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Abstract

Given a metric space (X, d), the wobbling group of X is the group of
bijections g : X → X satisfying sup

x∈X

d(g(x), x) < ∞. We study algebraic and

analytic properties of W(X) in relation with the metric space structure of X,
such as amenability of the action of the lamplighter group

⊕
X Z/2Z⋊W(X)

on
⊕

X Z/2Z and property (T).

1 Introduction

In this paper we deal with amenable actions of discrete groups. In our setting an ac-
tion of a group G on a set X is called amenable if there is an G-invariant mean on X.
A linear map µ on ℓ∞(X) is a mean on X if it is unital and
‖µ‖ = 1. A group G is amenable if and only if its action on itself by left transla-
tion is amenable, in this case all actions of G are amenable. Thus the question of
determining whether an action is amenable is interesting in the case when G is
not (known to be) amenable.

Let G be a discrete group acting transitively on a set X. The abelian group⊕
X Z/2Z carries an action of itself by translation, and an action of G by permu-

tation of the basis, which gives rise to an action of the semidirect product (also
called permutational wreath product, or lamplighter group)

⊕
X Z/2Z ⋊ G. We

will be interested in particular cases of the following general question :

Question 1.1. Is the action of
⊕

X Z/2Z ⋊ G on
⊕

X Z/2Z amenable?
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An easy necessary condition for 1.1 is that the action of G on X is amenable.
We observe that this is not sufficient, see Proposition 3.1.

In [10], Nekrashevych and the authors showed that Question 1.1 has a positive
answer if the Schreier graph of the action of G on X is recurrent. However a
characterization of the actions for which the answer is positive is still open.

In this note all metric spaces will be discrete. A metric space X has bounded
geometry if for every R > 0, the balls of radius R have bounded cardinality. We
will mainly be interested in a special case of Question 1.1 when (X, d) is a metric
space with bounded geometry and G is a group of bijections g of X with bounded
displacement, i.e. with the property that |g|w < ∞, where

|g|w := sup{d(x, g(x)) : x ∈ X}. (1)

Following [5] (see also [3]) we will call the group of all such bijections of X the
wobbling group of X and denote it by W(X). In [11], [8, Remark 0.5.C′′

1 ] and [5]
the wobblings were introduced as tools to prove non-amenability results. In [9],
they were used to prove amenability results (see below for details). When X is
a Cayley graph of a finitely generated group Γ with word metric we will denote
the wobbling group of X shortly by W(Γ). The group W(Γ) does not depend on a
finite generating set of Γ and it coincides with the group of piecewise translations
of Γ. As a special case of Question 1.1 we can ask :

Question 1.2. Is the action of
⊕

X Z/2Z ⋊W(X) on
⊕

X Z/2Z amenable?

The motivation for the question above is based on the recent result of the first
named author and N. Monod, [9], where the authors show that the full topological
group of Cantor minimal system is amenable, which was previously conjectured by
Grigorchuk and Medynets in [7]. The combination of this result with the result
of H. Matui, [12], produces the first examples of infinite simple finitely generated
amenable groups. The technical core of [9] is to show that the Question 1.2 has a
positive answer for the particular case X = Z.

Our goal would be to give a necessary and sufficient condition on (X, d) for
Question 1.2 to have a positive answer. Theorem 1.4 summarizes our partial
results in this direction.

Definition 1.3. Let (X, d) be a metric space with bounded geometry and fix
x0 ∈ X. (X, d) is called transient if there is R > 0 such that the random walk
starting at x0 and jumping from a point x uniformly to B(x, R) is transient. Oth-
erwise it is called recurrent.

This notion does not depend on x0, and when (X, d) is a connected graph with
graph distance this notion is equivalent to the transience of the usual random
walk on this graph (Proposition 2.2).

Theorem 1.4. Let (X, d) be a metric space with bounded geometry.

• If (X, d) is recurrent, then the action of
⊕

X Z/2Z ⋊ W(X) on
⊕

X Z/2Z is
amenable. This includes X = Z, Z2 or more generally a metric space (X, d) with
bounded geometry that embeds coarsely in Z2.
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• If X contains a Lipschitz and injective image of the infinite binary tree, then the
action of

⊕
X Z/2Z ⋊W(X) on

⊕
X Z/2Z is not amenable.

The sufficient condition in terms of the random walk uses [10] and is a nec-
essary and sufficient condition for a stronger condition to hold, see Remark 2.3.
We also take the opportunity in Remark 2.4 to present an alternative proof, due
to Narutaka Ozawa, of [10, Theorem 1.2].

By Remark 3.5, Question 1.2 has a negative answer for many Cayley graphs of
groups with exponential growth. By [14, Theorem 3.24], the first criterion applies
to a finitely generated group X = Γ if and only if Γ is virtually {0}, Z, Z

2. The
case when X = Zd, d ≥ 3 remains an intriguing open question.

By [13] a positive answer to Question 1.2 would follow from the weak amena-
bility of

⊕
X Z/2Z ⋊W(X). We could not follow this approach, but this led us to

wonder whether W(X) can contain property (T) subgroups.
As one may expect there is a strong relation between group structure of W(X)

and metric space structure of X. We show that if X is of uniform subexponential
growth, then W(X) does not contain infinite property (T) subgroups, see Theo-
rem 4.1. On the other hand, an example of R. Tessera, see Theorem 4.3 shows that
there exists a solvable group Γ such that W(Γ) contains SL3(Z).

The paper is organized as follows. In Section 2 we study the notion of tran-
sience for metric spaces with bounded geometry and prove the first half of The-
orem 1.4. In Section 3 we prove the second half of Theorem 1.4 (Proposition 3.4),
and in a last section we study when W(X) contains property (T) groups.
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2 Recurrent random walks and amenability

Here we prove the following fact on recurrent random walks.

Proposition 2.1. Let (X, d) be a metric space with bounded geometry and x0 ∈ X.
Then (X, d) is recurrent if and only if for every finitely supported symmetric probability
measure µ on W(X), the random walk on X starting from x0 and jumping from x to g · x
according to the measure µ is recurrent.

Before we prove Proposition 2.1, we state some properties of transience for
metric spaces.
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Proposition 2.2. Let (X, d) be a metric space with bounded geometry and x0 ∈ X. Let
R > 0 such that the random walk starting at x0 and jumping from a point x uniformly to
B(x, R) is transient. Then for every R′ > R the random walk starting at x0 and jumping
from a point x uniformly to B(x, R) is also transient.

The notion of transience given by Definition 1.3 is independent of x0.
In the case (X, d) is a connected graph with bounded geometry, the transience in the

sense of Definition 1.3 is equivalent to the transience of the usual random walk on the
graph.

Proof. Consider (V, E) the connected component of x0 in the graph structure on
X where there is an edge between two points of X at distance at most R′. Then
the random walk starting at x0 and jumping from x uniformly to B(x, R) is a
reversible random walk on (V, E) with constant conductance and bounded range,
so that by [14, Theorem 3.2] its transience implies the transience of the simple
random walk on (V, E). This proves the first point.

Let x0, x1 ∈ X. If there is R such that the random walk starting at x0 and
jumping from a point x uniformly to B(x, R) is transient, by the first point we
can assume that R > d(x, x0), so that the same random walk starting at x1 is also
transient. This proves the second point.

Assume that (X, E) is a connected graph with bounded geometry, take x0 ∈ X
and R ≥ 1. Let (X, E′) be the graph structure on X in which there is an edge
between two points of X at distance at most R. The formal identity between (X, d)
and (X, d′) is a bilipschitz bijection, so that by [14, Theorem 3.10] the random walk
on (X, E) is transient if and only if the random walk on (X, E′) is transient.

Proof of Proposition 2.1. Assume that (X, d) is recurrent. Take µ as in the Proposi-
tion. Remember the notation (1) and pick R > maxg∈supp(µ) |g|w. Since (X, d) is
recurrent, the random walk starting at x0 and jumping from a point x uniformly
to B(x, R) is recurrent. By [14, Theorem 3.2] the random walk starting at x0 and
jumping from a point x to g · x uniformly according to µ is therefore also recur-
rent.

Reciprocally, assume that (X, d) is transient, and take R > 0 as in the defini-
tion. We will construct a finite symmetric subset S of W(X) such for that every
pair of points x, y ∈ X at distance less than R there is g ∈ S such that gx = y.
By [14, Theorem 3.2] this will imply the transience of the simple random walk on
the connected component of x0 in the graph structure on X in which there is an
edge between x and gx for every x ∈ X, g ∈ S. In other words if µ is the uniform
probability measure on S, the random walk on X starting from x0 and jumping
from x to g · x according to µ is transient. Here is the construction of S. Define a
graph structure on X by putting an edge between x and x′ if d(x, x′) ≤ R. We
obtain a (not necessarily connected) graph (X, E) with bounded geometry on
which the random walk starting from x0 is transient. Denote by dE the associated
graph distance. Take a finite collection (Xi)i≤l of subsets of X such that ∪iXi = X
and dE(x, y) ≥ 3 for all x, y ∈ Xi and all i. Take k ∈ N, and for every x ∈ X take a
sequence y1(x), . . . , yk(x) that covers all neighbours of x in (X, E). The existence
of such collection (Xi) and such k follows from the bounded geometry assump-
tion. Then for every i ≤ l and every j ≤ k, consider the element si,j of W(X) that
permutes x and yj(x) for every x ∈ Xi and acts as the identity on the rest of X.
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Then S = {si,j, i ≤ l, j ≤ k} works. Indeed by construction for every neighbours
(x, x′) ∈ (X, E) there is at least one (in fact two) element of S that permutes x and
x′.

Proof of the first part of Theorem 1.4. Assume that (X, d) is recurrent. Let G be a
finitely generated subgroup of W(X). By Proposition 2.1 and [10, Theorem 1.2],
the action of

⊕
Gx0

Z/2Z ⋊ G on
⊕

Gx0
Z/2Z is amenable. This implies that the

action of
⊕

X Z/2Z ⋊ G on
⊕

X Z/2Z is amenable : if m is a
⊕

Gx0
Z/2Z ⋊ G-

invariant mean on ℓ∞(
⊕

Gx0
Z/2Z), then f ∈ ℓ∞(

⊕
X Z/2Z) 7→ m( f

∣∣∣⊕
Gx0

Z/2Z )

is a
⊕

X Z/2Z ⋊ G-invariant mean. This proves that the action of every finitely
subgroup of

⊕
X Z/2Z ⋊ W(X) on

⊕
X Z/2Z is amenable, and concludes the

proof.

Remark 2.3. As is well-known, the action of a group on a set Y is amenable
if and only if there is a net fα of unit vectors in ℓ2(Y) such that
limα ‖g · fα − fα‖ = 1 for all g ∈ G. In the special case of G =

⊕
X Z/2Z ⋊W(X)

acting on Y =
⊕

X Z/2Z, Proposition 2.1 and [10, Theorem 1.2] show that the
recurrence of (X, d) is equivalent to the existence of such a net fα with the addi-
tional property that fα ∈ ℓ2(

⊕
X Z/2Z) is of the form fα(ω) = ∏x∈X fα,x(ωx) for

functions fα,x : Z/2Z → C.

Remark 2.4. By the theory of electrical networks (see [10] for details), the Schreier
graphs of a transitive action of a finitely generated group G on X carry a recurrent
random walk if and only there exists a sequence of finitely supported function
an : X → [0, 1] that satisfy :

1. an(x0) = 1,

2. limn ‖g · an − an‖ℓ2(X) < ε for every g ∈ G.

It was proved in [10] (and used above) that this implies a positive answer to
Question 1.1. We record here a slightly different proof, due to Narutaka Ozawa
(personal communication). Let P f (X) denote the set of all finite subsets of X, that
we identify with ⊕XZ/2Z. For an as above, let ξn(B) = ∏

x∈B
an(x) for B ∈ P f (X)

and ξn(∅) = 1. Then ξn ∈ ℓ2(P f (X)) is {x0}-invariant and for g ∈ G

〈gξn, ξn〉 = ∑
B∈P f (X)

∏
x∈B

an(x)an(gx) = ∏
x∈X

(1 + an(x)an(gx))

by distributivity. In particular for the identity element,

〈ξn, ξn〉 = ∏
x∈X

(1 + an(x)
2) = ∏

x∈X

(1 + an(gx)2) = ∏
x∈X

√
1 + an(x)2

√
1 + an(gx)2

by reordering the terms. Therefore

log
〈ξn, ξn〉
〈gξn, ξn〉

= log ∏
x∈X

√
1 + an(x)2

√
1 + an(gx)2

1 + an(x)an(gx)

≤ ∑
x∈X

(an(x)− an(gx))2

2(1 + an(x)an(gx))2
≤ 1

2
‖an − g · an‖2

ℓ2(X),



286 K. Juschenko – M. de la Salle

which goes to zero as n → ∞. The first inequality is the basic inequality
ln(

√
1 + A) ≤ 1

2 A for

A =
(1 + an(x)2)(1 + an(gx)2)

(1 + an(x)an(gx))2
− 1 =

(an(x)− an(gx))2

(1 + an(x)an(gx))2
.

Any weak-∗ cluster point in ℓ∞(P f (X))∗ of the sequence |ξn|2/‖ξn‖2 will there-
fore be a G ⋉P f (X)-invariant mean. This construction of ξn should be compared
to the one in [10], which was defined (through Fourier transform) as ξn(B) =
∏x∈B sin(π

4 an(x))× ∏x/∈B cos(π
4 an(x)).

3 Negative answer to the Question 1.2

Let G be a group acting on X. We start by recording the following result. The
second assertion follows from results proved later, but is not used in the rest of
the paper.

Proposition 3.1. If the action of
⊕

X Z/2Z ⋊ G on
⊕

X Z/2Z is amenable, then so is
the action of G on X. The converse is not true.

Proof. Assume that the action of
⊕

X Z/2Z ⋊ G on
⊕

X Z/2Z amenable. By
(ii) implies (iv) in [9, Lemma 3.1], the set P∗

f of non-empty finite subsets of X

carries a G-invariant mean m. Consider the unital positive G-equivariant map
T : ℓ∞(X) → ℓ∞(P∗

f ) given by T f (A) is the average of f on A, for all A nonempty

finite subset of X. The composition m ◦ T is a G-invariant mean on X.
To see that the converse is not true, take for X the Cayley graph of a finitely

generated amenable group Γ that contains an infinite binary tree (see Remark
3.5 for the existence of such group). By Theorem 1.4, the action of

⊕
X Z/2Z ⋊

W(X) on
⊕

X Z/2Z is not amenable. On the other hand the action of W(X)
on X is amenable; more precisely any Γ-invariant mean m on X is also W(X)-
invariant. Indeed, for any g ∈ W(X) there is a finite partition A1, . . . , An of X and
elements γ1, . . . , γn such that g acts as the translation by γk on Ak. Then for every
f ∈ ℓ∞(X), using that (γi(Ai))

n
i=1 forms a partition of X we get

m(g · f ) = ∑
i

m(γi · ( f 1γi(Ai)
) = ∑

i

m( f 1Ai
) = m( f ).

When X is the Cayley graph of a finitely generated group, the first assertion
in Proposition 3.1 implies

Lemma 3.2. Let Γ be a finitely generated group. If there exists a
⊕

Γ Z/2Z ⋊ W(Γ)-
invariant mean on

⊕
Γ Z/2Z then Γ is amenable.

We can also give a negative answer to Question 1.2 for some amenable groups.
One ingredient for this is the following monotonicity property.

Lemma 3.3. Let i : X → Y an injective map such that supd(x,x′)≤R d(i(x), i(x′)) < ∞

for every R > 0. If Question 1.2 has a positive answer for Y, then is also has positive
answer for X.
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Proof. In this proof we denote by P f (X) the set of all finite subsets of X, which
carries a natural action of W(X). It follows from the equivalence of (ii) and (iv)
in [9, Lemma 3.1] that Question 1.2 has a positive answer if and only if there is a
W(X)-invariant mean on P f (X) giving full weight to the subsets containing any
given element of X.

The map i allows to define an embedding W(X) ⊂ W(Y) by defining, for
g ∈ W(X), g · i(x) = i(g · x) and g · y = y if y /∈ i(X).

Assume that Question 1.2 has a positive answer for Y, and take x0 ∈ X.
By [9, Lemma 3.1] there is a mean m on P f (Y) that is W(Y)-invariant and that
gives full weight to the collection of sets containing i(x0). Then the push-forward
mean on P f (X) (given by ϕ ∈ ℓ∞(P f (X)) 7→ m(A 7→ ϕ(i−1(A))) is W(X)-
invariant and gives full weight to the collection of sets containing x0. By [9,
Lemma 3.1] again, Question 1.2 has a positive answer for X.

Lemma 3.3 and Proposition 3.1 imply that for
⊕

X Z/2Z to act amenably on⊕
X Z/2Z it is necessary that W(X′) act amenably on X′ for all X′ ⊂ X. In par-

ticular the following Proposition establishes the second half of Theorem 1.4.

Proposition 3.4. Let (X, d) be a metric space with bounded geometry with an injective
and Lipschitz map from the infinite binary tree T to X. Then there is no

⊕
X Z/2Z ⋊

W(X)-invariant mean on
⊕

X Z/2Z.

Proof. There is a Lipschitz injective map from the free group with two generators
in T, and hence in X if X contains an injective and Lipschitz image of T. The
Proposition therefore follows from Lemma 3.2 and Lemma 3.3.

Remark 3.5. The class of groups for which this proposition applies, i.e. for which
there is a Cayley graph that contains a copy of the infinite binary tree as a sub-
graph, contains in particular all non-amenable groups ([2, Theorem 1.5]), as well
as all elementary amenable groups with exponential growth (by [4] such groups
contain a free subsemigroup). In [6], R. Grigorchuk, disproving a conjecture of
Rosenblatt, proved that the lamplighter group Z2 ≀ G contains an infinite binary
tree, here G is Grigorchuk’s 2-group of intermediate growth. We do not know
whether all groups with exponential growth contain such a tree.

4 Property (T) subgroups

It is an interesting question to extract properties of the group W(X) using the
properties of the underlying metric space. Below we prove that W(X) cannot
contain property (T) groups when X is of subexponential growth. Alain Valette
(personal communication) pointed out to us that a very similar observation (at-
tributed to Kazhdan) was made by Gromov in [8] Remark 0.5.F: a discrete prop-
erty (T) group G cannot contain a subgroup G′ such that G/G′ has subexponential
growth unless G/G′ is finite.

Theorem 4.1. Let X be a metric space with uniform subexponential growth :

lim
n

1

n
log sup

x∈X

|B(x, n)| = 0.
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Then W(X) does not contain an infinite countable property (T) group.

Proof. Assume G < W(X) is a finitely generated property (T) group, with finite
symmetric generating set S. We will prove that G is finite. To do so we prove
that the G-orbits on X are finite, with a uniform bound. Assume that 1 ∈ S. If
m = max{|g|w : g ∈ S}, then Snx ⊂ B(x, mn) for every x ∈ X, so that by assump-
tion, the growth of Snx is subexponential (uniformly in x ∈ X). The classical
expanding properties for actions of (T) groups will imply that the orbit of x is
finite (uniformly in x).

Indeed, by (T), there exists ε > 0 such that for every unitary action of G on
a Hilbert space H without invariant vectors, the inequality ∑g∈S ‖g · ξ − ξ‖2 ≥
ε‖ξ‖2 holds for every ξ ∈ H. As a consequence, for every transitive action of G
on a set Y, we have ∑g∈S |gF∆F| ≥ ε/2|F| for every finite subset F of Y satisfying

2|F| ≤ |Y| (take H = ℓ2(Y) if Y is infinite, and H =the subspace of ℓ2(Y) orthog-
onal to the vector with all coordinates equal otherwise, and apply the preceding
equality with ξ = χF − |F|/|Y \ F|χY\F. Here χF is the indicator function of F,

and |F|/|Y \ F| is by convention 0 if Y is infinite). By induction, we therefore have
that for x ∈ Y and n ∈ N, |Snx| ≥ (1 + ε/4)n unless |Y| ≤ 2(1 + ε/4)n. Applying
it to the orbit of some x ∈ X, we get

|Snx| < (1 + ε/4)n =⇒ |OrbG(x)| < 2(1 + ε/4)n.

Hence, subexponential growth gives an n ∈ N such that |OrbG(x)| < 2(1+ ε/4)n

for every x ∈ X. QED.

To construct spaces such that W(X) contains property (T) groups, we first
remark that the groups W(X) behave well with respect to coarse embeddings. A
map q : (X, dX) → (Y, dY) between metric spaces is a coarse embedding if there
exists nondecreasing functions ϕ+, ϕ− : [0, ∞[→ R such that limt→∞ ϕ−(t) = ∞

and
ϕ−(dX(x, x′)) ≤ dY(q(x), q(x′)) ≤ ϕ+(dX(x, x′))

for every x, x′ ∈ X.

Lemma 4.2. Let q : (X, dX) → (Y, dY) be a map such that there is an increasing
function ϕ+ : R+ → R+ such that dY(qx, qy) ≤ ϕ+(dX(x, y)), and such that the
preimage q−1(y) of every y ∈ Y has cardinality less than some constant K (e.g. q is
a coarse embedding and X has bounded geometry). Let F be a finite metric space of
cardinality K. Then W(X) is isomorphic to a subgroup of W(Y × F).

Proof. In this statement Y × F is equipped with the distance d((y, f ), (y′ , f ′)) =
dY(y, y′) + dF( f , f ′). Since F is bigger than q−1(y) for all y, there is a map f :
X → F such that the map q̃ : x ∈ X 7→ (q(x), f (x)) ∈ Y × F is injective. We
can therefore define an action of W(X) on Y × F by setting g(q̃(x)) = q̃(gx) and
g(y, f ) = (y, f ) if (y, f ) /∈ q̃(X). The assumption on ϕ+ guarantees that this
action is by wobblings, ie that it defines an embedding of W(X) in W(Y × F).

In a contrast to Theorem 4.1 we have the following result by Romain Tessera.
With his kind permission we include a proof.
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Theorem 4.3. There is a solvable group Γ such that W(Γ) contains the property (T)
group SL(3, Z).

Proof. The proof uses the notion of asymptotic dimension (see [1]). By [1, Corol-
lary 94], SL(3, Z) has finite asymptotic dimension. By [1, Theorem 44] this im-
plies that SL(3, Z) embeds coarsely into a finite product of binary trees. Take Γ0

a solvable group with a free semigroup. In particular it coarsely contains a bi-
nary tree, so SL(3, Z) embeds coarsely in Γn

0 for some n. By Lemma 4.2, there is
a finite group F such that W(SL(3, Z)) embeds as a subgroup in W(F × Γn

0). But
W(SL(3, Z)) contains SL(3, Z) (action by translation).

Remark 4.4. The proof actually shows that for every group Λ with finite asymp-
totic dimension, there is an integer n such that Λ is isomorphic to a subgroup
of W(Γn) whenever there is a Cayley graph of Γ that contains an infinite binary
tree as a subgraph. By Remark 3.5 this includes lots of groups Γ with exponential
growth. In some sense this says that the assumptions of Theorem 4.1 are not so
restrictive.
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