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Abstract

The classical Korovkin approximation theory deals with the convergence
of a sequence of positive linear operators. When the sequence of positive
linear operators does not converge it will be useful to use some summabil-
ity methods. In this paper we use the Abel method, a sequence-to-function
transformation, to study a Korovkin type approximation theorem for
positive linear operators acting from a weighted space Cρ1

into a weighted
space Bρ2 . Moreover using the modulus of continuity we also give rate of
Abel convergence.

1 Introduction

The Korovkin theorem provides a criterion for whether a given sequence {Ln}
of positive linear operators on C[0, 1] converges to the identity operator ([2],[12]).
Some variations of this result may be found in [13], [15], [18]. If the sequence
of positive linear operators does not converge to the identity operator then it
might be beneficial to use some summability methods ([1], [8], [14], [17]). Using
the Abel convergence method, recently Unver [19] has studied a Korovkin type
approximation theorem for the positive linear operators over the space of
continuous functions defined on a closed bounded interval. The purpose of this
paper is to use the Abel method, a sequence-to-function transformation, to study
a Korovkin type approximation of a function f by means of a sequence {Ln( f ; x)}
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of positive linear operators acting from a weighted space Cρ1
into a weighted

space Bρ2 .
First of all, we give some basic definitions and notations used in this paper:
A real valued function ρ is called a weight function if it is continuous on R,

ρ(x) ≥ 1 for all x ∈ R and
lim

|x|→∞
ρ(x) = ∞

where R denotes the set of all real numbers.
Let ρ be a weight function. The space of real valued functions f defined on

R and for all x ∈ R satisfying | f (x)| ≤ K f ρ(x) is called the weighted space and
denoted by Bρ, where K f is a constant depending on f . The weighted subspace
Cρ of Bρ is given by

{

Cρ := f ∈ Bρ : f is continuous on R
}

.

It is known [9] that the spaces Bρ and Cρ are Banach spaces with the norm

‖ f‖ρ := sup
x∈R

| f (x)|

ρ(x)
.

Let L : Cρ1
→ Bρ2 be a linear operator. Then L is called positive if L f ≥ 0

whenever f ≥ 0. If L is a positive linear operator then f ≤ g implies that L f ≤ Lg
and, | f | ≤ g implies |L f | ≤ Lg.

The following approximation theorem for a sequence of positive linear oper-
ators acting from Cρ1

into Bρ2 may be found in [9] and [10].
Theorem A. Assume that ρ1 and ρ2 are weight functions such that

lim
|x|→∞

ρ1(x)

ρ2(x)
= 0 (1.1)

and {Ln} is a sequence of positive linear operators from Cρ1
into Bρ2 . Then

lim
n

‖Ln f − f‖ρ2
= 0 for every f ∈ Cρ1

if and only if lim
n

‖LnFi − Fi‖ρ1
= 0 for

i = 0, 1, 2 where

Fi =
xiρ1(x)

1 + x2
, i = 0, 1, 2.

Some analogs of this theorem can be found in [3], [4] and [7].
In the present paper, using the Abel method, we will give another analog of

Theorem A.
Let us recall the Abel method:
If the series

∞

∑
k=0

xkαk

converges for all α ∈ (0, 1) and

lim
α→1−

(1 − α)
∞

∑
k=0

xkαk = L (1.2)

then we say that the sequence x = (xk) is Abel convergent to L.
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As
1

1 − α
=

∞

∑
k=0

αk, 0 < α < 1, (1.2) is equivalent to the following:

lim
α→1−

(1 − α)
∞

∑
k=0

(xk − L)αk = 0.

Note that the convergence of a sequence implies the Abel convergence of it, but
not conversely ([5], [16]).

Let {Ln} be a sequence of positive linear operators from Cρ1
into Bρ2 such that

∞

∑
n=0

‖Ln(ρ1)‖ρ2
αn

< ∞ (1.3)

for all α ∈ (0, 1), then for all f ∈ Cρ1
the series

∞

∑
n=0

Ln( f (t); x)αn converges. Hence

the operator Uα defined by

Uα ( f ; x) := (1 − α)
∞

∑
n=0

Ln( f (t); x)αn

is a positive linear operator from Cρ1
to Bρ2 which is bounded for all α ∈ (0, 1).

Thus

‖Uα‖Cρ1
→Bρ2

= sup
‖ f ‖ρ1

=1

‖Uα f‖ρ2

≤ sup
x∈R

(1 − α)

∣

∣

∣

∣

∣

∞

∑
n=0

Ln(ρ1; x)αn

∣

∣

∣

∣

∣

ρ2

= ‖Uαρ1‖ρ2

for all α ∈ (0, 1).

2 Approximation by Abel Method on Weighted Spaces

In this section using the Abel method we study a Korovkin type approximation
theorem for a sequence of positive linear operators acting from Cρ1

into Bρ2 .
We need the following lemmas.

Lemma 1. Let {Ln} be a sequence of positive linear operators from Cρ1
into Bρ2 such

that (1.3) holds and let ρ1 and ρ2 be weight functions satisfying (1.1). Assume that

sup
α∈(0,1)

‖Uα‖Cρ1
→Bρ1

< ∞. (2.1)

If for any s ∈ R,

lim
α→1−

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα ( f ; x)|

ρ1(x)
= 0 (2.2)
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then

lim
α→1−

‖Uα‖Cρ1
→Bρ2

= 0.

Proof. The proof can be obtained easily by applying the same arguments used in
Lemma 2 [10]. But we include the proof for the sake of completeness.
It follows from (1.1) that, for any ε > 0, there exists a number s0 such that ρ1(x) ≤
ερ2(x) for all |x| > s0. By the continuity of ρ1/ρ2, there exists K > 0 such that
ρ1(x) ≤ Kρ2(x) for all |x| ≤ s0. Hence we get

‖Uα‖Cρ1
→Bρ2

= sup
‖ f ‖ρ1

=1

‖Uα f‖ρ2

= sup
‖ f ‖ρ1

=1

sup
x∈R

|Uα ( f ; x)|

ρ2

≤ sup
‖ f ‖ρ1

=1

sup
|x|≤s0

|Uα ( f ; x)|

ρ2

+ sup
‖ f ‖ρ1

=1

sup
|x|>s0

|Uα ( f ; x)|

ρ2

≤ K sup
‖ f ‖ρ1

=1

sup
|x|≤s0

|Uα ( f ; x)|

ρ1
+ ε ‖Uα‖Cρ1

→Bρ1
.

Then from (2.1) and (2.2) we have

lim
α→1−

‖Uα‖Cρ1
→Bρ2

= 0

which concludes the proof.

Lemma 2. Let {Ln} be a sequence of linear operators from Cρ1
into Bρ2 such that (1.3),

(1.1) and (2.1) hold. If for any s ∈ R,

lim
α→1−

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα ( f ; x)− f (x)| = 0 (2.3)

then

lim
α→1−

‖Uα f − f (x)‖ρ2
= 0

for any f ∈ Cρ1
.

Proof. Let I be the identity operator on Cρ1
. Let Tn := Ln − I and consider the

operator Vα defined by

Vα( f ; x) = (1 − α)
∞

∑
n=0

Tn( f (t); x)αn



Abel transforms of positive linear operators on weighted spaces 817

for all α ∈ (0, 1), which is well defined from (1.3) and belongs to Bρ2 . Since

‖Vα‖Cρ1
→Bρ1

= sup
‖ f ‖ρ1

=1

‖Vα f‖
ρ1

= sup
‖ f ‖ρ1

=1

sup
x∈R

|Vα( f ; x)|

ρ1(x)

≤ sup
‖ f ‖ρ1

=1

sup
x∈R

|Uα( f ; x)|

ρ1(x)

+ sup
‖ f ‖ρ1

=1

sup
x∈R

(1 − α)

∣

∣

∣

∣

∞

∑
n=0

f (x)αn

∣

∣

∣

∣

ρ1(x)

= ‖Uα‖Cρ1
→Bρ1

+ sup
‖ f ‖ρ1

=1

‖ f‖ρ1
(1 − α)

∞

∑
n=0

αn

= ‖Uα‖Cρ1
→Bρ1

+ 1

it follows from (2.1) that

sup
α∈(0,1)

‖Vα‖Cρ1
→Bρ1

< ∞.

As ρ1 > 1 we have for any s ∈ R that

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Vα( f ; x)|

ρ1(x)
= sup

‖ f ‖ρ1
=1

sup
|x|≤s

|Uα( f ; x)− f (x)|

ρ1(x)

≤ sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα( f ; x)− f (x)| . (2.4)

Then from (2.3) and (2.4) we have for any s ∈ R that

lim
α→1−

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Vα( f ; x)|

ρ1(x)
= 0.

Hence it follows from Lemma 1 that

lim
α→1−

‖Vα‖Cρ1
→Bρ2

= 0. (2.5)
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Now we get for any f ∈ Cρ1
that

‖Uα f − f‖ρ2
= sup

x∈R

∣

∣

∣

∣

∣

(1 − α)
∞

∑
n=0

Ln( f ; x)αn − f (x)

∣

∣

∣

∣

∣

ρ2(x)

= sup
x∈R

∣

∣

∣

∣

∣

(1 − α)
∞

∑
n=0

(Ln( f ; x)− f (x)) αn

∣

∣

∣

∣

∣

ρ2(x)

= sup
x∈R

∣

∣

∣

∣

∣

(1 − α)
∞

∑
n=0

Tn( f ; x)αn

∣

∣

∣

∣

∣

ρ2(x)

≤ ‖Vα f‖ρ2

≤ ‖Vα‖Cρ1
→Bρ2

‖ f‖ρ1

Hence by (2.5) we have
lim

α→1−
‖Uα f − f‖ρ2

= 0.

Now we are ready to give our main result.

Theorem 1. Let {Ln} be a sequence of positive linear operators from Cρ1
into Bρ2 such

that (1.1) and (1.3) hold. If

lim
α→1−

‖UαFi − Fi‖ρ1
= 0 (2.6)

then for all f ∈ Cρ1

lim
α→1−

‖Uα f − f‖ρ2
= 0, (2.7)

where Fi(x) =
xiρ1(x)

1 + x2
, i = 0, 1, 2.

Proof. Let f ∈ Cρ1
and assume that (2.6) holds. It is obvious that (2.1) holds. Since

f ∈ Cρ1
there exists a constant M f such that | f (x)| ≤ M f ρ1(x) for all x ∈ R. By

using the same arguments in Theorem 14 of [11], we have for all α ∈ (0, 1) and
any s ∈ R that

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα( f ; x)− f (x)| ≤ K
{

ε ‖Uα‖Cρ1
→Bρ1

+ ‖UαF2 − F2‖ρ1

+ ‖UαF1 − F1‖ρ1

+ ‖UαF0 − F0‖ρ1

}

where K := max {1 + K2K3, C(K1 + K2K4) + K2K3} , K1 := K1(s) = sup
|x|≤s

| f (x)|,

K2 := K2(s) = sup
|x|≤s

Hρ1
(x), K3 := K3(s) = sup|x|≤s

{

ρ1(x)
F0(x)

}

,
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K4 := K4(s) = sup|x|≤s

{

Hρ1
(x)

F0(x)

}

, Hρ1
(x) = 4M f ρ1(x)

{

1 + 1+x2

δ2

}

and

C := max

{

sup
|x|≤s

ρ1(x), 2 sup
|x|≤s

|x| ρ1(x), sup
|x|≤s

x2ρ1(x)

}

. Hence from (2.1) and (2.6)

we have for any s ∈ R that

lim
α→1−

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα( f ; x)− f (x)| = 0.

Then by Lemma 2 we have

lim
α→1−

‖Uα f − f‖ρ2
= 0

which concludes the proof.

3 Rate of Abel Convergence

We consider the following weighted modulus of continuity

ωρ1
( f , δ) = sup

|t−x|≤δ

{

| f (t)− f (x)|

ρ1(x)

}

where δ is a positive constant and f ∈ Cρ1
. It was shown in [6] that ωρ1

( f , δ) is a
weighted modulus of continuity and it is well known that, for all f ∈ Cρ1

and for
all c > 0,

ωρ1
( f , cδ) ≤ (1 + [|c|])ωρ1

( f , δ) (3.1)

where [|c|] is the greatest integer less than or equal to c.

In this section, using weighted modulus of continuity, we study the rate of
Abel convergence.

Lemma 3. Let {Ln} be a sequence of positive linear operators from Cρ1
into Bρ2 such that

(1.3), (1.1) and (2.1) hold and let Ln ϕx and LnF0 be in Cρ1
for each n where ϕx(t) :=

(t − x)2 and F0(t) = 1. Then for any s > 0 and all α ∈ (0, 1)

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα( f ; x)− f (x)| ≤ K







sup
‖ f ‖ρ1

=1

ωρ1
( f , ψ(α))

+ ‖UαF0 − F0‖ρ1

}

(3.2)

holds, where ψ(α) =
√

‖Uαϕx‖ρ1
and K := K(s) is a positive constant.

Proof. Using the linearity and positivity of Uα, for all α ∈ (0, 1), δ > 0 and f ∈ Cρ1
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we have

|Uα( f ; x)− f (x)| ≤ Uα {| f (t)− f (x)| ; x}

+ | f (x)| |Uα (F0; x)− F0(x)|

≤ Uα

(

ρ1(x)ωρ1

(

f ,
|t − x|

δ
δ

)

; x

)

+ | f (x)| |Uα (F0; x)− F0(x)|

≤ Uα

((

1 +

[
∣

∣

∣

∣

|t − x|

δ

∣

∣

∣

∣

])

ρ1(x)ωρ1 ( f , δ) ; x

)

+ | f (x)| |Uα (F0; x)− F0(x)|

≤ ρ1(x)ωρ1 ( f , δ)Uα

(

1 +
(t − x)2

δ2
; x

)

+ | f (x)| |Uα (F0; x)− F0(x)|

≤ ρ1(x)ωρ1 ( f , δ) {Uα (ρ1; x)

+
1

δ2
U {(ϕx(t); x) ; y}

}

+ | f (x)| |Uα (F0; x)− F0(x)| . (3.3)

Since ϕx ∈ Cρ1
, for any s > 0 and all α ∈ (0, 1), we get from (3.3) that

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα( f ; x)− f (x)| ≤ K2
1 sup
‖ f ‖ρ1

=1

ωρ1 ( f , δ)
{

‖Uα‖Cρ1
→Bρ1

+
1

δ2
‖Uαϕx‖ρ1

}

+ K2 ‖UαF0 − F0‖ρ1
, (3.4)

where K1 = sup
|x|≤s

ρ1(x) = 1 + s2 and K2 = sup
|x|≤s

f (x)

ρ1(x)
. By the hypotheses, for all

α ∈ (0, 1), we have
‖Uα‖Cρ1

→Bρ1
≤ M.

Now putting δ = ψ(α) =
√

‖Uα ϕx‖ρ1
and by (3.4) we have, for all α ∈ (0, 1), that

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα( f ; x)− f (x)| ≤ K







sup
‖ f ‖ρ1

=1

ωρ1
( f , ψ(α))

+ ‖UαF0 − F0‖ρ1

}

,

where K = max
{

K2
1(1 + M), K2

}

.

Theorem 2. Let {Ln} be a sequence of positive linear operators from Cρ1
into Bρ2 such

that (1.3), (1.1) and (2.1) hold and let Ln ϕx and LnF0 be in Cρ1
for each n where ϕx(t) :=

(t − x)2 and F0(t) = 1. If
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i) lim
α→1−

‖UαF0t − F0‖ρ1
= 0

ii) lim
α→1−

sup
‖ f ‖ρ1

=1

ωρ1
( f , ψ(α)) = 0

then for any f ∈ Cρ1
we get

lim
α→1−

‖Uα f − f‖ρ2
= 0.

Proof. By (i), (ii) and Lemma 3, we have

lim
α→1−

sup
‖ f ‖ρ1

=1

sup
|x|≤s

|Uα( f ; x)− f (x)| = 0.

Then for all f ∈ Cρ1
, it follows from Lemma 2 that

lim
α→1−

‖Uα f − f‖ρ2
= 0.

4 Remarks

Let ρ1 and ρ2 be weight functions satisfying (1.1) and {Tn} be a sequence of pos-
itive linear operators from Cρ1

to Bρ2 satisfying the hypotheses of Theorem A.
Now define a sequence α = (αn) as αn = 1 if n is a perfect square, and αn = 0
otherwise. Note that α is Abel convergent to zero but not convergent. Let {Ln}
be a sequence of positive linear operators acting from Cρ1

into Bρ2 defined as

Ln( f ; x) = (1 + αn)Tn ( f )

for f ∈ Cρ1
. Observe that the sequence {Ln} does not satisfy the hypotheses of

Theorem A but it satisfies the hypotheses of our Theorem 1.
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