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Abstract

In this article we consider a family of orientation preserving expanding
maps on the circle. We associate to each member of this family a geodesic
lamination on the disc, endowed with a transversal measure. The map on
the circle induces an expanding dynamical systems on the lamination. We
explore relations between the geometry of the lamination and the symbolic
dynamics of the circle map. We present a list of open problems.

1 Introduction

Expanding maps on the circle and on the interval has been studied extensively in
dynamical systems, since they exhibit important dynamical and ergodic proper-
ties (cf. [11]). On the other hand geodesic laminations on the disc have been used
in different areas of mathematics: complex dynamics [10, 16], surface automor-
phism dynamics [6], hyperbolic geometry [5] and symbolic dynamics [12, 13].
In [4, 9, 10, 16], and references within, geodesic laminations on the disc were as-
sociated to the angle doubling map on the circle as model of Julia sets.

In the present article we consider a family of expanding maps on the circle,
these maps are orientation preserving and of degree k, with k ≥ 3. This family
of maps is defined in Section 2. In Section 3, we associate a geodesic lamina-
tion on the disc, for each map of the family. We define a transversal measure. The
expanding map on the circle induces an expanding dynamical system on the lam-
ination, see Theorem 3.1. Moreover, we show relations between the geometry of
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the lamination and the dynamics of the expanding map on the circle, in particular
to its symbolic dynamics.

In [12, 14, 15] the author considered a family of fractals that can be described in
term of space-filling curves, which can be modelled using geodesic laminations
on the disc. These constructions are related to expanding maps on the circle.
These maps belong to the family of expanding maps considered in the present
article. Unlike those maps, in the present article we do not require the existence
of a space-filling curve. Therefore the results of the present paper are in a more
general setting than the one considered in [12, 14]. Some of the techniques used
in the present paper are based in techniques considered by the author in [12, 14].

In Section 4, we consider some examples. We end the present article with
Section 5, where we present a list of open problems.

2 Expanding maps on the circle

Let I = [0, 1) be the unit interval, we define a map f : I → I in the following way:

1. Let {I1, . . . , Ik} be a partition of I, where Ij are half-open intervals, closed to
the left.

2. For 1 ≤ j ≤ k, let φj : Ij → I be C1 surjective maps on the closure of Ij with

φ′
j(t) > 1, for all t ∈ Ij.

3. For a fixed θ ∈ (0, 1), we define Rθ : I → I as Rθ(t) := t + θ (mod 1).

4. Let f (t) := Rθ ◦ φj(t), if t ∈ Ij.

We call this class of maps f : I → I, regular expanding map on I. A special
and important case of these maps is when all the φj are linear maps, in this case,
we say that f is a regular expanding linear map on I. These maps were introduced
in [14].

We remark, that if we identify S1 with I = [0, 1) (mod 1), then f defines a
continuous orientation preserving map of degree k on S1.

The inverse branches of the map f are hj : I → Ij, defined as hj := φ−1
j ◦R−1

θ =

φ−1
j ◦ R1−θ , for 1 ≤ j ≤ k. The collection of maps {h1, . . . , hk} is called the system

of branches of the inverse function of f . Let ν : I → {1, . . . , k}, where ν(t) = i if t ∈ Ii.
The itinerary of t is the infinite sequence a1a2 . . ., where aj = ν( f j−1(t)), for all
j ≥ 1. By definition it has the property t ∈ ∩∞

n=1ha1
◦ · · · ◦ han(I). Let us remark

that the itinerary of a point is well-defined since the intervals Ii are half-open.
However there might be more than one point with the same itinerary, since the
maps hj are not continuous as a map from I to Ij. The lack of continuity of the
maps hi-s plays an important role in the construction of the lamination described
in Section 3.

We say that a point t is periodic or f -periodic if there exists a positive integer m,
such that f m(t) = t. In this case the itinerary of t is of the form: a1 . . . ama1 . . . am

a1 . . . am . . .. We denote this itinerary by a1 · · · am. We say that t is pre-periodic or
f -pre-periodic, if t is not periodic and there exists a positive integer l such that



Expanding maps on the circle and geodesic laminations 145

f l(t) is periodic. In this case the itinerary of t is of the form a1 . . . alal+1 · · · al+m,
for some positive integer m.

Let the intervals Ij be of the form [tj, tj+1), and αj = tj+1 − tj, i.e. its Lebesgue
measure. By the definition of the map f , hj(θ) = tj, i.e. f (tj) = θ, for 1 ≤ j ≤ k.

Throughout the article we shall denote Ia1...an := ha1
◦ · · · ◦ han(I) and ha1 ...an :=

ha1
◦ · · · ◦ han . We call the sets Ia1 ...an cylinders of I. These sets consist of a finite

union of half-open intervals, by the definition of the maps hi. The total Lebesgue
measure of Ia1 ...an goes to zero as n growths, in particular, if the the maps φj-s are
linear the Lebesgue measure of Ia1 ...an is αa1

· · · αan . We denote the collection of all
cylinders by I . i.e.

I := {Ia1 ...an : n ≥ 1, 1 ≤ ai ≤ k}.

The extreme points or extremities of a cylinder are the boundary points of the
intervals that form the cylinder. We call neighbouring extreme points of a cylinder
J, a pair x1, x2 of extreme points of J such that x1 ∈ J and x2 ∈ J \ J; and one the
of the circle intervals, considered with the standard orientation, (x2, x1), (x1, x2)
is disjoint of J. For example, if the cylinder J is of the form

J = [y1, y2) ∪ [y3, y4) ∪ [y5, y6);

the pairs of extreme points are y1, y6; y3, y2 and y5, y4. Neighbouring extreme
points come from the discontinuity point, of the maps hi’s, i.e. the point θ.

Proposition 2.1. Let Ia1 ...an be a cylinder and the pair x1, x2 be neighbouring extreme
points of the cylinder, such that x1 ∈ Ia1 ...an and x2 ∈ Ia1...an \ Ia1...an . Then x1 = ti and
x2 = ti+1 or x1 = ha1 ...an′ (ti) and x2 = limt→t−i

ha1 ...an′ (t) = ha1 ...an′ (ti+1), for some

i ∈ {1, . . . , k}, 1 ≤ n′
< n, here i + 1 is taken mod k.

Proof. We use induction on n. If n = 1, then the cylinder is Ia1
= [ta1

, ta1+1), so
its neighbouring extreme points are ta1

and ta1+1. We suppose that the statement
is true for n = m. Let n = m + 1. The cylinder Ia1...am is decomposed into sub-
cylinders as follows:

Ia1...am =
k⋃

i=i

Ia1 ...ami.

We shall check that the statement is true for Ia1...ami. Since Ia1...ami = ha1 ...ami(I),
the points ha1 ...am(ti), limt→t−i

ha1 ...am(t) are neighbouring extreme points of the

cylinder Ia1 ...ami. If this cylinder has more than one connected component, the
other neighbouring extreme points are neighbouring extreme points of the parent
cylinder, i.e. Ia1 ...am , since the only discontinuity point of the map ha1 ...ami is θ.
Therefore the statement is true for Ia1 ...ami.

3 Geodesic laminations

Let D2 be the closed unit disk in the plane, and S1 its boundary. We identify S1

with I = [0, 1), since the map f is well defined on S1. We think this map as acting
on the boundary of the disk.

A geodesic in D2 is an arc of circle that meets the boundary of D2 perpendic-
ularly.
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Definition 3.1. A geodesic lamination on D
2 is a non-empty closed set of geodesics of

the disk and that any two of these geodesics do not intersect except at their end points.

The construction of the geodesic lamination Λ is as follows: We consider the
extremities of the intervals Ii’s. And we join pairwise consecutive extremities
by geodesics in D2. Let a1 . . . an be a word in the alphabet {1, . . . , k}. We join
by geodesics the points ha1

· · · han(tj) and ha1
· · · han(tj+1) for j = 0, . . . , k, where

j + 1 is taken mod k. We do this for all possible finite words in this alphabet and
later we take the closure in the topology given by the Hausdorff metric of D2.
We denote the set obtained in this way by Λ. The elements obtained in this way
are either geodesics of D2 or points of S1; in the latter case the points are called
degenerate geodesics. Due to Proposition 2.1, the set Λ is formed by the closure in
the Hausdorff metric of D2 of the set of geodesics that join neighbouring extreme
points of all elements of I . Figure 1 shows the set Λ, corresponding to Example 1
of Section 4. The set Λ form a geodesic lamination, the proof is the same as in the
case of a regular expanding linear map on I, done in [14]. For completeness sake,
we present it here.

Figure 1: Geodesic lamination of Example 1, with α = (
√

5 − 1)/2 and β = α2.

Proposition 3.1. The set Λ is a geodesic lamination on D2.

Proof. Let J = Ia1···an be a cylinder and suppose that it consists of more than one
connected component. Let x1 and x2 be neighbouring end points of this cylinder
belonging to different connected components, see Figure 2. Due to the proof of
Proposition 2.1 we can suppose, without loss of generality, that x2 = ha1···an(θ)
and x1 = ha1···an(θ

−) := limt→t∗− ha1···an(t). So x1 = ha1 ···an−1
(tan+1) and x2 =

ha1 ···an−1
(tan) where the sum an + 1 is taken mod k.

Let us consider the cylinder J′ = Ia1···an−1an+1 whose left end point is x1. We
shall show that J′ is contained in the gap of J formed by [x1, x2). Let us suppose
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that the cylinder J′ consists of more than one connected component and one of
these components is outside the gap [x1, x2), say to the right of x2. So there exists
1 ≤ j ≤ k such that ha1···an−1an+1(tj) is the discontinuity point for this cylinder, i.e.

x1 < y1 = ha1 ···an−1an+1(t
−
j ) < x2 < y2 = ha1···an−1an+1(tj).

So

ha1 ···an−1
(tan+1) < ha1 ···an−1an+1(tj+1) < ha1 ···an−1

(tan) < ha1···an−1an+1(tj)
ha1···an−1an+1(θ) < ha1···an−1an+1(tj+1) < ha1···an−1an(θ) < ha1···an−1an+1(tj).

Since the maps hi preserve the cyclic order of the images of {t1, . . . , tk}. We have
that the points han+1(θ), han+1(tj+1), han(θ) and han+1(tj) are in this cyclic order

in S1. However the first two points and the last belong to the interval Ian+1 and
the third point to Ian that contradicts the fact that these are disjoint intervals.

J’

x1                          y1          x2                                        y2

J J’ J

Figure 2: Figure relative to the proof of Proposition 3.1.

Proposition 3.2. Every point in I is an end point of a geodesic in Λ.

Proof. If the point t belongs to the backward f -orbit of θ, i.e. f m(t) = θ for some
positive integer m. Then point t is an extreme point of a cylinder. So by definition
there is a geodesic in the lamination having t as an end point.

If t does not belong to the backward f -orbit of θ. Let a1a2 . . . be its itinerary,
i.e. f i−1(t) ∈ Iai

, for i ≥ 1. Let

L :=
⋃

n≥1

{λ ∈ Λ : λ geodesic that joins neighbouring end points of Ia1...an} .

By the definition of the geodesic lamination Λ, there exists a sequence of elements
of the set L: {λl}l≥1 such that t is in the closure of the end points of λl . Since Λ

is closed then the closure of L is contained in Λ. Hence t is an end point of an
element of the closure of L.

Proposition 3.3. Let a1a2 . . . be the itinerary of θ. If

(a) am 6= a1, for all m > 1, or

(b) θ is preperiodic and its itinerary is of the form: a1 . . . al−1al . . . am+l for some m
and l with m > l > 0 and a1 . . . al 6= aj . . . aj+l−1, for l ≤ j ≤ l + m.

Then θ is a degenerate geodesic of the lamination Λ.
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Proof. The conditions (a) and (b) on the itinerary θ imply that θ is not f -periodic
in either case.

First, we shall prove that the point θ is in the interior of the cylinders Ia1···an ,
for all n > 0. If θ is not in the interior of Ia1···an , for some n; then by Proposi-

tion 2.1, θ = ha1 ...an′ (ti), for some i ∈ {1, . . . , k}, and n′
< n. Hence f n′

(θ) =

f n′
(ha1 ...an′ (ti)), so ti = f n′

(θ). Therefore θ = f n′+1(θ), contradicting the fact that
θ is not periodic.

In the case (a), we shall prove, the cylinders of the form Ia1...an consist of only
one connected component for all n. We use induction, clearly Ia1

has only one
connected component. We suppose that Ia1 ...anan+1

has more than one connected
component, while Ia1...an consists of one connected component. Since Ia1...anan+1

has more than one connected component, the discontinuity point of ha1
is in the

interior of Ia2...an+1
or Ia2 ...an+1

has more than one connected component. By defi-
nition of the maps hi, θ is the discontinuity point for 1 ≤ i ≤ k. Therefore in the
former case θ ∈ Ia2 ...an+1

, so a2 = a1, contradicting the hypothesis on the itinerary
of θ. In the later case, when Ia2...an+1

consists of more than one connected com-
ponent. We repeat the previous argument, so we conclude that θ ∈ Iaj ...an+1

, for
some j, with 2 ≤ j ≤ n + 1. Hence aj = a1, contradicting the hypothesis on the
itinerary of θ. Therefore Ia1...an consists of only one connected component for all
n, when the hypothesis (a) is satisfied.

Let λn the geodesic in Λ that joins the extreme points of Ia1 ...an . By the first
remark in this proof, θ is different of the ends points of λn, for all n. Since Ia1 ...an

consists of nested intervals whose length goes to zero, ∩n≥1Ia1 ...an consists of only
one point, which is θ. Therefore λn converges to θ in the Hausdorff metric. Hence
θ is an element of the lamination Λ.

In (b), by hypothesis θ 6∈ Iaj ...aj+l−1
, for l ≤ j ≤ l + m, so θ 6∈ Iaj ...al+m

, then
the cylinder Ial ...al+m

consists of only one connected component. Similarly for
I(al ...al+m)r , for any positive r, where

(al . . . al+m)
r = al . . . al+m . . . al . . . al+m

︸ ︷︷ ︸

r times

.

Since θ is the only discontinuity point of the maps hi-s, then ha1 ...al−1
(I(al ...al+m)

r),
consists of only one connected component for all r.

By a similar argument used in the case (a), the geodesics that joins the end
points of the interval Ia1 ...al−1(al ...al+m)r , converges to θ in the Hausdorff metric,
when r goes to infinity. Hence θ is an element of the lamination Λ.

We introduce a dynamical system (Λ, F), when θ is a degenerate geodesic (in
particular when the hypotheses of Proposition 3.3 are satisfied), as follows: Let λ
be an element in Λ whose end points are t and t′, we define F(λ) as the geodesic
that joins f (t) and f (t′). The map F is continuous since f is continuous. If λ joins
ha1

· · · han(tj) with ha1
· · · han(tj+1) for n ≥ 1 then F(λ) joins ha2 · · · han(tj) with

ha2 · · · han(tj+1). If λ joins tj with tj+1, let us consider f (tj) = Rθφj(tj) = Rθ(0) =
θ and similarly f (tj+1) = θ, and according to Proposition 3.3, the point θ is an
element of Λ. Hence F(Λ) ⊂ Λ.

Let δ be any arc in D2 joining two distinct geodesics of the lamination, such
that the intersection of these two geodesics with δ consists only of the end points
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of δ and the arc δ intersects each element of Λ at most once. We call δ a transversal
arc to Λ. We slide the arc δ along the geodesics towards the boundary of the disk
according the two possible directions in which the geodesics can be oriented.
With this procedure we obtain a limit set in the boundary of the disk, Cδ. More
precisely: Let λ1 and λ2 be the geodesics in Λ that are joined by an arc δ. This
defines two disjoint intervals on the circle J = [b1, b2] and J′ = [b′1, b′2] where bk, b′k
are the end points of λk for k = 1, 2. Let λ be a geodesic in the lamination such
that its end points lie on the same interval J or J′, we remove from J ∪ J′ the open
interval whose extremities are the end points of λ. The set Cδ is obtained in this
way when all the geodesics in Λ with end points in J or J′ are considered. See
Figure 3. If δ is an arc, whose end points are geodesics that join extreme points of
the same cylinder, then the set Cδ is obtained as ∩j≥0Kj, where K0 is the closure
of the original cylinder and each Kj is a union of closed sub-cylinders of K0. By
construction the set Cδ is not empty.

�

1

�

2

�

b

1

b

2

b

0

2

b

0

1

Æ

Figure 3: The construction of Cδ.

Let K0 = Ia1...am . Since Ia1...am = ∪k
l=1Ia1 ...aml, we have

K1 = Ia1 ...amb1
∪ · · · ∪ Ia1...ambs

,

for some s < k and 1 ≤ bi ≤ k. We remark that all the cylinders Ia1...am j con-
sisting of only one connected component are not in K1. When we consider K2,
we have to see how each of these cylinders Ia1...ambi

are subdivided into cylinders

of the form Ia1 ...ambibi2
. So K2 = ∪s

i=1 ∪
si
i2=1 Ia1 ...ambibi2

. Some of these cylinders

could be sub-divided in the same way as the original cylinder Ia1...am , so we say
that they are of the same type. In general, we say that two cylinders are of the
same type if they are subdivided in a similar manner under this process. If the
number of connected components of the family of cylinders I is bounded, there
is a finite number of different types of cylinders. Hence, the set Cδ = ∩m≥1Km, is
the fixed point of a graph-directed iterated function system (GIFS). For definition
and general properties of GIFS see [8, pp. 47]. If the map f is a regular expanding
linear map, then the contracting maps defined by the sub-division process of the
cylinders are similarities, so the maps that define the GIFS are similarities. In Sec-
tion 4, we show in detail the construction of the limit set Cδ for some examples,
see also [12, 14]. We have proved the following proposition.

Proposition 3.4. If the number of the connected components of the family of cylinders I
is bounded. Then the set Cδ is the fixed point of graph directed iterated function system
(GIFS). Moreover the maps of this GIFS are similarities when f is a regular expanding
linear map.
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Proposition 3.5. If for some transversal arc δ, the set Cδ is finite. Then the point θ is a
f -periodic point.

Proof. Let s1, . . . , sm be the elements of Cδ and ordered such that si < si+1, for
1 ≤ i ≤ m − 1. So by definition Cδ = J \ ∪m−1

i=1 Ji, where J is the closure of an
element of I and Ji = (si, si+1). In particular the extreme points of J belong to Cδ,
so s1 and sm belong to the closure of J. Let λi be the geodesic that joins si with
si+1, by the construction of Cδ, λi belongs to the lamination Λ. See Figure 4.

Figure 4: Figure relative to the proof of Proposition 3.5.

Due to the construction of the lamination Λ and the limit set Cδ, we can sup-
pose, without loss of generality, that J is the closure of a cylinder, i.e. Ic1...cr .
According to Proposition 2.1, we have s1 = hc1 ...cr′ (ti), for some r′ < r and
i ∈ {1, . . . , k}.

The fact that s1 is the end point of a cylinder implies that the points sj, for
j ∈ {2, . . . , m}, are end points of cylinders. In particular s1 and s2 are the end
points of a cylinder contained in Ic1...cr . So s1 and s2 are the end points of a cylinder
of the form Ic1 ...cl

, with l > r. By Proposition 2.1, s1 = hc1 ...cl′ (tj), for some l′ < l

and j ∈ {1, . . . , k}, and s2 = hc1 ...cl′ (t
−
j ). If r′ = l′ then s2 = sm, so we can

suppose that r′ < l′. Since the maps hi-s are the inverses of the map f , we have:

f l ′(s1) = tj, so f l ′+1(s1) = f (tj) = θ, similarly f r′+1(s1) = θ. Hence f l ′−r′(θ) = θ,
so θ is a periodic point of f .

We conjecture that if θ is a f -periodic point then the set Cδ is countable.
For a given δ, a transversal arc to Λ, we define µ(δ) = Ms0(Cδ) where Ms0 is

the s0-Hausdorff measure and s0 is the Hausdorff dimension of Cδ. When f is a
regular expanding linear map, the sets Cδ are the fixed points of GIFS consisting
of similarities, and the GIFS satisfies the open set condition (see [8] for the defini-
tion). Due to the self-similarity of Cδ, its Hausdorff dimension is independent of
δ.

The domain of F can be extended to the set of equivalence classes of transverse
curves to the lamination Λ. Given δ and δ′ two transverse curves to Λ, we say that
δ ∼ δ′ if the end points of each curve lie in the same pair of distinct geodesics, and
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Cδ = Cδ′ . Therefore µ(δ) = µ(δ′). We extend the definition of the map F to the
transverse curves to Λ and their equivalence classes. The curve F(δ) is defined as
a transverse curve only to all F(λ) where λ are the geodesics transverse to δ.

Proposition 3.6. Let f : I → I be a regular expanding linear map, such that θ not
f -periodic; and F : Λ → Λ its induced map on the lamination Λ. Then F has the
property F∗µ = (αs0

1 + · · ·+ αs0
k )µ, where F∗µ(δ) := µ(F−1(δ)), and δ is a transverse

arc to Λ.

Proof. By definition F∗(µ(δ)) = µ(F−1(δ)) = Ms0(CF−1(δ)). And by construction
the limit set Cδ = ∩j≥0(Kj), so f−1(Cδ) = ∩j≥0 f−1(Kj) and CF−1(δ) = f−1(Cδ).
Since f is k to 1 and its inverse branches are the maps hi, we have

Ms0(CF−1(δ)) = Ms0( f−1(Cδ)) = Ms0(
k⋃

j=1

hj(Cδ)) =
k

∑
j=1

Ms0(hj(Cδ)) =

= (αs0
1 + · · ·+ αs0

k )Ms0(Cδ) = (αs0
1 + · · ·+ αs0

k )µ(δ).

Therefore F∗µ = (as0
1 + · · ·+ as0

k )µ.

If 0 < s0 < 1 then (αs0
1 + · · ·+ αs0

k ) > 1 since ∑
k
i=1 αi = 1, 0 < αi < 1; so we

can think F as an expanding map the lamination Λ.
From these results, we have proved the following theorem:

Theorem 3.1. Let f : I → I be a regular expanding map, such that θ satisfies the
hypotheses of Proposition 3.3. Then there exists a geodesic lamination Λ on the disk with
transversal measure µ and a continuous map F : Λ → Λ. Moreover, if f is a regular
expanding linear map and s0 is the Hausdorff dimension of a limit set on the boundary of
the disk obtained by any transverse arc to Λ, satisfying 0 < s0 < 1, then there is ρ > 1
such that F∗µ = ρµ.

4 Examples

Example 1: Let α1 = α2, α2 = α3 = αβ and α4 = β2, with α + β = 1, and α, β > 0;

and θ = 1 − α2/2. We define φi(t) := (t − ∑
i−1
j=0 αj)/αi , for 1 ≤ i ≤ 4, and α0 = 0.

This example was studied in detail in [14]. The point θ is not periodic for f since
its itinerary is 13 = 13333 . . .. The Hausdorff dimension of the limit sets Cδ is s0,
the solution of the equation α2s + β2s = 1. Moreover 0 < Ms0(Cδ) < ∞. In [14], it
was shown that there is an space-filling curves associated to this expanding map.

The lamination of this example, with α = (−1 +
√

5)/2 and β = α2, is shown in
Figure 1.
Example 2: Let αi = 1/3, for i ∈ {1, 2, 3}, and θ = 5/9. As in Example 1,

φi(t) := (t − ∑
i−1
j=0 αj)/αi , for i = 1, 2, 3, and α0 = 0. It can be easily checked

that the itinerary of θ is 21, hence it is not periodic. The graph of this expanding
map, is shown in Figure 5. Let Ia1 ...an be a cylinder, using induction on n, can
be checked that there are three different types of cylinder, according how are
decomposed into sub-cylinders. The cylinders could have one or two connected
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Figure 5: Graph of the expanding map of Example 2.

component. In order to understand the cylinders and how are decomposed into
sub-cylinders we give the following model. Let

0 ≤ x1 < y1 < y2 < x2 ≤ x3 < y3 < x4 < 1, (1)

with the relations:
|y1 − x1|+ |x4 − y3|
|x2 − x1|+ |x4 − x3|

=
1

3
,

|y2 − x2|+ |y3 − x3|
|x2 − x1|+ |x4 − x3|

=
1

3
,

|y2 − y1|
|x2 − x1|+ |x4 − x3|

=
1

3
.

We consider [x1, x2) ∪ [x3, x4) as a cylinder. There are the following possibilities:

• If x2 = x3, i.e. the cylinder consists of one interval. We say that the cylinder
is of type I.

• If x2 6= x3, i.e. the cylinder consists of two intervals. Here we allow cyclic
permutations of the intervals. See Figure 6.

We say that:

– it is of type II-1 if the intervals are ordered in [0, 1) as in (1).

– it is of type II-2 if the order is as 0 ≤ x3 < y3 < x4 < x1 < y1 < y2 < x2.

If Ia1 ...an is of type I then its decomposition into sub-cylinders is as follows:

Ia1...an1 = [y2, y3), Ia1...an2 = [x1, y1) ∪ [y3, x4), Ia1 ...an3 = [y1, y2);

where Ia1 ...an3 and Ia1...an1 are of type I, Ia1...an2 is of type II-2.
If Ia1 ...an is of type II-1 then

Ia1 ...an1 = [y2, x2) ∪ [x3, y3), Ia1 ...an2 = [x1, y1) ∪ [y3, x4), Ia1...an3 = [y1, y2);

where Ia1 ...an3 is of type I, Ia1 ...an1 is of type II-1 and Ia1...an2 of type II-2.
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Figure 6: Different types of cylinders in Example 2.

If Ia1...an is of type II-2 then

Ia1 ...an1 = [x3, y3) ∪ [y2, x2), Ia1...an2 = [y3, x4) ∪ [x1, y1), Ia1 ...an3 = [y1, y2);

where Ia1...an3 is of type I, Ia1...an1 is of type II-2 Ia1...an2 is of type II-1.
We use this information to understand the construction of the limit set Cδ.

Let δ be a transverse arc whose end points are in the geodesics that joins the
extreme points of a cylinder Ia1···an , of type II-1, see Figure 7. The study of the
case of type II-2 is done in a similar manner. So Ia1···an = [x1, x2) ∪ [x3, x4). Let
K0 be the closure of Ia1···an , i.e. K0 = [x1, x2]∪]x3, x4]. In the first step of the
construction of the set Cδ, we remove from K0 the open set (y1, y2). So K1 =
[x1, y1]∪ [y2, x2]∪ [x3, x4], the set K1 consists of the closure of the cylinders Ia1···an1

and Ia1···an2, which are of type I I − 1 and I I − 2. This process defines the map
Ψ1,1 as the map that sends Ia1···an , of type II-1, into Ia1···an1, of type II-1, using the
maps h1, h2 and h3. Similarly we get Ψ1,2. Booth of then contract the distance by
a factor 1/3. We repeat this process to these new cylinders. Hence we obtained
the set Cδ as the attractor of the graph directed iterated function systems, defined
by the graph, shown in Figure 8. Since the maps Ψi,j contract the distance by a
factor of 1/3, then the Hausdorff dimension of Cδ is log 2/ log 3. Furthermore it
can be proved using standard techniques that 0 < Ms0(Cδ) < ∞.

This analysis can be extended for any k odd. In this case we consider αi = 1/k,
for 1 ≤ i ≤ k, and θ = (k2 − k − 1)/k2. It can be checked that the itinerary

of θ is (k − 1)(k − 2). The corresponding limit set Cδ has Hausdorff dimension
log 2/ log k.
Example 3: Let α be the real root of the polynomial x3 + x2 + x − 1. Let αj = αj,

for 1 ≤ j ≤ 3 and θ = (α + α2)/2. As before, we define φi(t) := (t − ∑
i−1
j=0 αj)/αi,

for i = 1, 2, 3, and α0 = 0. The itinerary of θ is 112, which satisfies the hypoth-
esis (b) of Proposition 3.3. Some dynamical properties of this map were studied
in [3]. The geodesic lamination was introduced and studied in detail in [12]. The
lamination is shown in Figure 10. In this example the dimension of the limit
sets is calculated in detail and the value for s0 is log ρ/ log α, where ρ is the real
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Figure 7: The construction of the set Cδ in Example 2.

II-1 II-2

Ψ1,1 Ψ2,2

Ψ1,2

Ψ2,1

Figure 8: The graph-directed IFS that defines the limit set Cδ of Example 2.

root smaller than one, in absolute value, of the polynomial x4 + 2x3 − 1, s0 is ap-
proximately 0.5466. This construction is related to the Rauzy fractal, for details
see [1, 12, 2]. This construction can be generalized to k maps, i.e. {φ1, . . . , φk}.
Where αj = αj, for 1 ≤ j ≤ k, and α is the real root smaller than one, in absolute

value of the polynomial xk + xk−1 + · · ·+ x − 1, for details see [12].
Example 4: Here we will consider a non-linear version of Example 3. Let φi : Ii →
I given by

φi(t) =
exp(t − ∑

i−1
j=0 αj)− 1

exp(αi)− 1
,

where αi = αi, for 1 ≤ i ≤ 3 and α0 = 0, as in Example 3. Numerical evidence,
suggests that the point θ is not periodic, and part of its itinerary is 1122231121 . . ..
The graph of the expanding map is shown in Figure 11 and the corresponding
geodesic lamination is shown in Figure 10.
Example 5: Here we will consider another linear example, but θ periodic. Let
αi = 1/3, for i ∈ {1, 2, 3}, and θ = 1/6, whose itinerary is 123. It can be easily
checked in this example that θ is not a degenerate geodesic. The corresponding
lamination is shown in Figure 12.
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Figure 9: Geodesic lamination of Example 2.

5 Open problems and some questions

1. Is it true that if θ is a periodic point for the map f , then the limit set Cδ is
countable, for all transversal arcs δ?

2. Given a transversal arc δ; for which values of θ, Cδ is a Cantor set with
0 < Ms(Cδ) < ∞?

3. Let αj, 1 ≤ j ≤ k, as considered previously, i.e. 0 < αj < 1 and ∑
k
j=1 αj = 1,

and θ ∈ (0, 1). Let fθ be the linear expanding map associated to Rθ and

the linear maps φj : Ij → I, φj(t) := (t − ∑
j−1
i=1)/αj. Let sθ be the Hausdorff

dimension of the limit sets of the transversal to the lamination Λ. We would
like to know the behaviour of the function θ 7→ sθ.

4. Does exist a regular expanding (linear) map with θ non-periodic and not a
degenerate geodesic?

5. Characterization of the degenerate geodesics.

6. Give necessary and sufficient conditions on the map f , so that the elements
of I have a bounded number of connected components.
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Figure 10: Geodesic lamination of Example 3 (left) and Example 4 (right).
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Figure 11: Graph of the expanding map of Example 4.
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