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Abstract

The Hilbert-Schmidtness of composition operators acting between the
classical Hilbert Hardy space and the Dirichlet space is known. We here
consider boundedness and compactness of composition operators acting be-
tween their spaces.

1 Introduction

Throughout this paper, let D be the open unit disk in the complex plane C. We
denote by S(D) the set of analytic self-maps of D. Each ϕ ∈ S(D) induces
the composition operator Cϕ defined by Cϕ f = f ◦ ϕ for analytic function f on
D. Properties of composition operators have been actively investigated during
these decades. In [9], Shapiro and Taylor considered the Hilbert-Schmidtness of
composition operators on the Hilbert Hardy space and moreover characterized
results related to the Dirichlet space. The classical Hilbert Hardy space H2 is the
space of analytic functions f on D such that

‖ f‖2
H2 = sup

0≤r<1

1

2π

∫ 2π

0
| f (reiθ)|2dθ =

1

2π

∫ 2π

0
| f ∗(eiθ)|2dθ < ∞,

∗The author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for
the Promotion of Science (No.24540190).

Received by the editors in December 2012.
Communicated by H. De Schepper.
2010 Mathematics Subject Classification : primary 47B33; secondary 30H10, 30H25.
Key words and phrases : composition operator, Hardy spaces, Dirichlet space.

Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 759–767



760 S. Ohno

where f ∗(eiθ) = lim
r→1

f (reiθ) a.e. on the boundary ∂D of D. Let D denote the

Dirichlet space of analytic functions f on D for which

∫

D

| f ′(z)|2 dA(z) < ∞,

where dA is the normalized area measure on D. The norm is defined by

‖ f‖2
D = | f (0)|2 +

∫

D

| f ′(z)|2dA(z).

A linear operator T from a Hilbert space X to another Hilbert space Y is called a
Hilbert-Schmidt operator if there exists an orthonormal basis {en} in X such that

∑
n

‖Ten‖Y < ∞.

The following results are presented in [9].

Theorem A. (i) Cϕ is a Hilbert-Schmidt operator from D to H2 if and only if

∫ 2π

0
log(1 − |ϕ∗(eiθ)|)dθ > −∞.

(ii) Cϕ is a Hilbert-Schmidt operator from H2 to D if and only if

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3
dA(z) < ∞.

It is known by de Leeuw and Rudin [3] that ϕ is not an extreme point of the
unit ball of the space of bounded analytic functions on D if and only if ϕ satisfies
the condition in (i) above.

During the past decades, composition operators on D have been investigated
in [4, 5, 7, 10]. But there is no information on boundedness or compactness of
composition operators acting between H2 and D in literature. So we will con-
sider them. In the next section we will see that Cϕ : D → H2 is always compact.
In section 3, we characterize the boundedness and compactness of composition
operators Cϕ acting from H2 to D. Furthermore we will present examples con-
cerning boundedness and compactness.

Throughout the paper, C will stand for positive constants whose values may
change from one occurrence to another.

2 Cϕ : D → H2

As D ⊂ H2 and Cϕ is bounded on H2, it is trivial that Cϕ is bounded from D to

H2.
In the proof of characterization of compactness we usually need the so-called

“weak convergence theorem” by adapting the proof of [2, Proposition 3.11].
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Lemma 2.1. Let X, Y be H2 or D. For ϕ ∈ S(D), suppose that Cϕ : X → Y is bounded.
Then Cϕ is a compact operator from X to Y if and only if ‖Cϕ fn‖Y → 0 for any bounded
sequence { fn} in X such that fn converges to 0 uniformly on every compact subset of D.

Theorem 2.2. For ϕ ∈ S(D), Cϕ is always a compact operator from D to H2.

Proof. If ϕ(0) 6= 0, put λ = ϕ(0) and αλ(z) = (λ − z)/(1 − λz). Let ψ = αλ ◦ ϕ.
Then ψ ∈ S(D) and ψ(0) = 0. We will show that Cψ is compact.

By the change-of-variable formula, for f ∈ D we have

‖Cψ f‖2
H2 = | f (ψ(0))|2 + 2

∫

D

| f ′(w)|2Nψ(w)dA(w)

where Nψ is the Nevanlinna counting function of ψ (see [2, Theorem 2.31] and
[8, p. 179], for instance). As ψ(0) = 0, it holds that

Nψ(w) ≤ log
1

|w|
for w ∈ D

([8, p. 188, Corollary]).
So, for any ε > 0, there is a constant R, 0 < R < 1, such that

0 < log
1

|w|
< ε whenever R < |w| < 1.

Let { fn} in D such that ‖ fn‖D ≤ 1 and fn converges to 0 uniformly on every
compact subset of D. Then

‖Cψ fn‖
2
H2 = | fn(0)|

2 + 2
∫

D

| f ′n(w)|2Nψ(w)dA(w)

= | fn(0)|
2 + 2

(

∫

{|w|≤R}
| f ′n(w)|2Nψ(w)dA(w)

+
∫

{|w|>R}
| f ′n(w)|2Nψ(w)dA(w)

)

≤ | fn(0)|
2 + 2

(

sup
{|w|≤R}

| f ′n(w)|2
∫

D

Nψ(w)dA(w)

+ ε
∫

D

| f ′n(w)|2dA(w)
)

.

Thus
lim

n→∞
‖Cψ fn‖

2
H2 ≤ ε.

As ε is arbitrary, lim
n→∞

‖Cψ fn‖
2
H2 = 0. By Lemma 2.1, Cψ is compact from D to

H2.

Here we recall that Cϕ is a Hilbert-Schmidt operator from D to H2 if and only
if

∫ 2π

0
log(1 − |ϕ∗(eiθ)|)dθ > −∞.

So each inner function induces a bounded and compact composition operator
acting from D to H2, but does not satisfy the Hilbert-Schmidt condition. Let
ϕ(z) = (z + 1)/2. This ϕ satisfies the Hilbert-Schmidt condition.
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3 Cϕ : H2 → D

Let nϕ(w) be the cardinality of ϕ−1(w). Then, for f ∈ H2 we have

‖Cϕ f‖2
D = | f (ϕ(0))|2 +

∫

D

|( f ◦ ϕ)′(z)|2dA(z)

= | f (ϕ(0))|2 +
∫

D

| f ′(ϕ(z))|2 |ϕ′(z)|2dA(z)

= | f (ϕ(0))|2 +
∫

D

| f ′(w)|2nϕ(w)dA(w).

Let dµ = nϕdA. Then Cϕ is bounded from H2 to D if and only if it holds that

∫

D

| f ′(w)|2dµ(w) ≤ C‖ f‖2
H2

for some constant C > 0. Such inequalities were characterized by Luecking [6].
For any ζ = eiθ ∈ ∂D and h > 0, let

S(θ, h) = {z = reit ∈ D : 1 − h ≤ r < 1, |t − θ| < h}.

Then S(θ, h) is called a Carleson square at ζ ∈ ∂D. It is clear that the area of
S(θ, h) is comparable to h2 (uniformly in ζ) as h → 0.

For any λ ∈ D, let αλ(z) = (λ − z)/(1 − λz). Then we have the following.

Theorem 3.1. Let dµ = nϕdA. Then the following are equivalent.

(i) Cϕ is bounded from H2 to D.

(ii) There exists a constant C > 0 such that

µ(S(θ, h)) ≤ Ch3

for 0 < h < 1 and 0 ≤ θ < 2π.

(iii) There exists a constant C > 0 such that

∫

D

|α′
λ(z)|

3dµ(z) ≤ C

for all λ ∈ D.

(iv)

sup
λ∈D

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

(

1 − |αλ(ϕ(z))|2
)3

dA(z) < ∞.

Proof. The equivalence between conditions (i) and (ii) is due to [6, Theorem 3.1]
and the equivalence between conditions (ii) and (iii) is due to [1, Theorem 1.3]
(Also see [10]).
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Moreover, we have

∫

D

|α′
λ(z)|

3dµ(z) (3.1)

=
∫

D

( 1 − |λ|2

|1 − λϕ(z)|2

)3
|ϕ′(z)|2dA(z)

=
∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

( (1 − |λ|2)(1 − |ϕ(z)|2)

|1 − λϕ(z)|2

)3
dA(z)

=
∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

(

1 − |αλ(ϕ(z))|2
)3

dA(z).

So we obtain the equivalence between (iii) and (iv).

Example 3.2. (1) Let Ω be a simply connected region in D touching ∂D only at 1
and suppose that near 1 the boundary of Ω is a piece of the curve (x − 1)4 − y2 =
0 (z = x + iy).

Let ϕ be a univalent map of D onto Ω. Then

∫

S(1,h)
nϕ(z)dA(z) = |ϕ(D)) ∩ S(1, h)|

≃
∫ 1

1−h
(x − 1)2dx =

h3

3
,

where |E| is the area of a subset E. So Cϕ is bounded from H2 to D.

(2) Note that if Cϕ is bounded from H2 to D, Cϕ is bounded from D to D. Let
ϕ(z) = (z + 1)/2.

∫

S(1,h)
nϕ(z)dA(z) ≃ 2

∫ h

0

∫ cos θ

1−h
r drdθ

=
h

2
+

sin 2h

4
− (1 − h)2h

;
h

2
+

2h

4
− (1 − h)2h (whenever h is so small)

= h2(2 − h).

So Cϕ is bounded on D but Cϕ is not bounded from H2 to D.

Next we consider the compactness.

Theorem 3.3. Let dµ = nϕdA. Then the following are equivalent.

(i) Cϕ is compact from H2 to D.

(ii) lim
h→0

sup
θ∈[0,2π)

µ(S(θ, h))

h3
= 0.
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(iii) lim
|λ|→1

∫

D

|α′
λ(z)|

3dµ(z) = 0.

(iv) lim
|λ|→1

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

(

1 − |αλ(ϕ(z))|2
)3

dA(z) = 0.

Proof. First we show the implication (i)⇒(iv). Suppose that Cϕ is compact from

H2 to D. For λ ∈ D, let kλ(z) =
√

1 − |λ|2/(1 − λz). Then kλ ∈ H2, ‖kλ‖H2 = 1
and kλ converges to 0 weakly in H2 as |λ| → 1. So ‖Cϕkλ‖D → 0 as |λ| → 1.

‖Cϕkλ‖
2
D

≥
∫

D

(1 − |λ|2)|λ|2|ϕ′(z)|2

|1 − λϕ(z)|4
dA(z)

=
∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

(1 − |λ|2)3|λ|2(1 − |ϕ(z)|2)3

|1 − λϕ(z)|6
|1 − λϕ(z)|2

(1 − |λ|2)2
dA(z)

≥
∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

( (1 − |λ|2)(1 − |ϕ(z)|2)

|1 − λϕ(z)|2

)3
|λ|2

(1 − |λ|)2

(1 − |λ|2)2
dA(z)

≥
1

4

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

( (1 − |λ|2)(1 − |ϕ(z)|2)

|1 − λϕ(z)|2

)3
|λ|2dA(z).

So we obtain condition (iv), that is,

lim
|λ|→1

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3

(

1 − |αλ(ϕ(z))|2
)3

dA(z) = 0.

The implication (iv)⇒(iii) could be checked by the equalities (3.1) and the
equivalence between (iii) and (ii) is due to [10, Theorem 3.4].

Finally we see the implication (ii)⇒(i). Let { fn} be a bounded sequence in H2

that converges to 0 uniformly on compact sets. To show the compactness of Cϕ,
it is sufficient to see that ‖Cϕ fn‖D → 0 as n → ∞ by Lemma 2.1.

For w ∈ D and 0 < r < 1, let ∆(w, r) = {z ∈ D : |z − w| < r}. As the absolute
values of analytic functions are subharmonic,

| f ′n(w)|2 ≤
C

|∆(w, 1−|w|
2 )|

∫

∆(w,
1−|w|

2 )
| f ′n(z)|

2dA(z)

≤
C

(1 − |w|)2

∫

∆(w,
1−|w|

2 )
| f ′n(z)|

2dA(z).

So
∫

D

| f ′n(ϕ(z))|2 |ϕ′(z)|2dA(z)

=
∫

D

| f ′n(w)|2dµ(w)

≤
∫

D

C

(1 − |w|)2

(

∫

∆(w,
1−|w|

2 )
| f ′n(z)|

2dA(z)

)

dµ(w)

= C
∫

D

| f ′n(z)|
2

(

∫

D

χ
∆(w,

1−|w|
2 )

(z)

(1 − |w|)2
dµ(w)

)

dA(z).
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Here, if |w − z| <
1 − |w|

2
, then

1 − |w|

2
< 1 − |z| and so

|w − eiθ | < |w − z|+
∣

∣

∣
z −

z

|z|

∣

∣

∣

<
1 − |w|

2
+ |z|

1 − |z|

|z|

< 2(1 − |z|),

where z = |z|eiθ . Thus w ∈ S(θ, s(1 − |z|)) for some s > 0 and also if

|w − z| <
1 − |w|

2
, then

1

1 − |w|
<

3

2

1

1 − |z|
. Therefore

‖Cϕ fn‖
2
D ≤ C

∫

D

| f ′n(z)|
2

(1 − |z|)2

(

∫

S(θ,s(1−|z|))
dµ(w)

)

dA(z)

= C

(

∫

|z|≤1−δ
+

∫

|z|>1−δ

)

| f ′n(z)|
2

(1 − |z|)2
µ(S(θ, s(1 − |z|)))dA(z)

for 0 < δ < 1. By condition (ii), For any ε > 0,

∫

S(θ,h)
dµ(w) = µ(S(θ, h)) < εh3

for h close enough to 0. So, for 0 < δ < h/s,

‖Cϕ fn‖
2
D ≤ C

( 1

δ2
sup

|z|≤1−δ

| f ′n(z)|
2 + ε‖ fn‖

2
H2

)

.

Consequently
lim

n→∞
‖Cϕ fn‖

2
D ≤ Cε.

As ε is arbitrary, lim
n→∞

‖Cϕ fn‖
2
D = 0.

Example 3.4. Let Ω be a simply connected region in D touching ∂D only at 1 and
suppose that near 1 the boundary of Ω is a piece of the curve (x − 1)6 − y2 = 0
(z = x + iy).

Let ϕ be a univalent map of D onto Ω. Then

∫

S(1,h)
nϕ(z)dA(z) = |ϕ(D)) ∩ S(1, h)|

≃ −2
∫ 1

1−h
(x − 1)3dx =

h4

2
.

So Cϕ is compact from H2 to D.

Finally we make a comparison amongst the known results on the Hilbert-
Schmidtness of composition operators related to our case (refer to [4, 5, 9, 10]).
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Theorem 3.5. For ϕ ∈ S(D), the following hold.

(i) Cϕ is Hilbert-Schmidt on H2 if and only if

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3
(1 − |z|2) dA(z) < ∞.

(ii) Cϕ is Hilbert-Schmidt on D if and only if

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)2
dA(z) < ∞.

(iii) Cϕ is Hilbert-Schmidt from H2 to D if and only if

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)3
dA(z) < ∞.

Thus, if Cϕ is Hilbert-Schmidt from H2 to D, then Cϕ is Hilbert-Schmidt on D

and so on H2.
Let ϕ(z) = (z + 1)/2. It is known that Cϕ is neither Hilbert-Schmidt on H2

nor on D ([4]). So Cϕ is not Hilbert-Schmidt from H2 to D.

A function ϕ in Example 3.4 induces a Hilbert-Schmidt operator Cϕ from H2

to D.
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