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Abstract

In this paper, we establish an exponential inequality for negatively asso-
ciated random variables, which improves known results. These results con-
cern in particular the previous work of Kim and Kim (2007), Sung (2009 and
2011) as well as Xing et al. (2009). We also try to put our results in a more
general context by showing where they may touch the sphere of interest of
other authors.

1 Introduction

There exist several versions available in the literature for independent sequences
of random variables with assumptions of uniform bound or some, quite relaxed,
control on their (centered or non-centered) moments. If the independent case is
classical in literature, the treatment of dependent variables is more recent. The
extension of dependent variable was first discussed considering martingale or
different mixing conditions. For instance, Hoeffding [8] and Azuma [2] proved
some exponential inequalities for bounded martingale difference sequences. The
first author gave the more general exponential inequalities for martingales in
[12, 13], and Miao et al. [14] proved the deviation inequalities for the linear
parameter in stochastic processes by some martingale exponential inequalities.

One of the dependence structure that has attracted the interest of probabilists
and statisticians is negatively associated, which is first introduced by Alam and
Saxena [1], and carefully studied by Joag-Dev and Proschan [9] and Block et al.
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[3]. A finite family of random variables {Xi; 1 ≤ i ≤ n} is said to be negatively
associated (NA) if for every pair of disjoint subsets A1 and A2 of {1, 2, . . . , n},

Cov{ f1(Xi , i ∈ A1), f2(Xj, j ∈ A2)} ≤ 0

where f1 and f2 are coordinatewise increasing and the covariance exists. An in-
finite family is negatively associated if every finite subfamily is negatively asso-
ciated. Accordingly, a finite family of random variables {Xi ; 1 ≤ i ≤ n} is said
to be positively associated (PA) if for every pair of disjoint subsets A1 and A2 of
{1, 2, . . . , n},

Cov{ f1(Xi , i ∈ A1), f2(Xj, j ∈ A2)} ≥ 0

where f1 and f2 are coordinatewise increasing and the covariance exists. An in-
finite family is positively associated if every finite subfamily is positively associ-
ated. Similar definition is given in Esary et al. [7] and the interested reader can
refer to Roussas [20].

In some applications, negatively associated random variables can be created
by different methods (see Joag-Dev and Proschan [9]). Joag-Dev and Proschan [9]
showed that many well known multivariate distributions possess the negatively
associated property. Some examples include: (a) multinomial, (b) convolution of
unlike multinomial, (c) multivariate hypergeometric, (d) Dirichlet, (e) Dirichlet
compound multinomial, (f) negatively correlated normal distribution, (g) per-
mutation distribution, (h) random sampling without replacement, and (i) joint
distribution of ranks. Also, it occurs in a substantial number of statistical models,
multivariate statistical analysis and system reliability. Its significance may have
some evidence that negative association is a suitable model for situations, where
several species compete for the same limited resources (see Brindley and Thomp-
son [4]). Because of its wide applications, the notion of negative association has
received considerable attention recently. For the further fundamental properties
and examples of negatively associated sequences, one can refer to Joag-Dev and
Proschan [9] and Block et al. [3]. Moreover, for the negatively associated se-
quence, Newman [15] established the central limit theorem, Matuła [11] studied
the three series theorems; Shao and Su [22] obtained the law of the iterated loga-
rithm; Jing and Liang [17] gave the strong limit theorems for weighted sums.

The exponential inequalities and moment inequalities for partial sum

∑
n
i=1(Xi − EXi) play a very important role in various proofs of limit theorems.

In particular, it provides a measure of convergence rate for the strong law of
large numbers. Roussas [19] presented a review of the Bennett’s and Hoeffd-
ing’s inequalities in order to identify the point where independence is actually
used, and applies to the negatively associated random variables. Matuła [11] first
obtained the Kolmogorov type inequality for the negatively associated random
variables. Su et al. [23] studied the moment inequality for negatively associ-
ated sequence. Shao [21] proved a comparison theorem on maximal inequalities
between negatively associated and independent random variables, and obtained
the Rosenthal-type maximal inequality and the Kolmogorov exponential inequal-
ity. Sung [25, 26] proved some exponential inequalities for negatively associated
random variables. Kim and Kim [10] gave a Bernstein-Hoeffding type inequal-
ity for strictly stationary and negatively associated random variables. Under mild
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conditions, Jabbari Nooghabi and Azarnoosh [16] got a Bernstein-Hoeffding-type
inequality which was established for covariance invariant negatively associated
random variables by using a truncation technique together with a block decom-
position of the sums to allow an approximation to independence. Xing et al. [27]
established an exponential inequality for the negatively associated random vari-
ables which improves the corresponding result which was obtained in [10].

In the present paper, we show an exponential inequality for the negatively
associated random variables which improves some known results, such as, Kim
and Kim [10], Sung [25, 26], Xing et al. [27]. In the next section, we state our main
results and give some remarks to compare the known works. The proofs of the
results will be obtained in the last section.

2 Main results

Throughout the present paper, let {Xi, 1 ≤ i ≤ n} be a sequence of negatively
associated identically distributed random variables satisfying the following con-
dition: there exists a constant δ > 0, such that

Eeδ|X1| < ∞. (2.1)

The condition (2.1) is also called exponential integrability condition or Cramér
condition, which is often used to establish the exponential convergence rate
(e.g., large deviation and moderate deviation principles) or exponential inequal-
ities for the partial sums. In addition, the condition (2.1) is weaker than the as-
sumption of bounded random variables.

For the formulation of the assumptions to be made in this paper, some no-
tations are required. Let c denote a positive constant and for any 1 ≤ i ≤ n,
define

X1,i = − c1(−∞,−c)(Xi) + Xi1[−c,c](Xi) + c1(c,+∞)(Xi),

X2,i = (Xi − c)1(c,+∞)(Xi),

X3,i = (Xi + c)1(−∞,−c)(Xi),

(2.2)

where 1A represents the indicator function of the set A. It is easy to check that

Xi = X1,i + X2,i + X3,i

for all 1 ≤ i ≤ n and |X1,i| ≤ c. It is not difficult to see that if {Xn; n ≥ 1} are
negatively associated random variables, then {Xk,i; 1 ≤ i ≤ n}, n ≥ 1, k = 1, 2, 3,
are also negatively associated random variables.



80 Y. Miao – J.-Y. Mu

2.1 Main results

The following theorem is our main result in the paper.

Theorem 1. Let {Xi, i ≥ 1} be a sequence of negatively associated identically distributed
random variables satisfying the condition (2.1). Then for any r > 0,

P

(

1

n

n

∑
i=1

(Xi − EXi) ≥ 3r

)

≤ exp

{

−r2n

2c2

}

+ exp

{

− nr2δ2e
1
2 cδ

4
√

6Eeδ|X1|

}

+ exp

{

−r2nδ2eδc

4Eeδ|X1|

}

≤ exp

{

−r2n

2c2

}

+ 2 exp

{

− nr2δ2e
1
2 cδ

4
√

6Eeδ|X1|

}

≤ 3e−nr2Mc

(2.3)

and

P

(

1

n

n

∑
i=1

(Xi − EXi) ≤ −3r

)

≤ exp

{

−r2n

2c2

}

+ exp

{

− nr2δ2e
1
2 cδ

4
√

6Eeδ|X1|

}

+ exp

{

−r2nδ2eδc

4Eeδ|X1|

}

≤ exp

{

−r2n

2c2

}

+ 2 exp

{

− nr2δ2e
1
2 cδ

4
√

6Eeδ|X1|

}

≤ 3e−nr2Mc

(2.4)

where

Mc = min

{

δ2e
1
2 cδ

4
√

6Eeδ|X1 |
,

1

2c2

}

,

and

0 < c ≤ 2

δ
log

(√
6n

rδ
Eeδ|X1|

)

.

From Theorem 1, it is not difficult to obtain the following

Corollary 1. Let {Xi, i ≥ 1} be a sequence of negatively associated identically dis-
tributed random variables satisfying the condition (2.1). Then we have

∑
n
i=1(Xi − EXi)√

n logα n

a.s.−→ 0, for all α >
1

2
.

Proof. From Theorem 1 and the Borel-Cantelli lemma, the desired result can be
obtained easily.
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2.2 Some remarks

In this subsection, we give some remarks to compare with some known works.

Remark 1. Xing et al. [27] gave the following exponential inequality for strictly
stationary negatively associated sequence {Xi, i ≥ 1}, which improved the corre-
sponding result which was obtained in Kim and Kim [10]:

P

(

1

n

∣

∣

∣

∣

∣

n

∑
i=1

(Xi − EXi)

∣

∣

∣

∣

∣

≥ 3ε

)

≤
(

4 +
CMω

4α3 log3 n

)

exp(−α log n),

where C, Mω, α are three constants and

ε = 4

√

(αC log3 n)/n.

However, by using the inequalities in Theorem 1, it is easy to check that we can
get a lower-upper bound.

Remark 2. Sung [25] obtained the following result for identically distributed

negatively associated random variables. Let ǫn =
√

2δeE|X1|2cn/n, where
{cn, n ≥ 1} is a sequence of positive numbers such that

0 < cn <

(

eE|X1|2n

8δ

)1/3

. (2.5)

Then

P

(

1

n

∣

∣

∣

∣

∣

n

∑
i=1

(Xi − EXi)

∣

∣

∣

∣

∣

> 3ǫn

)

≤ 2

(

1 +
Eeδ|X1|

δ3eE|X1|2cn

)

e−δcn . (2.6)

The above inequality improved and extended several known results, such as,
Kim and Kim [10], Nooghabi and Azarnoosh [16] and Xing et al. [27]. But, Sung’s
bound can’t give an estimation for other ǫn’, for instance, ǫn = 1√√

n log n
, because

of the condition (2.5). However, by Theorem 1, we know that

c ∼ log n, Mc =
1

2c2

and

P

(

1

n

∣

∣

∣

∣

∣

n

∑
i=1

(Xi − EXi)

∣

∣

∣

∣

∣

> 3ǫn

)

≤ dn ∼ exp

{

−
√

n

(log n)3

}

.

Remark 3. From the proof of Theorem 1, we know that if the condition (2.1) is
changed into the following: there exists a constant δ > 0, such that

sup
1≤i≤n

Eeδ|Xi| < ∞, (2.7)

then the assumption “identically distributed” can be gotten rid off and some
small changes in our result could be founded.
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Remark 4. Recently, Sung [26] established several exponential inequalities for
negatively dependent random variables (negatively associated random variables
are also negatively dependent) with the finite Laplace transforms, which improve
on some known results. By comparing with the works in Sung [26], Theorem 1
gives several better bounds than Sung’s in some cases.

For an unbounded sequence {r = rn, n ≥ 1}, Sung obtained the following
result (see [26, Theorem 3.5]), for any sequence {r = rn, n ≥ 1} of positive real
numbers,

P

(

1

n

∣

∣

∣

∣

∣

n

∑
i=1

(Xi − EXi)

∣

∣

∣

∣

∣

> rn

)

≤ 2 exp

(

− (2rn − Kδ)δn

4

)

, (2.8)

where K = 2(E|X1 |4)1/2Eeδ|X1|. If we choose rn = o(n) and 1/rn = o(1) in Theo-
rem 1, the bound in Theorem 1 is better than the bound in (2.8) for all sufficiently
large n.

For the bounded sequence {r = rn, n ≥ 1}, Sung got the following main result
(see [26, Theorem 3.1]). Let {r = rn, n ≥ 1} and {c = cn, n ≥ 1} be sequences of
positive real numbers satisfying the following conditions:

(i) rc ≤ eEX2
1/(2(3 − γ)) for some 0 < γ < 3,

(ii) reδc/2 ≤ 8
√

6(Eeδ|X1 |)3/2/(γδ).
Then

P

(

1

n

∣

∣

∣

∣

∣

n

∑
i=1

(Xi − EXi)

∣

∣

∣

∣

∣

≥ 3r

)

≤2 exp

(

− (3 − γ)2nr2

2eEX2
1

)

+ 4 exp

(

− γ2nr2δ2eδc/2

64
√

6(Eeδ|X1 |)3/2

)

.

(2.9)

If we take c =
√

eEX2
1/[4(3 − γ)], then for any r > 0 satisfying

r ≤ min

{

√

eEX2
1 , 8eδc/2

√
6(Eeδ|X1 |)3/2/(γδ)

}

,

we have
r2n

2c2
>

(3 − γ)2nr2

2eEX2
1

and
nr2δ2e

1
2 cδ

4
√

6Eeδ|X1 |
>

γ2nr2δ2eδc/2

64
√

6(Eeδ|X1 |)3/2

where we used 0 < γ < 3. Hence in this case, the bounds in Theorem 1 are better
than Sung’s.

Remark 5. In the present paper, we discuss mainly the exponential inequality for
the negatively associated random variables. Naturally, there are some papers to
study the exponential inequality for the positively associated random variables,
such as, Oliveira [18], Sung [24] and so on. We only mention here that positive
association is also a typical feature of some sequential selection problems and
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thus attracts interest in problems of optimal stopping. For a recent survey see e.g.
Dendievel [5]. The main methods to study the exponential inequality for nega-
tively or positively random variables are to deal with the exponential moment of
partial sums. For negatively associated random variables, the exponential mo-
ment of partial sums can be controlled by the product of exponential moments
(see [9]), and for positively associated random variables, the difference between
the exponential moment of partial sums and the product of exponential moments
can be controlled by the sums of the covariance (see [6]). Hence the research of
positively associated random variables is often more complex than negatively
associated sequence.

3 Proofs of Theorem 1

Theorem 1 can be proved by the following lemmas.

Lemma 1. [9] Let A1, . . . , Am be disjoint subsets of {1, . . . , n} and f1, f2, . . . , fm be in-
creasing positive functions. Then the negatively associated random variables X1, · · · , Xn

imply that

E
m

∏
i=1

fi(Xj, j ∈ Ai) ≤
m

∏
i=1

E fi(Xj, j ∈ Ai).

In particular, for any λ > 0,

E exp

{

λ
n

∑
i=1

Xi

}

≤
n

∏
i=1

EeλXi .

Lemma 2. [8] Let X be a random variable with a ≤ X ≤ b, where a < b are two
constants. Then for any λ > 0,

E exp {λ(X − EX)} ≤ exp

{

λ2

8
(b − a)2

}

.

Lemma 3. Let {Xi, i ≥ 1} be a sequence of negatively associated identically distributed
random variables. Then for any λ > 0,

E exp

{

λ
n

∑
i=1

(X1,i − EX1,i)

}

≤ exp

{

1

2
nλ2c2

}

.

In particular, for any r > 0,

P

(

n

∑
i=1

(X1,i − EX1,i) ≥ r

)

≤ exp

{

− r2

2nc2

}

(3.1)

and

P

(

n

∑
i=1

(X1,i − EX1,i) ≤ −r

)

≤ exp

{

− r2

2nc2

}

. (3.2)
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Proof. From the definition of X1,i, it follows that −c ≤ X1,i ≤ c. By Lemma 1 and
Lemma 2, the desired results can be obtained.

Lemma 4. Let {Xi, i ≥ 1} be a sequence of negatively associated identically distributed
random variables satisfying the condition (2.1). Then for any r > 0 and any c satisfying

0 < c ≤ 2

δ
log

(√
6n

rδ
Eeδ|X1|

)

,

we have

P

(

n

∑
i=1

(X2,i − EX2,i) ≥ r

)

≤ exp

{

− r2δ2e
1
2 cδ

4
√

6nEeδ|X1 |

}

(3.3)

and

P

(

n

∑
i=1

(X2,i − EX2,i) ≤ −r

)

≤ exp

{

− r2δ2eδc

4nEeδ|X1 |

}

. (3.4)

Proof. For any 1 ≤ i ≤ n, recall that X2,i = (Xi − c)1(c,+∞)(Xi), then it follows
that X2,i ≥ 0 and, by Markov’s inequality and Lemma 1, for any r > 0 and λ > 0,
such that 2λ ≤ δ, then

P

(

n

∑
i=1

(X2,i − EX2,i) ≥ r

)

≤ e−λr−nλEX2,1Eeλ ∑
n
i=1 X2,i

≤e−λr−nλEX2,1

(

EeλX2,1

)n
.

Furthermore, from the following elementary inequality

ex ≤ 1 + x +
x2

2
e|x|, ∀ x ∈ R,

and Hölder’s inequality, we have

E exp {λX2,1} ≤1 + λEX2,1 +
λ2

2
E
(

X2
2,1eλX2,1

)

≤1 + λEX2,1 +
λ2

2

(

EX4
2,1

)1/2 (

Ee2λX2,1

)1/2
.

Since 2λ ≤ δ, then

Ee2λX2,1 ≤ Eeδ|X1|

and

EX4
2,1 =4

∫ ∞

0
P(X1 > x + c)x3dx

≤4e−cδEeδ|X1|
∫ ∞

0
e−δxx3dx =

24

δ4
e−cδEeδ|X1|.
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Hence, by the inequality 1 + x ≤ ex, ∀ x ∈ R, we have

P

(

n

∑
i=1

(X2,i − EX2,i) ≥ r

)

≤ exp

{

−λr + n

(

λ2

2

(

EX4
2,1

)1/2 (

Ee2λX2,1

)1/2
)}

≤ exp

{

−λr + n

(

λ2

√
6

δ2
e−

1
2 cδEeδ|X1|

)}

≤ exp

(

− r2δ2e
1
2 cδ

4
√

6nEeδ|X1 |

)

,

by taking

λ =
rδ2e

1
2 cδ

2
√

6nEeδ|X1 |
.

Here, from

c ≤ 2

δ
log

(√
6n

rδ
Eeδ|X1|

)

,

it is easy to check that 2λ ≤ δ.
Next we discuss the inequality (3.4). Note that −X2,i ≤ 0, then for any λ > 0,

by the elementary inequalities,

e−x ≤ 1 − x +
1

2
x2, ∀ x ≥ 0 and 1 + x ≤ ex, ∀ x ∈ R,

we have, from Lemma 1,

P

(

n

∑
i=1

(X2,i − EX2,i) ≤ −r

)

≤ e−λr
n

∏
i=1

eλEX2,i E(e−λX2,i)

≤ e−λr
n

∏
i=1

eλEX2,i

(

1 − λEX2,i +
λ2

2
EX2

2,i

)

≤ exp

(

−λr +
λ2

2

n

∑
i=1

EX2
2,i

)

= exp

(

−λr +
λ2

2
nEX2

2,1

)

, for all λ > 0.

In particular, for λ = r
nEX2

2,1

, we get

P

(

n

∑
i=1

(X2,i − EX2,i) ≤ −r

)

≤ exp

(

− r2

2nEX2
2,1

)

.
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Since

EX2
2,1 =2

∫ ∞

0
tP(X1 > c + t)dt

≤2e−δcEeδ|X1|
∫ ∞

0
te−δtdt =

2e−δcEeδ|X1|

δ2
,

then it follows that

P

(

n

∑
i=1

(X2,i − EX2,i) ≤ −r

)

≤ exp

{

− r2δ2eδc

4nEeδ|X1 |

}

.

Lemma 5. Let {Xi, i ≥ 1} be a sequence of negatively associated identically distributed
random variables satisfying the condition (2.1). Then for any r > 0 and any c satisfying

0 < c ≤ 2

δ
log

(√
6n

rδ
Eeδ|X1|

)

,

we have

P

(

n

∑
i=1

(X3,i − EX3,i) ≤ −r

)

≤ exp

{

− r2δ2e
1
2 cδ

4
√

6nEeδ|X1 |

}

(3.5)

and

P

(

n

∑
i=1

(X3,i − EX3,i) ≥ r

)

≤ exp

{

− r2δ2eδc

4nEeδ|X1 |

}

. (3.6)

Proof. As the same proof as Lemma 4, the desired results in the lemma can be
obtained.

Proof of Theorem 1. By Lemmas 3–5 and the following inequality

δ2e
1
2 cδ

4
√

6Eeδ|X1|
<

δ2eδc

4Eeδ|X1|
,

for any r > 0, we have

P

(

1

n

n

∑
i=1

(Xi − EXi) ≥ 3r

)

≤ exp

{

−r2n

8c2

}

+ exp

{

− nr2δ2e
1
2 cδ

4
√

6Eeδ|X1|

}

+ exp

{

−r2nδ2eδc

4Eeδ|X1|

}

≤ 3e−nr2Mc

where

Mc = min

{

δ2e
1
2 cδ

4
√

6Eeδ|X1 |
,

1

8c2

}

.

The inequality (2.4) can be obtained by a similar argument.
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