X.

Theorem 2 ([3]). Let (X, d) be a complete metric space and T : X → CB(X). If T is a
multivalued almost F-contraction with F ∈ F∗, that is, there exist two constants τ > 0
and λ ≥ 0 satisfying

τ + F(H(Tx, Ty)) ≤ F((d(x, y) + λD(y, Tx))

for all x, y ∈ X with H(Tx, Ty) > 0, then T has a fixed point in X.

If we examine the proofs of Theorem 1 and Theorem 2, we can see that the
mentioned maps belong to MWP(X). In Theorem 1 (or in Theorem 2), the condi-
tion (F4) on F cannot be removed as shown in Example 1 of [3]. However, if we
take T : X → K(X) in these theorems, we can remove the condition (F4) on F.

2 Main result

Our main results are based on the following new definition.

Definition 1. Let (X, d) be a metric space and T : X → CB(X). We say that T is a
multivalued nonlinear almost F-contraction with F ∈ F if there exist a constant λ ≥ 0
and a function τ : (0, ∞) → (0, ∞) such that

lim inf
t→s+

τ(t) > 0, for all s ≥ 0

satisfying
τ(d(x, y)) + F(H(Tx, Ty)) ≤ F((d(x, y) + λD(y, Tx)) (2.1)

for all x, y ∈ X with H(Tx, Ty) > 0.

We shall denote the class of all multivalued nonlinear almost F-contractions
on X by MNAF(X).

Remark 2. Taking τ(t) = τ > 0 in Definition 1, we deduce that every multivalued
almost F-contraction is also multivalued nonlinear almost F-contraction.

Remark 3. Every multivalued nonlinear almost contraction is also multivalued nonlin-
ear almost F-contraction with a special F, that is, MNA(X) ⊂ MNAF(X). Indeed, let
(X, d) be metric space and T ∈ MNA(X). Then, there exist a constant L ≥ 0 and an
MT -function ϕ satisfying

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + LD(y, Tx) (2.2)
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for all x, y ∈ X. Define β(t) =
1+ϕ(t)

2 , then β is also an MT -function. Therefore from
(2.2),

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + LD(y, Tx)

≤ 1 + ϕ(d(x, y))

2
d(x, y) + L[1 + ϕ(d(x, y))]D(y, Tx)

= β(d(x, y))d(x, y) + 2Lβ(d(x, y))D(y, Tx)

= β(d(x, y))[d(x, y) + 2LD(y, Tx)]

for all x, y ∈ X with H(Tx, Ty) > 0. Thus, we get

− ln(β(d(x, y))) + ln(H(Tx, Ty)) ≤ ln(d(x, y) + 2LD(y, Tx)) (2.3)

for all x, y ∈ X with H(Tx, Ty) > 0. Now, define τ(t) = − ln β(t). Since β is an
MT -function, then

lim inf
t→s+

τ(t) > 0 for all s ≥ 0.

Therefore, from (2.3), T is a multivalued nonlinear almost F-contraction with

F(α) = ln α, λ = 2L and τ(t) = − ln
(

1+ϕ(t)
2

)

, that is T ∈ MNAF(X).

Theorem 3. Let (X, d) be a complete metric space and T ∈ MNAF(X) with F ∈ F∗,
then T ∈ MWP(X).

Proof. Let x0 ∈ X. As Tx is nonempty for all x ∈ X, we can choose x1 ∈ Tx0.
If x1 ∈ Tx1, then x1 is a fixed point of T. In this case, we construct a sequence
{xn} by xn = x1 for n ≥ 1, then xn+1 ∈ Txn and {xn} converges to a fixed
point of T, that is T ∈ MWP(X). Now, suppose x1 /∈ Tx1. Then, as Tx1 is closed,
D(x1, Tx1) > 0. On the other hand, as D(x1, Tx1) ≤ H(Tx0, Tx1), from (F1) we
have

F(D(x1, Tx1)) ≤ F(H(Tx0, Tx1)).

Since T ∈ MNAF(X), we have

F(D(x1, Tx1)) ≤ F(H(Tx0, Tx1))

≤ F(d(x1 , x0) + λD(x1, Tx0))− τ(d(x1, x0))

= F(d(x1 , x0))− τ(d(x1, x0)). (2.4)

From (F4) we can write (note that D(x1, Tx1) > 0 )

F(D(x1, Tx1)) = inf
y∈Tx1

F(d(x1 , y)),

and so from (2.4) we have

inf
y∈Tx1

F(d(x1 , y)) ≤ F(d(x1 , x0))− τ(d(x1, x0))

< F(d(x1 , x0))−
τ(d(x1, x0))

2
. (2.5)

Then, from (2.5) there exists x2 ∈ Tx1 such that

F(d(x1 , x2)) ≤ F(d(x1, x0))−
τ(d(x1, x0))

2
.
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If x2 ∈ Tx2 we are finished. Otherwise, by the same way we can find x3 ∈ Tx2

such that

F(d(x2, x3)) ≤ F(d(x2 , x1))−
τ(d(x2, x1))

2
.

By induction, we can find a sequence {xn} in X such that xn+1 ∈ Txn (we may
assume xn /∈ Txn) and

F(d(xn , xn+1)) ≤ F(d(xn , xn−1))−
τ(d(xn, xn−1))

2
(2.6)

for all n ∈ N. Denote an = d(xn, xn+1) for n ∈ N, then an > 0 and from (2.6)
{an} is decreasing. Therefore there exists δ ≥ 0 such that limn→∞ an = δ. Now let
δ > 0. Using (2.6), the following holds:

F(an) ≤ F(an−1)−
τ(an−1)

2

≤ F(an−2)−
τ(an−1)

2
− τ(an−2)

2
...

≤ F(a0)−
τ(an−1) + τ(an−2) + · · ·+ τ(a0)

2
. (2.7)

Let pn be a greatest number in {0, 1, · · · , n − 1} such that

τ(apn) = min {τ(a0), τ(a1), · · · , τ(an−1)}

for all n ∈ N. In this case, {pn} is a nondecreasing sequence. From (2.7), we get

F(an) ≤ F(a0)−
n

2
τ(apn ). (2.8)

Now consider the sequence {τ(apn )}. We distinguish two cases.
Case 1. For each n ∈ N there is m > n such that τ(apn) > τ(apm). Then

we obtain a subsequence {apnk
} of {apn} with τ(apnk

) > τ(apnk+1
) for all k. Since

apnk
→ δ+ we deduce that

lim inf
k→∞

τ(apnk
) > 0.

Hence F(ank
) ≤ F(a0)− nk

2 τ(apnk
) for all k. Consequently limk→∞ F(ank

) = −∞,

and by (F2), limk→∞ apnk
= 0, which contradicts that limn→∞ an > 0.

Case 2. There is n0 ∈ N such that τ(apn0
) = τ(apm) for all m > n0. Then

F(am) ≤ F(a0) − m
2 τ(apn0

) for all m > n0. Hence limm→∞ F(am) = −∞, so
limm→∞ am = 0, which contradicts that limm→∞ am > 0.

Thus limn→∞ an = 0. From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

ak
nF(an) = 0.

By (2.7), the following holds for all n ∈ N

ak
nF(an)− ak

nF(a0) ≤ −ak
n

n

2
τ(apn ) ≤ 0,
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that is,

0 ≤ ak
n

n

2
τ(apn ) ≤ ak

nF(a0)− ak
nF(an). (2.9)

Letting n → ∞ in (2.9), we obtain that

lim
n→∞

ak
n

n

2
τ(apn ) = 0. (2.10)

Since
α := lim inf

n→∞
τ(apn ) > 0,

then there exists n0 ∈ N such that τ(apn) >
α
2 for all n ≥ n0. Thus

ak
n

nα

4
≤ ak

n
n

2
τ(apn) (2.11)

for all n ≥ n0. Letting n → ∞ in (2.11), we obtain that

0 ≤ lim
n→∞

ak
n

nα

4
≤ lim

n→∞
ak

n
n

2
τ(apn) = 0,

that is
lim

n→∞
nak

n = 0. (2.12)

From (2.12), there exits n1 ∈ N such that nak
n ≤ 1 for all n ≥ n1. So, we have, for

all n ≥ n1

an ≤ 1

n
1
k

. (2.13)

In order to show that {xn} is a Cauchy sequence consider m, n ∈ N such that
m > n ≥ n1. Using the triangular inequality for the metric and from (2.13), we
have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= an + an+1 + · · ·+ am−1

=
m−1

∑
i=n

ai ≤
∞

∑
i=n

ai ≤
∞

∑
i=n

1

i1/k

By the convergence of the series
∞

∑
i=1

1
i1/k , passing to limit n → ∞, we get

d(xn, xm) → 0. This yields that {xn} is a Cauchy sequence in (X, d). Since (X, d)
is a complete metric space, there exists z ∈ X such that limn→∞ xn = z. From (2.1),
for all x, y ∈ X with H(Tx, Ty) > 0, we get

H(Tx, Ty) < d(x, y) + λD(y, Tx)

and so
H(Tx, Ty) ≤ d(x, y) + λD(y, Tx)

for all x, y ∈ X. Then

D(xn+1, Tz) ≤ H(Txn, Tz)

≤ d(xn, z) + λD(z, Txn)

≤ d(xn, z) + λd(z, xn+1)

Passing to limit n → ∞, we obtain D(z, Tz) = 0. Thus, we get z ∈ Tz = Tz.
Therefore T ∈ MWP(X).
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Remark 4. If we take T : X → K(X) in Theorem 3, we can remove the condition (F4)
on F. Indeed, let x0 ∈ X and x1 ∈ Tx0. If x1 ∈ Tx1, then the proof is complete. Let
x1 /∈ Tx1. Then, as Tx1 is closed, D(x1, Tx1) > 0. On the other hand, as D(x1, Tx1) ≤
H(Tx0, Tx1), from (F1) we have

F(D(x1 , Tx1)) ≤ F(H(Tx0, Tx1)).

From (2.1), we can write that

F(D(x1, Tx1)) ≤ F(H(Tx0, Tx1))

≤ F(d(x1, x0) + λD(x1, Tx0))− τ(d(x1, x0))

= F(d(x1, x0))− τ(d(x1, x0)). (2.14)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = D(x1, Tx1). Then
from (2.14) we have

F(d(x1, x2)) ≤ F(d(x1 , x0))− τ(d(x1, x0)).

The rest of the proof can be completed as in the proof of Theorem 3.

Example 3. Consider the complete metric space (X, d), where X = { 1
n2 : n ∈ N,

n ≥ 2} ∪ {0} and d : X × X → [0, ∞) is given by d(x, y) = |x − y| . Define T : X →
CB(X) and F : (0, ∞) → R by

Tx =















{

0, 1
(n+1)2

}

, x = 1
n2 , n > 2

{x} , x ∈
{

0, 1
4

}

and

F(α) =











ln α√
α

, 0 < α < e2

2α
e3 , α ≥ e2

,

respectively. We can see that F ∈ F∗ and supx,y∈X d(x, y) = 1
4 < e2.

Since H(T0, T 1
4) = 1

4 = d(0, 1
4), then for all F ∈ F∗ and τ : (0, ∞) → (0, ∞)

satisfying inequality (1.4), we have

τ(d(0,
1

4
)) + F(H(T0, T

1

4
)) > F(d(0,

1

4
)).

Therefore Theorem 1 can not be applied to this example.
Now we show that T is not a multivalued nonlinear almost contraction. Indeed, sup-

pose that there exist a constant L ≥ 0 and a MT -function ϕ satisfying (1.2). Therefore,
for x = 1

n2 and y = 1
(n+1)2 , then D(y, Tx) = 0,

H(Tx, Ty) =
2n + 3

(n + 1)2(n + 2)2
and d(x, y) =

2n + 1

n2(n + 1)2
.
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Thus
H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + LD(y, Tx)

⇔ 2n+3
(n+1)2(n+2)2 ≤ ϕ( 2n+1

n2(n+1)2 )
2n+1

n2(n+1)2

⇔ (2n+3)n2

(2n+1)(n+2)2 ≤ ϕ( 2n+1
n2(n+1)2 ).

Taking limit supremum as n → ∞, we have

1 ≤ lim sup
n→∞

ϕ(
2n + 1

n2(n + 1)2
) ≤ lim sup

t→0+
ϕ(t) < 1,

which is a contradiction. Therefore T is not multivalued nonlinear almost contraction
and so T /∈ MNA(X).

On the other hand, T ∈ MNAF(X) with λ = 1 and τ = ln 100
81 . To see this have to

show that

ln
100

81
+ F(H(Tx, Ty)) ≤ F(d(x, y) + min {D(y, Tx), D(x, Ty)}), (2.15)

for all x, y ∈ X with H(Tx, Ty) > 0. First, observe that if H(Tx, Ty) > 0, then x 6= y.
Case 1: For x = 1

n2 and y = 1
m2 with m > n > 2, we obtain

H(Tx, Ty)
1√

H(Tx,Ty)d(x, y)
− 1√

d(x,y)

=
(

1
(n+1)2 − 1

(m+1)2

)

1
√

1
(n+1)2

− 1
(m+1)2

(

1
n2 − 1

m2

)

− 1
√

1
n2 − 1

m2

=
(

(m+1)2−(n+1)2

(n+1)2(m+1)2

)

(n+1)(m+1)√
(m+1)2−(n+1)2

(

m2−n2

n2m2

)− nm√
m2−n2

=
(

(m+1)2−(n+1)2

(n+1)2(m+1)2

)

(n+1)(m+1)√
(m+1)2−(n+1)2

− nm√
m2−n2

(

(m+n+2)n2m2

(m+n)(n+1)2(m+1)2

)
nm√

m2−n2 .

On the other hand, since
(m + 1)2 − (n + 1)2

(n + 1)2(m + 1)2
≤ 1

2
,

(n + 1)(m + 1)
√

(m + 1)2 − (n + 1)2
− nm√

m2 − n2
≥ 1,

(m + n + 2)n2m2

(m + n)(n + 1)2(m + 1)2
< 1

and
nm√

m2 − n2
> 1,

then we have

H(Tx, Ty)
1√

H(Tx,Ty)d(x, y)
− 1√

d(x,y) ≤ 1

2
<

81

100
.
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Thus we obtain

ln
100

81
+ F(H(Tx, Ty)) ≤ F(d(x, y))

≤ F(d(x, y) + min {D(y, Tx), D(x, Ty)}),
that is (2.15) is satisfied.

Case 2. For x = 1
n2 , n > 2 and y = 0, we obtain

H(Tx, Ty)
1√

H(Tx,Ty)d(x, y)
− 1√

d(x,y) =

(

1

(n + 1)2

)

1
√

1
(n+1)2

(

1

n2

)− 1
√

1
n2

=
n2n

(n + 1)2(n+1)

=

(

n

n + 1

)2n ( 1

n + 1

)2

<
1

2

and so (2.15) is satisfied.
Case 3. For x = 1

4 and y = 0, since H(Tx, Ty) = d(x, y) = min {D(y, Tx),

D(x, Ty)} = 1
4 , we obtain

H(Tx, Ty)
1√

H(Tx,Ty) [d(x, y) + min {d(y, Tx), d(x, Ty)}]
− 1√

d(x,y)+min{d(y,Tx),d(x,Ty)}

= (
1

4
)2(

1

2
)−

√
2
<

1

16
.4 =

1

4
<

1

2
,

that is (2.15) is satisfied.
Case 4. For x = 1

n2 , n > 2 and y = 1
4 , since H(Tx, Ty) = 1

4 and

d(x, y) = min {D(y, Tx), D(x, Ty)} =
1

4
− 1

n2
,

since
1

2
− 2

n2
≥ 1

2
− 2

9
=

5

18
for n ≥ 3, we obtain

H(Tx, Ty)
1√

H(Tx,Ty) [d(x, y) + min {d(y, Tx), d(x, Ty)}]
− 1√

d(x,y)+min{d(y,Tx),d(x,Ty)}

= (
1

4
)2(

1

2
− 2

n2
)

− 1
√

1
2−

2
n2

≤ 1

16
(

18

5
)
√

18
5

<
1

16
(

18

5
)2

=
81

100
.

This shows that all conditions of Theorem 3 are satisfied and so T ∈ MWP(X).
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[1] Ö. Acar, G. Durmaz and G. Mınak, Generalized multivalued F-contractions
on complete metric spaces, Bulletin of the Iranian Mathematical Society, 40
(6) (2014), 1469-1478.

[2] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for
Lipschitzian-type Mappings with Applications, Springer, New York, 2009.

[3] I. Altun, G. Durmaz, G. Mınak and S. Romaguera, Multivalued almost
F-contractions on complete metric spaces, Filomat, In press.
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