A new look at the proof of *K*-theoretic amenability for groups acting on trees

Pierre Julg

Abstract

We generalize the construction by Pytlik and Szwarc of uniformly bounded representations for free groups to groups acting on trees. We deduce a new version of the proof (by Alain Valette and the author, 1983) of the fact that locally compact groups acting on trees with amenable stabilizers are amenable in *K*-theory.

To any locally compact group *G* are naturally associated two *C**-algebras: the full *C**-algebra *C***G* which contains the information on all unitary representations of *G*, and the reduced *C**algebra C_r^*G which only takes into account the unitary representations weakly contained in the regular representation in $L^2(G)$. There is a surjective morphism $\lambda : C^*G \to C_r^*G$ which is an isomorphism if and only if *G* is amenable.

The *K*-theory functor, a covariant functor from C^* algebras to abelian groups, gives rise to a morphism λ_* of abelian groups . J. Cuntz [C] has proved that λ_* is an isomorphism for some non amenable discrete groups such as free groups or $SL(2, \mathbb{Z})$. Such groups are said to be *K*-amenable. Strictly speaking, one requires a slightly stronger property: the isomorphism in *K* theory must hold not only for the group C^* -algebras of *G* but for the crossed products associated to the action of *G* by automorphisms on an auxiliary C^* -algebra. In our 1983 paper [JV1], A. Valette and myself gave a generalization of J. Cuntz's result, proving *K*-amenability of any locally compact group acting on a tree with amenable stabilizers. The

Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 263-269

Received by the editors in June 2014 - In revised form in September 2014. Communicated by A. Valette.

²⁰¹⁰ Mathematics Subject Classification: 19K35, 19K99, 46L80, 22D10, 22D12.

Key words and phrases : K-theory, Operator Algebras, Group Representation Theory.

most striking example was the (totally disconnected) group SL(2) over the field of *p*-adic numbers. Details are given in [JV2].

The technical tool, both in Cuntz's paper and in our work, is G. Kasparov's equivariant *KK*-bifunctor [K]. An important special case is the ring $KK_G(\mathbf{C}, \mathbf{C})$ associated to a locally compact group G. If G is compact, this is nothing else as the representation ring R(G). In general, it is defined as the set of homotopy classes of G-Fredholm modules. The existence of a product in a non trivial result in [K].

The only thing we shall need here is the definition of a *G*-Fredholm module: it is given by two unitary representations π_1 and π_2 of *G* respectively on Hilbert spaces H_1 and H_1 , together with a bounded Fredholm operator $T : H_1 \rightarrow H_2$ such that $T\pi_1(g) - \pi_2(g)T$ is compact for any $g \in G$ and depends on g in a norm continuous manner.

The proof of [JV2] combined two ingredients:

1) The construction of a very simple Fredholm module associated to the group action on a tree. It defines a class γ in Kasparov's ring $KK_G(\mathbf{C}, \mathbf{C})$.

2) The construction of a homotopy proving that $\gamma = 1$ using the fact that the distance kernel on the set of vertices of the tree is of conditionally negative type. Or equivalently the existence of an affine action of *G* on the ℓ^2 space of edges of the tree.

Note that the two ingredients are of a rather different nature. The first can be generalized to other situations such as Bruhat-Tits buildings [JV3][KS1] or (hyper)bolic spaces [KS2]. The second is very specific to trees or generalizations (e.g. CAT(0) cubic complexes cf [BGH]).

I present here a perhaps more natural proof of the same result. It is inspired by the nice construction by Pytlik and Szwarc [PS] of a family of uniformly bounded representations of a free group, generalized by Valette [V1] and Szwarc [S1] to groups acting on trees. I have had this new version for quite a long time in my private notes. I thank Amaury Freslon and Jacek Brodzki for convincing me that making these notes available could be useful to others. I thank Ryszard Szwarc for pointing me reference [S1] and Jean-Pierre Schreiber for some comments and corrections.

I dedicate this short paper to the memory of Tadeusz Pytlik, who died in 2006 [S2].

1 Notations

Let $X = (X^0, X^1)$ be a tree. There is no orientation on X so that the set X^1 of edges is just a subset of $X^0 \times X^0$ stable by the map $(x, y) \mapsto (y, x)$. By hypothesis, for any x and y in X^0 there is a unique path joining x to y. We denote by [x, y] the set of vertices lying between x and y and d(x, y) the number of edges between x and y.

Let *G* be a group acting on *X*. In other words *G* acts on X^0 in such a way that the subset $X^1 \subset X^0 \times X^0$ is stable. For simplicity we consider a discrete group *G* but the arguments can be easily generalized to the case of a locally

compact group *G*, such as $SL_2(\mathbf{Q}_p)$, cf. [JV2]. We consider the Hilbert space $\ell^2(X^0)$, $(\delta_x, x \in X^0)$ its canonical Hilbert basis and π_0 the unitary representation arising from the action of *G* on the set X^0 defined by $\pi_0(g)\delta_x = \delta_{gx}$. Let $\ell^2(X^1)^-$ be the quotient of $\ell^2(X^1)$ by the subspace generated by the vectors $\delta_{(x,y)} + \delta_{(y,x)}$ for $(x, y) \in X^1$ and π_1 the unitary representation of *G* on $\ell^2(X^1)^-$ defined by $\pi_1(g)\delta_{(x,y)} = \delta_{(gx,gy)}$

For $x \in X^0$ let V(x) be the set of neighbours of x. Let the cardinality of V(x) be denoted $q_x + 1$. We assume for simplicity that q_x is bounded. We define the following bounded operators S and Q on $\ell^2(X^0)$ by the following formulae:

$$S\delta_x = \sum_{y \in V(x)} \delta_y$$
$$Q\delta_x = q_x \delta_x.$$

Note that the operators *Q* and *S* only depend on the tree structure on *X* and therefore commute with the unitaries $\pi_0(g)$.

2 The Pytlik-Szwarc operator

We now choose an origin $x_0 \in X^0$. Let p_0 the orthogonal projection onto the vector δ_{x_0} . Let us define the operator *P* on $\ell^2(X^0)$ by

$$P\delta_{x_0} = 0$$
$$P\delta_x = \delta_{x'}$$

where for $x \neq x_0$ we define x' to be the unique neighbour of x lying between x_0 and x.

Proposition 1. The operator *P* such defined is bounded on $\ell^2(X^0)$ and satisfies:

$$PP^* = Q + p_0$$
$$P + P^* = S$$

Proof: For $x \neq x_0$, one has $P^* \delta_x = \sum_{y \in V(x) \setminus \{x'\}} \delta_y$ so that clearly $(P + P^*) \delta_x = S\delta_x$. Similarly $(P + P^*)\delta_{x_0} = P^*\delta_{x_0} = \sum_{y \in V(x_0)} \delta_y = S\delta_{x_0}$.

On the other hand, for $x \neq x_0$ and $y \in V(x) \setminus \{x'\}$ one has $P\delta_y = \delta_x$ so that $PP^*\delta_x = q_x\delta_x$, whereas for any $y \in V(x_0)$, $P\delta_y = \delta_{x_0}$ so that $PP^*\delta_{x_0} = (q_{x_0} + 1)\delta_{x_0}$

Corollary 1. Let $T_t = 1 - tP + ((1 - t^2)^{1/2} - 1)p_0$ for any $t \in [0, 1]$ Then the operator T_t satisfies the following formula: $T_tT_t^* = 1 - tS + t^2Q$. In particular, the operator $T_tT_t^*$ commutes with the unitaries $\pi_0(g), g \in G$.

Indeed we have $T_t = 1 - tP + \alpha p_0$ where α satisfies $\alpha^2 + 2\alpha + t^2 = 0$. A straightforward calculation (using the obvious fact that $Pp_0 = 0$) yields $T_t T_t^* = 1 - t(P + P^*) + t^2 PP^* + (2\alpha + \alpha^2)p_0$ and the result follows from the proposition.

3 Construction of new representations

Let us consider the space $D(X^0)$ of finitely supported functions on X^0 as a dense subspace of $\ell^2(X^0)$. Clearly $D(X^0)$ is stable by the operators P, P^* and $\pi_0(g)$ for $g \in G$.

Lemma 1. For any complex number *z* the operator

$$(1-zP)^{-1} = \sum_{k=0}^{\infty} z^k P^k$$

is defined on $D(X^0)$. One has

$$(1-zP)^{-1}\delta_x = \sum_{y \in [x_0,x]} z^{d(y,x)} \delta_y$$

Proof. Let the elements of $[x_0, x]$ be denoted $x_0, x_1, ..., x_n = x$, where $n = d(x_0, x)$. Then $P^k \delta_x = \delta_{x_{n-k}}$ for $k \le n$ and 0 for k > n. Note that $d(x_{n-k}, x) = k$. This makes the statement straightforward.

Theorem 1. (*Pytlik-Szwarc*) Let z be a complex number such that |z| < 1. For any $g \in G$ the operator $\rho_z(g) = (1 - zP)^{-1}\pi_0(g)(1 - zP)$ extends to a bounded operator on $\ell^2(X^0)$, thus defining a representation ρ_z of G in $\ell^2(X^0)$. The operator $\rho_z(g) - \pi_0(g)$ is a finite rank operator and the representation ρ_z is uniformly bounded, i.e.

$$\sup_{g\in G}\|\rho_z(g)\|<\infty.$$

In order to construct unitary representations, we shall need to modify the operators 1 - tP by the operators T_t as in Corollary 1. Note that the inverse operator T_t^{-1} is well defined on the space $D(X^0)$.

Theorem 2. For any real number such that 0 < t < 1 the operator $\tilde{\rho}_t(g) = T_t^{-1} \pi_0(g) T_t$ on $D(X^0)$ extends to a unitary operator on $\ell^2(X^0)$, thus defining a unitary representation $\tilde{\rho}_t$ of G in $\ell^2(X^0)$. The operator $\tilde{\rho}_t(g) - \pi_0(g)$ is a finite rank operator. The uniformly bounded representation ρ_t is equivalent to the unitary representation $\tilde{\rho}_t$.

Proof of theorems 1 and 2: Let us prove that $\rho_z(g) - \pi_0(g)$ has finite rank and a norm bounded independently from *g*. It is enough to consider the operator

$$\rho_z(g)\pi_0(g)^{-1} - 1 = z(1 - zP)^{-1}(P - P')$$

where P' is defined just as P but replacing x_0 by gx_0 . It is clear that the above operator is supported on the finite dimensional subspace generated by the δ_x 's for $x \in [x_0, gx_0]$. That subspace is indeed stable by P and P' which have restrictions of norm 1. Therefore the norm of $(1 - zP)^{-1}(P - P')$ is at most $2\sum |z|^k = 2(1 - |z|)^{-1}$. This proves theorem 1.

To deduce theorem 2 note that $\tilde{\rho}_t(g) = u_t^{-1}\rho_t(g)u_t$ where $u_t = (1 - p_0) + (1 - t^2)^{1/2}p_0$ is an invertible operator which differs from the identity by a compact operator. It remains to show that $\tilde{\rho}_t(g)$ is unitary. Since it is invertible it is enough to compute $\tilde{\rho}_t(g)^* \tilde{\rho}_t(g) = T_t^* \pi_0(g)^{-1} (T_t T_t^*)^{-1} \pi_0(g) T_t$ which is equal to 1 since $T_t T_t^*$ commutes to $\pi_0(g)$ by the corollary to the proposition above.

Remark. The link with the original approach of [JV1][JV2] is given by an easy computation: the kernel defining the (densely defined) operator $(T_t T_t^*)^{-1}$ is

$$< T_t^{-1}\delta_x, T_t^{-1}\delta_y >= t^{d(x,y)} = e^{-\lambda d(x,y)}$$

if $t = e^{-\lambda}$.

4 The limit when t tends to 1

Let us now calculate the limit of $\tilde{\rho}_t(g)$ when $t \to 1$. Let us recall the definition of the Julg-Valette map $F : \ell^2(X^0) \to \ell^2(X^1)^-$:

$$F\delta_{x_0} = 0$$

 $F\delta_x = \delta_{(x,x')}$
We have $Fp_0 = 0$, $F^*F = 1 - p_0$ and $FF^* = 1$.

Lemma 2. Let $b : \ell^2(X^1)^- \to \ell^2(X^0)$ be the coboundary operator defined by $b\delta_{(x,y)} = \delta_y - \delta_x$. Then the operators *F* and *P* are related by the formulae:

$$1 - P = bF + p_0$$
$$(1 - P)F^* = b$$

Indeed, $(1 - P)\delta_x = \delta_x - \delta_{x'} = bF\delta_x$ if $x \neq x_0$ and $(1 - P)\delta_{x_0} = \delta_{x_0}$. The second formula follows from the first since $(1 - P)F^* = bFF^* = b$.

Remark. Let $c(x, y) = \sum \delta_{(x_i, x_{i+1})}$ if the elements of [x, y] are denoted $x_0 = x$, $x_1, ..., x_n = y$. This is the cocycle realizing explicitly the Haagerup property for groups acting properly on trees: $||c(x, y)||^2 = d(x, y)$. On has $bc(x, y) = \delta_y - \delta_x$, hence by the second formula above, $c(x, y) = F(1 - P)^{-1}(\delta_y - \delta_x)$.

Corollary 2. The operator $(1 - P)^{-1}b$ extends to a bounded operator and one has:

$$(1-P)^{-1}b = F^*$$

It follows indeed from the lemma that $(1 - P)F^* = b$.

Proposition 2. For any $g \in G$ the unitary operator $\tilde{\rho}_t(g)$ (0 < t < 1) converges strongly to

$$\tilde{\rho}_1(g) = F^* \pi_1(g)F + p_0$$

when $t \rightarrow 1$.

Proof: Let us first prove that $F\tilde{\rho}_t(g)F^*$ strongly converges to $\pi_1(g)$. One has (as $p_0F^* = 0$):

$$F\tilde{\rho}_t(g)F^* = FT_t^{-1}\pi_0(g)T_tF^* = F(1-tP)^{-1}\pi_0(g)(1-tP)F^*$$

which evaluated on functions with finite support on X^1 converges to $F(1-P)^{-1}\pi_0(g)(1-P)F^*$, but this is equal to

$$F(1-P)^{-1}\pi_0(g)bFF^* = F(1-P)^{-1}b\pi_1(g) = FF^*\pi_1(g) = \pi_1(g)$$

by two applications of Corollary 2.

We deduce that $(1 - p_0)\tilde{\rho}_t(g)(1 - p_0)$ converges strongly to $F^*\pi_1(g)F$.

On the other hand we check that $\tilde{\rho}_t(g)\delta_{x_0} \to \delta_{x_0}$ when $t \to 1$. We have indeed $T_t\delta_{x_0} = (1-t^2)^{1/2}\delta_{x_0}$ so that $(1-tP)^{-1}\pi_0(g)T_t\delta_{x_0} = (1-t^2)^{1/2}(1-tP)^{-1}\delta_{gx_0} = (1-t^2)^{1/2}\sum t^{d(y,gx_0)}\delta_y$ where the sum is extended to the vertices y of the segment $[x_0,gx_0]$. Finally $T_t^{-1}\pi_0(g)T_t\delta_{x_0} = t^{d(x_0,gx_0)}\delta_{x_0} + (1-t^2)^{1/2}\sum t^{d(y,gx_0)}\delta_y$ where x_0 is now excluded from the sum. Hence the result.

As a consequence $\tilde{\rho}_t(g)p_0$ converges normally to p_0 , and since $\tilde{\rho}_t$ is unitary, replacing g by g^{-1} we also have that $p_0\tilde{\rho}_t(g)$ converges normally to p_0 .

The proposition clearly follows.

5 Classes in *KK*_G-theory

Let us consider the Hilbert space $\ell^2(X^0)$ equipped with the two representations $\tilde{\rho}_t$ and π_0 , which differ by compact operators. The triple $(\tilde{\rho}_t, \pi_0, Id)$ defines an element of the Kasparov group $KK_G(\mathbf{C}, \mathbf{C})$. It is independent of the value on $t \in [0, 1]$ since the operators $\tilde{\rho}_t(g)$ are strongly continuous in t. Now when t = 0 we have $\tilde{\rho}_0 = \pi_0$ so that the element is equal to 0. On the other hand when t = 1 we have $\tilde{\rho}_1(g) = F^*\pi_1(g)F + p_0$ so that the element is equal to $1 - \gamma$ where γ is defined as in [JV1][JV2] by the triple (π_0, π_1, F) .

Corollary 3. We have the equality $\gamma = 1$ in the Kasparov group $KK_G(\mathbf{C}, \mathbf{C})$.

Recall [JV2] that the above corollary implies the *K*-theoretic amenability of *G* under the hypothesis that the vertices of the tree have amenable stabilisers.

References

- [BGH] Jacek Brodzki, Erik Guentner, Nigel Higson *A differential complex for groups acting on CAT(0) cube complex*, unpublished.
- [C] Joachim Cuntz, K-theoretic amenability for discrete groups, J. Reine Angew. Math. 344 (1983), 180-195.
- [JV1] Pierre Julg, Alain Valette, *K-moyennabilité pour les groupes opérant sur les arbres*, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 977-980.

- [JV2] Pierre Julg, Alain Valette, *K*-theoretic amenability for $SL_2(\mathbf{Q}_p)$, and the action on the associated tree, J. Funct. Anal. 58 (1984), no. 2, 194-215.
- [JV3] Pierre Julg, Alain Valette, Fredholm modules associated to Bruhat-Tits buildings, Miniconferences on harmonic analysis and operator algebras (Canberra, 1987), 143-155, Proc. Centre Math. Anal. Austral. Nat. Univ., 16, Austral. Nat. Univ., Canberra, 1988.
- [K] Gennadi Kasparov, *Equivariant KK-theory and the Novikov conjecture*, Invent. Math. 91 (1988), n0 1, 147-201.
- [KS1] Gennadi Kasparov, Georges Skandalis, *Groups acting on buildings, operator K-theory, and Novikov's conjecture,* K-Theory 4 (1991), no. 4, 303-337.
- [KS2] Gennadi Kasparov, Georges Skandalis, *Groups acting properly on "bolic"* spaces and the Novikov conjecture. Ann. of Math. (2) 158 (2003), no. 1, 165-206.
- [PS] Tadeusz Pytlik, Ryszard Szwarc, *An analytic family of uniformly bounded representations of free groups*, Acta Math. 157 (1986), no. 3-4, 287-309.
- [S1] Ryszard Szwarc, *Groups acting on trees and approximation properties of the Fourier algebra*, J. Funct. Anal 95 (1991), 320-343.
- [S2] Ryszard Szwarc, *Tadek Pytlik in my memories*, Colloquium Mathematicum, 108 (2007), no. 1, 1-6.
- [V1] Alain Valette, Cocycles d'arbres et représentations uniformément bornées.
 C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 10, 703-708.
- [V2] Alain Valette, *Les représentations uniformément bornées associées un arbre réel*, Bull. Soc. Math. Belg. Sér. A 42 (1990), no. 3, 747-760.
- [V3] Alain Valette, *Addendum: "Uniformly bounded representations associated with a real tree"*. Bull. Soc. Math. Belg. Sér. A 44 (1992), no. 1, 101-102.

MAPMO (Université d'Orléans et CNRS) Bâtiment de Mathématiques - Rue de Chartres B.P. 6759 - 45067 Orléans cedex 2 FRANCE