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Abstract

In this paper, we consider a class of special subsets of a BCK-algebra and
investigate some related properties. We describe the intersection and union
of two of these subsets in a commutative BCK-lattice. We consider the in-
tersection of all special subsets in a BCK-algebra and investigate some re-
lated properties. Finally, we introduce the connection between the class of
special subsets and the set of all congruence classes induced by an ideal in a
BCK-algebra.

1 Introduction

In 1966, the notion of BCK-algebra was introduced by Imai and Iséki, as a gen-
eralization of the concept of set-theoretic difference and propositional calculus
(see [4]). Since then a great deal of literature has been produced on the theory of
BCK-algebras. In 1975, S. Tanaka defined a notion of a special class of
BCK-algebras called a commutative BCK-algebra (see [10]). The ideal theory
plays an important role. In BCK-algebra, the commutative ideal is closely related
to the commutative BCK-algebra. In 2009, a class of special subset connected
with an order filter of a MV-algebra was defined and studied by Colin G. Bailey
(see [2]). In this paper, following [2], we consider a class of special subsets of a
BCK-algebra and investigate some related properties. We describe the intersec-
tion and union of two of these subsets in a commutative BCK-lattice. We con-
sider the intersection of all special subsets in a BCK-algebra and investigate some
related properties. Also, we state and prove a characterization of this intersec-
tion in a BCK-algebra satisfying condition (S). Finally, for any complement-closed
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ideal D we prove that there is a close connection between the class of special sub-
sets of D and the set of all congruence classes induced by D in a BCK-algebra.

2 Preliminaries

We first recall some basic definitions and theorems used in this paper.

Definition 2.1. [8] A BCK-algebra is an algebra (X; ∗, 0) of type (2, 0) such that, for all
x, y, z ∈ X, we have:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
(ii) (x ∗ (x ∗ y)) ∗ y = 0;
(iii) x ∗ x = 0;
(iv) x ∗ y = 0 and y ∗ x = 0 imply x = y;
(v) 0 ∗ x = 0.

For every BCK-algebra X = (X; ∗, 0), the order ≤ defined by “x ≤ y if and
only if x ∗ y = 0” is a partial order (called the BCK-ordering).

Theorem 2.2. [8] Let X = (X; ∗, 0) be a BCK-algebra. Then the following hold: for any
x, y, z ∈ X,

(a1) (x ∗ y) ∗ (x ∗ z) ≤ z ∗ y;
(a2) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y;
(a3) 0 ≤ x;
(a4) x ∗ 0 = x;
(a5) x ≤ x;
(a6) x ∗ y ≤ x;
(a7) (x ∗ y) ∗ z = (x ∗ z) ∗ y;
(a8) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.

Definition 2.3. [6, 7] Let X = (X; ∗, 0) be a BCK-algebra. Then
(i) X is said to be commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x) for all x, y ∈ X;
(ii) X is said to be with condition (S) if the set A(x, y) := {t ∈ X|t ∗ x ≤ y} has the
greatest element for all x, y ∈ X. This element is denoted by x⊕ y. Clearly, x, y ≤ x⊕ y;
(iii) a non-empty subset I of X is called an ideal if

(1) 0 ∈ I,
(2) y ∗ x ∈ I and x ∈ I imply y ∈ I.

In any BCK-algebra X, we will denote the infimum of x and y by x ∧ y and the
supremum of x and y by x ∨ y for all x, y ∈ X.

Definition 2.4. [12] An ideal I of a BCK-algebra X is called prime if x ∧ y ∈ I implies
x ∈ I or y ∈ I for all x, y ∈ X.

Definition 2.5. [3] A partial ordered set P is said to be lattice if any two whose elements
x, y have a g.l.b. denoted by x ∧ y, and a l.u.b. denoted by x ∨ y.

Definition 2.6. [12] A BCK-algebra X is called a BCK-lattice if it with respect to its
BCK-ordering forms a lattice.
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A BCK-algebra X is called bounded if it has the greatest element (denoted by
1). For any x ∈ X, we denote 1 ∗ x by Nx. The next theorem gives some properties
about Nx.

Theorem 2.7. [8] In any bounded commutative BCK-lattice X, the following hold:
(a) NNx = x for all x ∈ X,
(b) Nx ∗ Ny = y ∗ x for all x, y ∈ X,
(c) Nx ∨ Ny = N(x ∧ y) and Nx ∧ Ny = N(x ∨ y) for all x, y ∈ X.

Theorem 2.8. [12] Every bounded commutative BCK-algebra is a commutative
BCK-lattice with x ∧ y = y ∗ (y ∗ x) and x ∨ y = N(Nx ∧ Ny).

Theorem 2.9. [12] Let X be a commutative BCK-lattice. Then the following identities
hold: for any x, y, z ∈ X,

(b1) x ∗ (y ∨ z) = (x ∗ y) ∧ (x ∗ z),
(b2) x ∗ (y ∧ z) = (x ∗ y) ∨ (x ∗ z),
(b3) (x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z).

Theorem 2.10. [8] Let I be an ideal of a BCK-algebra X. Define the relation ≡I on X as
follows:

x ≡I y if and only x ∗ y ∈ I and y ∗ x ∈ I.

Then ≡I is a congruence relation on X.

The congruence relation ≡I defined in Theorem 2.10 is called the ideal congru-
ence on X induced by the ideal I. The congruence class of element x ∈ X is
denoted by [x]I , and the set of all congruence classes ≡I on X is denoted by X/I.
Hence

X/I = {[x]I : x ∈ X}.

Theorem 2.11. [8] Let I be an ideal of a BCK-algebra (X; ∗, 0) and let ≡I be the ideal
congruence on X induced by I. Then (X/I; ∗, [0]I) is also a BCK-algebra where its
operation is the natural operation induced from those X, i.e., [x]I ∗ [y]I = [x ∗ y]I for all
x, y ∈ X.

3 Main results

In the sequence, for every subset D of X, we denote the complement of D by Dc.
Now, we begin with definition of a special subset of a BCK-algebra.

Definition 3.1. For any non-empty subset D of a BCK-algebra X and for any a ∈ X,
we denote

Da :=

{

D if a ∈ D
{x ∈ X|a ∗ x 6∈ D} if a ∈ Dc.

Proposition 3.2. If D is a non-empty subset of a BCK-algebra X, then we have
(i) 0 ∈ Da for any a ∈ X;
(ii) 0 ∈ D if and only if a 6∈ Da for all 0 6= a ∈ Dc.
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Proof. (i) If D = X, then by Definition 3.1, Da = X and so 0 ∈ Da for any a ∈ X.
Now, let D 6= X. Then there exists a ∈ X such that a 6∈ D and so by Theorem
2.2(a4), we get a ∗ 0 6∈ D. Hence by Definition 3.1, we conclude 0 ∈ Da.

(ii) Using Definition 2.1(iii), for all 0 6= a ∈ Dc we have

0 ∈ D if and only if a ∗ a ∈ D if and only if a 6∈ Da.

This completes the proof.

Definition 3.3. A non-empty subset D of a BCK-algebra X is called
(i) a down-set if for all x, y ∈ X, x ≤ y and y ∈ D imply x ∈ D;
(ii) a prime-set if for all x, y ∈ X, x ∧ y ∈ D implies x ∈ D or y ∈ D;
(iii) a ∨-closed if for all x, y ∈ D, x ∨ y ∈ D.

Note that every ideal of a BCK-algebra is a down-set and every prime ideal is
a prime-set.

The following example shows that any one of the properties down-set, prime-
set and ∨-closed is independent of the others.

Example 3.4. [12] Consider a BCK-algebra (X = {0, 1, 2, 3, 4}; ∗, 0) in which the op-
eration “ ∗ ” is given by the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 1
2 2 2 0 0 2
3 3 3 2 0 3
4 4 4 4 4 0

0 •

1 •

2 •

3 •

�
��

4•

It easy to check that:
(i) D := {0, 1, 4} is a down-set and prime-set but is not a ∨-closed because 1, 4 ∈ D

and 1 ∨ 4 does not exist.
(ii) E := {0, 1} is a down-set and ∨-closed but is not a prime-set because

2 ∧ 4 = 0 ∈ E does not imply 2 ∈ E or 4 ∈ E.
(iii) F := {1, 2} is a prime-set and ∨-closed but is not a down-set because 0 ≤ 1 ∈ F

and 0 /∈ F.

Lemma 3.5. Let D be a non-empty subset of a BCK-algebra X. If D is a down-set, then
for any a ∈ X, Da is a down-set, too.

Proof. Let x, y ∈ X such that x ≤ y and y ∈ Da. Then a ∗ y 6∈ D. Applying
Theorem 2.2(a8), it follows from x ≤ y that a ∗ y ≤ a ∗ x. Now, if a ∗ x ∈ D, then,
since D is a down-set, we get a ∗ y ∈ D, which a contradiction to a ∗ y 6∈ D. Hence
a ∗ x 6∈ D and so x ∈ Da. Therefore Da is a down-set.

Lemma 3.6. Let D be a non-empty subset of a commutative BCK-algebra X. Then for
all a ∈ Dc the following hold:

(i) If D is a ∨-closed, then Da is a prime-set;
(ii) If D is a prime-set, then Da is a ∨-closed.
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Proof. (i) Let x, y ∈ X such that x ∧ y ∈ Da. Hence a ∗ (x ∧ y) 6∈ D and so by
Theorem 2.9(b2), we get (a ∗ x)∨ (a ∗ y) 6∈ D. It follows from D is a ∨-closed that
a ∗ x 6∈ D or a ∗ y 6∈ D. Therefore x ∈ Da or y ∈ Da and so Da is a prime-set.

(ii) Let x, y ∈ Da. Then a ∗ x 6∈ D and a ∗ y 6∈ D. Since D is a prime-set, we get
(a ∗ x) ∧ (a ∗ y) 6∈ D. Applying Theorem 2.9(b1), we obtain a ∗ (x ∨ y) 6∈ D. This
implies that x ∨ y ∈ Da. Therefore Da is a ∨-closed.

Proposition 3.7. Let X be a BCK-algebra and ∅ 6= D ⊆ X. Then

(i) if D is a down-set of X, then we have

(∀a, b ∈ Dc) a ≤ b ⇒ Da ⊆ Db; (3.1)

(ii) if D is an ideal of X, then we have

(∀a, b ∈ X) a ≤ b ⇒ Da ⊆ Db. (3.2)

Proof. (i) Let D be a down-set of X, and let a, b ∈ Dc such that a ≤ b. Assume that
x ∈ Da. Then a ∗ x 6∈ D. Applying Theorem 2.2(a8), it follows from a ≤ b that
a ∗ x ≤ b ∗ x. If b ∗ x ∈ D, then, since D is a down-set, we get a ∗ x ∈ D, which a
contradiction. Hence b ∗ x 6∈ D and so x ∈ Db. Therefore Da ⊆ Db.

(ii) Let D is an ideal of X. By (i), since D is a down-set, we only need to
investigate the following cases:

(1) b ∈ D. In this case, from a ≤ b we get a ∈ D and so Da = D = Db.
(2) b 6∈ D and a ∈ D. In this case, we have Da = D. Now, let x ∈ Da. If

b ∗ x ∈ D, then since D is an ideal and x ∈ D, we get b ∈ D, which a contradiction.
Hence b ∗ x 6∈ D and so x ∈ Db. Therefore Da ⊆ Db.

Corollary 3.8. If D is an ideal of a BCK-algebra X, then for all a ∈ X, D ⊆ Da.

Proof. From 0 ≤ a and D0 = D the result holds by Proposition 3.7(ii).

The following example shows that the condition ideal in the above Proposi-
tion part (ii) is necessary.

Example 3.9. [12] Consider a BCK-algebra (X = {0, 1, 2, 3, 4}; ∗, 0) in which the op-
eration “ ∗ ” is given by the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 1 0
3 3 3 3 0 0
4 4 4 4 3 0

0•

1•�
��

2••3

•

❅
❅❅

4

�
��

❅
❅❅

We can see that D := {0, 1} is a down-set but is not an ideal of X. Simply calculation,
we obtain D2 = {0} and 0 ≤ 2 but D0 = D 6⊂ D2.

Proposition 3.10. Let X be a bounded commutative BCK-lattice and let ∅ 6= D ⊆ X is
a ∨-closed. Then
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(i) if D is a down-set, then

Da ∪ Db = Da∨b for all a, b ∈ Dc or a, b ∈ D;

(ii) if D is an ideal, then

Da ∪ Db = Da∨b for all a, b ∈ X.

Proof. (i) Assume that D is a down-set and investigate the following cases:
(1) a, b ∈ Dc. Since D is a down-set, it follows from a ≤ a ∨ b and a ∈ Dc

that a ∨ b ∈ Dc. Hence by Proposition 3.7(i), we get Da ⊆ Da∨b. Similarly, we
have Db ⊆ Da∨b and so Da ∪ Db ⊆ Da∨b. In order to show the inverse inclusion,
assume that x ∈ Da∨b. Then (a ∨ b) ∗ x 6∈ D and so by Theorem 2.9(b3), we get
(a ∗ x) ∨ (b ∗ x) 6∈ D. It follows from D is a ∨-closed that a ∗ x 6∈ D or b ∗ x 6∈ D.
Thus x ∈ Da or x ∈ Db and so x ∈ Da ∪ Db. Therefore Da ∪ Db = Da∨b.

(2) a, b ∈ D. Since D is a ∨-closed, we have a ∨ b ∈ D and so by Definition 3.1,
we have Da ∪ Db = D = Da∨b.

(ii) Assume that D is an ideal. By (i) and the commutativity of ∪ and ∨, since
D is a down-set, we only need to investigate the case a ∈ D and b ∈ Dc. In this
case, using Proposition 3.7(ii), from a, b ≤ a ∨ b, we obtain Da ∪ Db ⊆ Da∨b. In
order to show the inverse inclusion, let x ∈ Da∨b. Similar to the argument of (i),
we obtain a ∗ x 6∈ D or b ∗ x 6∈ D. Hence x ∈ Db and so Da∨b ⊆ Da ∪Db. Therefore
Da ∪ Db = Da∨b.

In order to describe the intersection, similar to the above proposition, we need
the following lemma.

Lemma 3.11. Let X be a bounded commutative BCK-lattice. Then, we have

(∀a, b, x ∈ X) (a ∧ b) ∗ x = (a ∗ x) ∧ (b ∗ x).

Proof. Using Theorems 2.7 and 2.9, we get

(a ∧ b) ∗ x = Nx ∗ N(a ∧ b)

= Nx ∗ (Na ∨ Nb)

= (Nx ∗ Na) ∧ (Nx ∗ Nb)

= (a ∗ x) ∧ (b ∗ x).

Proposition 3.12. Let X be a commutative BCK-lattice and let ∅ 6= D ⊆ X. Then

(i) if D is a down-set and prime-set, then

Da ∩ Db = Da∧b for all a, b ∈ Dc or a, b ∈ D;

(ii) if D is a prime ideal, then

Da ∩ Db = Da∧b for all a, b ∈ X.
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Proof. (i) Assume that D is a down-set and prime-set and investigate the follow-
ing cases:

(1) a, b ∈ Dc. In this case, since D is a prime-set, it follows from a, b ∈ Dc that
a ∧ b ∈ Dc. Using Proposition 3.7(i) and the fact that a ∧ b ≤ a, b, we conclude
Da∧b ⊆ Da ∩ Db. Now, let x ∈ Da ∩ Db. Then a ∗ x ∈ Dc and b ∗ x ∈ Dc and so it
follows from D is a prime-set that (a ∗ x) ∧ (b ∗ x) ∈ Dc. Hence by Lemma 3.11,
we obtain (a ∧ b) ∗ x ∈ Dc. This implies x ∈ Da∧b. Therefore Da ∩ Db = Da∧b.

(2) a, b ∈ D. Since D is a down-set, from a ∧ b ≤ a, b, we conclude a ∧ b ∈ D
and so by Corollary 3.8 we have Da ∩ Db = D = Da∧b.

(ii) Assume that D is a prime ideal. By (i), since D is a down-set, we only need
to investigate the case a ∈ D and b ∈ Dc. In this case, by Proposition 3.7(ii),
from a ∧ b ≤ a, b we obtain Da∧b ⊆ Da ∩ Db. For the reverse inclusion, note that
a ∈ D gives Da = D and a ∧ b ≤ a in D implies a ∧ b ∈ D so Da∧b = D. Thus,
Da ∩ Db = D ∩ Db ⊆ D = Da∧b. Therefore Da ∩ Db = Da∧b.

Proposition 3.13. Let D be a non-empty subset of a bounded commutative BCK-algebra
X. If D is a down-set and prime-set, then

(∀a ∈ X) (Da)a = D.

Proof. If a ∈ D, then, since Da = D, we get (Da)a = D. Now, assume that
a ∈ Dc. Since D is a non-empty down-set, 0 ∈ D. It follows from a ∗ a = 0 ∈ D
that a ∈ (Da)c. Let x ∈ (Da)a. Then a ∗ x ∈ (Da)c. From this follows that
a ∗ (a ∗ x) ∈ D. Then by commutativity of X, we get a ∧ x ∈ D. Hence, since D
is a prime-set and a 6∈ D, we conclude x ∈ D. Therefore (Da)a ⊆ D. In order to
show the inverse inclusion, let x ∈ D. Since a ∗ (a ∗ x) = a ∧ x ≤ x and D is a
down-set, we obtain a ∗ (a ∗ x) ∈ D. From this follows that a ∗ x ∈ (Da)c, that is,
x ∈ (Da)a. Therefore D ⊆ (Da)a and so (Da)a = D.

We next give an example of a bounded commutative BCK-lattice satisfying
the Propositions 3.12 and 3.13

Example 3.14. [12] Let (X = {0, 1, 2, 3}; ∗, 0) be a bounded commutative BCK-lattice
in which the operation “ ∗ ” is given by the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

0
•

❅
❅❅

1

❅
❅❅
•�

��
•
3

�
��

2•

We can see that D := {0, 1} is a prime ideal satisfying the property ∨-closed and
D2 = D3 = D. It is clear that

(∀a, b ∈ X) Da ∪ Db = Da∨b , Da ∩ Db = Da∧b and (Da)a = D

Definition 3.15. For any non-empty subset D of a BCK-algebra X, we denote

Γ(D) := {x ∈ X|a ∗ x ∈ Dc, ∀a ∈ Dc}.
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Proposition 3.16. Let D be a non-empty sunset of a BCK-algebra X. Then the following
statements hold:

(i) Γ(D) =
⋂

a∈Dc
Da.

(ii) 0 ∈ D if and only if Γ(D) ⊆ D.

Proof. (i) The proof is clear by Definition 3.15.
(ii) Let 0 ∈ D. Assume to the contrary that Γ(D) 6⊆ D. Then there exists

x ∈ Γ(D) such that x ∈ Dc. Hence it follows from x ∈ Γ(D) that x ∈ Dx, that is,
x ∗ x /∈ D. Thus 0 /∈ D, which a contradiction. Therefore Γ(D) ⊆ D.

Conversely, let Γ(D) ⊆ D. Then by Theorem 3.2(i), the proof is straightfor-
ward.

In the following theorem, we give a condition for a subset of a BCK-algebra to
be an ideal.

Theorem 3.17. Let D be a subset of a BCK-algebra X. Then the following are equivalent:
(i) D is an ideal of X;
(ii) 0 ∈ D and D ⊆ Γ(D);
(iii) 0 ∈ D and D = Γ(D).

Proof. (i) ⇒ (ii) Let D be an ideal of X and x ∈ D. If x 6∈ Da for some a ∈ Dc,
then a ∗ x ∈ D. Thus, since D is an ideal and x ∈ D, we get a ∈ D, which
a contradiction. Therefore x ∈ Da and so D ⊆ Da for any a ∈ Dc. Therefore
D ⊆ Γ(D).

(ii) ⇒ (iii) By hypothesis, it suffices to show that Γ(D) ⊆ D. If not, then there
exists b ∈ Γ(D) such that b ∈ Dc. It follows from b ∈ Γ(D) that b ∈ Db and so
b ∗ b ∈ Dc, that is, 0 6∈ D, which a contradiction. Therefore D = Γ(D).

(iii) ⇒ (i) Assume to the contrary that D is not an ideal of X. Then there exist
x, y ∈ X such that y ∗ x ∈ D and x ∈ D but y 6∈ D. Since x ∈ D ⊆ Γ(D), we get
x ∈ Dy. This implies y ∗ x ∈ Dc, which a contradiction. Therefore D is an ideal of
X.

The next theorem gives a characterization of Γ(D) in a BCK-algebra with con-
dition (S).

Theorem 3.18. Let X be a BCK-algebra with condition (S) and D be a non-empty down-
set of X. Then

Γ(D) = {x ∈ X|x ⊕ d ∈ D, ∀d ∈ D}.

Proof. Using Proposition 3.16(i) and condition (S), we have

x ∈ Γ(D) ⇔ x ∈
⋂

a∈Dc

Da

⇔ (∀a ∈ Dc) x ∈ Da

⇔ (∀a ∈ Dc) a ∗ x 6∈ D

⇔ (∀a ∈ Dc) (∀d ∈ D) a ∗ x 6≤ d

⇔ (∀a ∈ Dc) (∀d ∈ D) a 6≤ x ⊕ d

⇔ (∀d ∈ D) x ⊕ d ∈ D

⇔ x ∈ {x ∈ X|x ⊕ d ∈ D, ∀d ∈ D}.
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Therefore Γ(D) = {x ∈ X|x ⊕ d ∈ D, ∀d ∈ D}.

We next describe the connection between the special subsets and the congru-
ence classes of a BCK-algebra. For this purpose, we need the following definition.

Definition 3.19. A non-empty subset D of a BCK-algebra X is called a complement-
closed if

(∀a ∈ Dc) (∃x ∈ Dc) a ∗ x ∈ Dc.

Lemma 3.20. For any ideal D of a BCK-algebra X, the following are equivalent:
(i) D is a complement-closed;
(ii) For any a ∈ Dc, Da 6= D.

Proof. (i) ⇒ (ii) Let a ∈ Dc. Then by Definition 3.19, there exists x ∈ Dc such
that a ∗ x ∈ Dc. It follows from a ∗ x ∈ Dc that x ∈ Da. But x 6∈ D, hence Da 6= D.

(ii) ⇒ (i) Let a ∈ Dc. Then by (ii), we have Da 6= D. Then it follows from
Corollary 3.8 that D(Da. Hence there exists x ∈ Da such that x ∈ Dc. Thus from
x ∈ Da, we conclude a ∗ x ∈ Dc. Therefore D is a complement-closed.

Corollary 3.21. Let D be a complement-closed ideal of a BCK-algebra X. Then

(∀a, b ∈ X) Da = Db ⇒ a, b ∈ D or a, b ∈ Dc.

Proof. Using Lemma 3.20 and Definition 3.1, the proof is straightforward.

Example 3.22. Let (X = {0, 1, 2, 3, 4}; ∗, 0) be a BCK-algebra in which the operation
“ ∗ ” is given by the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0 0

•

•

❅
❅❅
•1

•2
3

�
��

4
•

Consider the ideals D := {0, 4} and E := {0, 3, 4}. We can see that:
(i) D1 = {0, 3, 4}, D2 = {0, 1, 3, 4} and D3 = {0, 1, 2, 4}. Hence D is a complement-
closed;
(ii) E1 = E and so E is not a complement-closed.

Theorem 3.23. If D be an ideal of a BCK-algebra X, then we have

(∀a, b ∈ Dc) Da ⊆ Db ⇔ a ∗ b ∈ D.

Proof. (⇒) Let Da ⊆ Db for some a, b ∈ Dc. Clearly b 6= 0. By Proposition 3.2(ii),
we have b 6∈ Db. From this follows that b 6∈ Da. Therefore a ∗ b ∈ D.

(⇐) Let a ∗ b ∈ D for some a, b ∈ Dc. Suppose that x ∈ Da. Then a ∗
x 6∈ D. Assume to the contrary that b ∗ x ∈ D. By Theorem 2.2(a2), we have
(a ∗ x) ∗ (b ∗ x) ≤ a ∗ b. Since D is an ideal, it follows from a ∗ b ∈ D that
(a ∗ x) ∗ (b ∗ x) ∈ D. Then from b ∗ x ∈ D, we get a ∗ x ∈ D, which a contra-
diction. Hence b ∗ x 6∈ D and so x ∈ Db. Therefore Da ⊆ Db.
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Corollary 3.24. For any ideal D of a BCK-algebra X, we have

(∀a, b ∈ Dc) Da = Db ⇔ a ∗ b ∈ D and b ∗ a ∈ D.

Proof. This is an immediate consequence from Theorem 3.23.

Notation 3.25. For any non-empty subset D of a BCK-algebra X, we denote

L(D) := {Da : a ∈ X}.

It is clear that D ∈ L(D). Now, we give a characterization of L(D).

Theorem 3.26. Let D be a complement-closed ideal of a BCK-algebra X. Define the
operation “ ∗ ” on L(D) by

(∀a, b ∈ X) Da ∗ Db = Da∗b. (3.3)

Then (L(D); ∗, D) is a BCK-algebra.

Proof. We first show that the operation “ ∗ ” is well-defined. For this purpose,
we assume that Da = Dc and Db = Dd for some a, b, c, d ∈ X. We note that by
Corollary 3.21, Da = Dc implies that a, c ∈ Dc or a, c ∈ D. Similarly, we have
b, d ∈ Dc or b, d ∈ D. Hence we only need to investigate the following cases:

(i) a, c ∈ D and b, d ∈ D. In this case, since D is an ideal, we get a ∗ b ∈ D and
c ∗ d ∈ D by Theorem 2.2(a6). Therefore we have

Da ∗ Db = Da∗b = D = Dc∗d = Dc ∗ Dd.

(ii) a, c ∈ D and b, d ∈ Dc. In this case, from a ∗ b ≤ a and c ∗ d ≤ c, we get
a ∗ b ∈ D and c ∗ d ∈ D and so similar to (i), the result holds.

(iii) a, c ∈ Dc and b, d ∈ D. In this case, since b ∈ D and a 6∈ D, it follows from
D is an ideal that a ∗ b ∈ Dc. Similarly, we can show that c ∗ d ∈ Dc. By Corollary
3.24, from a, c ∈ Dc and Da = Dc, we obtain

a ∗ c ∈ D and c ∗ a ∈ D. (3.4)

Moreover, it follows from b, d ∈ D that

b ∗ d ∈ D and d ∗ b ∈ D. (3.5)

Now, we have

((a ∗ b) ∗ (c ∗ d)) ∗ (d ∗ b) = ((a ∗ b) ∗ (d ∗ b)) ∗ (c ∗ d) by Theorem 2.2(a7)

≤ (a ∗ d) ∗ (c ∗ d) by Theorem 2.2(a2) and (a8)

≤ a ∗ c by Theorem 2.2(a2).

Then, since a ∗ c ∈ D, we get ((a ∗ b) ∗ (c ∗ d)) ∗ (d ∗ b) ∈ D and so from
d ∗ b ∈ D, we obtain

(a ∗ b) ∗ (c ∗ d) ∈ D. (3.6)

By the similar argument, we can show that

(c ∗ d) ∗ (a ∗ b) ∈ D. (3.7)
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Applying Corollary 3.24, from (3.6) and (3.7), we obtain Da∗b = Dc∗d, that is,
Da ∗ Db = Dc ∗ Dd.

(iv) a, c ∈ Dc and b, d ∈ Dc. The proof of this case is similar to the proof of
(iii) by some modification.

Summarizing the above, we conclude that the operation “ ∗ ” on L(D) is well-
defined. Now, we define the mapping ϕ : L(D) → X/D by ϕ(Da) = [a]D , where
X/D is the quotient BCK-algebra induced by ideal D. In order to show that ϕ

is well-defined, assume that Da = Db for some a, b ∈ X. Similar to the above
argument, we get a, b ∈ D or a, b ∈ Dc. If a, b ∈ D, then clearly, [a]D = [b]D and
so ϕ(Da) = ϕ(Db). If a, b ∈ Dc, then by Corollary 3.24, we have a ∗ b ∈ D and
b ∗ a ∈ D, which implies that [a]D = [b]D and so ϕ(Da) = ϕ(Db). Hence ϕ is
well-defined. Now, let ϕ(Da) = ϕ(Db). Then [a]D = [b]D and so by the property
of congruence class, we obtain a ∗ b ∈ D and b ∗ a ∈ D. Hence by Corollary 3.24,
we get Da = Db. Therefore ϕ is injective. Obviously, ϕ is onto. Therefore ϕ is a
bijective function which preserving the operation “ ∗ ” on L(D). Then, since X/D
is a BCK-algebra, ϕ induces a BCK-algebra structure on (L(D); ∗, D). Therefore
(L(D); ∗, D) is a BCK-algebra.

We now give an example to illustrate the above theorem.

Example 3.27. [12] Let (X = {0, 1, 2, 3, 4}; ∗, 0) be a BCK-algebra in which the opera-
tion “ ∗ ” is given by the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0 0

•❅
❅❅
•1

3 • 4

�
��

2

•

•

Consider the ideal D := {0, 2}. We can check that D is a complement-closed. Simply
calculation we obtain:

L(D) = {D0 = D2, D1 = {0, 2, 4}, D3 = {0, 1, 2, 4}, D4 = {0, 1, 2, 3}};

X/D = {[0]D , [1]D, [3]D, [4]D}; (L(D); ∗) ∼= (X/D; ∗)

•❇
❇
❇❇
• [1]D

[3]D•

✚
✚✚

[4]D
•

[0]D
•❇

❇
❇
❇
•D1

D3•

✚
✚✚

D4
•

D0 = D2
(L(D); ∗) (X/D; ∗)

ϕ(Di) = [i]D; i = 0, 1, 3, 4

In the following example, we show that the condition complement- closed in
Theorem 3.26 is necessary.
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Example 3.28. Let X = {0, 1, 2, 3, 4} be a BCK-algebra as in Example 3.22. Consider
the ideal E = {0, 3, 4}. E is not a complement-closed. Simplifying calculation we obtain:

| L(E) |=| {E = E1, E2 = {0, 1, 3, 4}} |= 2, | X/E |=| {[0]D, [1]D, [2]D} |= 3.

From this follows that L(D) 6∼= D/X.

Conclusion and Future Work

In this work, we investigate the properties of class of special subsets in a BCK-
algebra. Defining an operation on this class, we proved that it is isomorphic to
the set of all congruence classes induced by an ideal.

Our future works are to study the class of special subsets in some logic alge-
braic structures such as BCI-algebra, BL-algebra, MV-algebra, residuated lattice,
etc.

Acknowledgements: The author is deeply grateful to the referee for the valu-
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