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Abstract

In this short note we show that there exist uncountably generated alge-
bras every non-zero element of which is a smooth function having uncount-
ably many zeros. This result complements some recent ones by Enflo et al.
[7, 9].

As it nowadays is common terminology, a subset M of a topological vector
space X is called lineable (respectively, spaceable) in X if there exists an infinite
dimensional linear space (respectively, infinite dimensional closed linear space)
Y ⊂ M ∪ {0}. Recently there have been several results regarding the linear struc-
ture of certain subsets of real functions having a large set of zeros. For instance, in
[9], Enflo et al. proved that, for every infinite dimensional closed subspace X of
C[0, 1], the set of functions in X having infinitely many zeros in [0, 1] is spaceable in
X. Also, in [7], Conejero et al. constructed an algebra of functions A enjoying the
following properties: (i) A is uncountably infinitely generated (that is, the cardi-
nality of a minimal system of generators of A is uncountable), (ii) every nonzero
element of A is nowhere analytic, (iii) A ⊂ C∞(R), (iv) every element of A has

infinitely many zeros in R, and (v) for every f ∈ A \ {0} and n ∈ N, f (n) (the
n-th derivative of f ) enjoys the same properties as the elements in A \ {0}. Also,
let us recall the notion of algebrability (see, e.g. [1–5, 10]). Given an algebra A, a
subset B ⊂ A, and a cardinal number κ, we say that B is: (i) algebrable if there is
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a subalgebra C of A so that C ⊂ B ∪ {0} and the cardinality of any system of gen-
erators of C is infinite. (ii) κ-algebrable if there exists a κ-generated subalgebra
C of A with C ⊂ B ∪ {0}. (iii) strongly κ-algebrable if there exists a κ-generated
free algebra C contained in B ∪ {0}.

On a totally different framework, and somehow related to the study of the set
of zeros of functions on a given interval, Aron and Gurariy in 2003, asked whether
there exists an infinite dimensional subspace of ℓ∞ every non-zero element of
which has a finite number of zeros. This question was recently answered, in the
negative, in [6].

Let us also recall that both of the results from [7, 9] share a common ground:
The cardinality of the considered set of zeros was always countable. Of course, by
means of a Baire category argument (as seen in [8]) one can show that almost every
continuous function having zeros has, actually, an uncountable amount of them.
In this short note we complement the previously mentioned results by proving,
constructively, the following:
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Figure 1: Sketch of d(x) on [−1, 1].

Theorem. The subset of smooth functions in R having a uncountable set of zeros is
strongly c−algebrable.

Let us start by fixing Z ⊂ R with |Z| = c and a function 0 6= f ∈ C∞(R)
such that f (z) = 0 for every z ∈ Z and f does not have horizontal asymptotes.
Such a function can be defined as follows. Let C be a copy of the Cantor set in
the interval [−1, 1]. Observe that [−1, 1] \ C =

⋃

n In, where the In’s are pairwise
disjoint open intervals. Now define the function d : [−1, 1] → R as

d(x) =

{

kan ,bn
· (x − an)(bn − x) if x /∈ C, and x ∈ In = (an, bn) for some n,

0 if x ∈ C,

where kan ,bn
is a positive constant depending on an and bn. Next, let g be the
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Figure 2: Sketch of g(x) on [−1, 1].

function, on [−1, 1], given by:

g(x) =

{

0 if x ∈ C,

e−1/d(x) if x /∈ C.

The value of the constant kan ,bn
does not affect at all the smoothness of g. For

instance, in Figures 1 and 2 we used kan ,bn
= 1/(bn − an)1.8. This constant plays

the role of a “scaling factor”.

We leave as an exercise to the reader to check that g is smooth. Next, we can
define our function f : R → R by extending g in a usual way by making it smooth
on R and by making it not have horizontal asymptotes.

Let us go back to our main construction now. Let H be a Hamel basis of R as
a Q−vector space such that all elements in H are positive. Also, let (for r ∈ H
and x ∈ R),

fr(x) = erx sin( f (x)).

Our aim is to show that the algebra generated by the fr’s, A = A( fr : r ∈ H),
is uncountably generated and that every element in A has an uncountable set of
zeros. In order to do so, let k ∈ N, P ∈ R[z1, z2, . . . , zk] be any non-constant
polynomial in k real variables, and r1, r2, . . . , rk ∈ H. Now we need to see that:

(i.-) φ(z) := P( fr1
, fr2 , . . . , frk

)(z) = 0 for every z ∈ Z.

(ii.-) The algebra A is c−generated.

First, notice that, since P can be written as

P(z1, . . . , zk) =
q

∑
j=1

aj · z
n1,j

1 · . . . · z
nk,j

k ,
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with q ∈ N, {ni,j : 1 ≤ i ≤ k, 1 ≤ j ≤ q} ⊂ N, and aj ∈ R \ {0} for every
j ∈ {1, . . . , q}, then φ can be expressed as

φ(z) =
q

∑
j=1

aj · (sin f (z))∑
k
i=1 ni,j · e∑

k
i=1(rini,jz) =

q

∑
j=1

aj · (sin f (z))mj · ezsj ,

where mj = ∑
k
i=1 ni,j and sj = ∑

k
i=1 rini,j for j ∈ {1, . . . , q}.

Once we have that, it is straightforward to check that φ(z) = 0 for every z ∈ Z.
Next, let us check some properties of the sj’s that appear in the expression of φ.
First of all, notice that sj 6= 0 for every j ∈ {1, . . . , q}. Indeed, suppose that for
some j ∈ {1, . . . , q} we have sj = 0. Then, it would be

r1n1,j + r2n2,j + r3n3,j + · · ·+ rknk,j = 0,

which contradicts the fact that H is a Hamel basis. Similarly it can be also shown
that si 6= sj if i 6= j. Thus, we can assume without loss of generality, that
s1 < s2 < · · · < sq.

Now, let us show that the set { fr : r ∈ H} is algebraically independent. To
achieve this, suppose that φ ≡ 0, we shall show that aj = 0 for every
j ∈ {1, . . . , q}. This will amount to P ≡ 0, and we will be done.

If φ ≡ 0, then we would have that

φ(z)

es1z
= a1(sin z)m1 +

q

∑
j=2

aj · (sin z)mj · ez(sj−s1)

is also 0 for every z ∈ R.
Let, now, take the limit when z → −∞. Then, we have that

0 = lim
z→−∞

a1(sin f (z))m1 +
q

∑
j=2

aj · lim
z→−∞

(sin f (z))mj · ez(sj−s1)

= a1 · lim
z→−∞

(sin f (z))m1 +
q

∑
j=2

aj · lim
z→−∞

sin( f (z))mj ez(sj−s1) =

= a1 · sin

(

lim
z→−∞

f (z)

)mj

+ 0,

and we obtain that a1 = 0 (since f has no horizontal asymptotes). We can now
proceed similarly (dividing now the expression ∑

q
j=2 aj · (sin z)mj · esjz by es2z and

taking again limits when z → −∞) and we would obtain that all the aj’s are 0.
Thus, P ≡ 0, the set { fr : r ∈ H} is algebraically independent, and we are done.

Remark. Notice that this result is the best possible in terms of dimension, since
the set of continuous functions has dimension c. Let us also recall that this con-
struction can also be done using any other types of fractal sets with arbitrary
fractal dimension. We chose the Cantor set for convenience.
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