Composition operators related to the Dirichlet space

Shûichi Ohno*

Dedicated to the memory of Junzo Wada

Abstract

The Hilbert-Schmidtness of composition operators acting between the classical Hilbert Hardy space and the Dirichlet space is known. We here consider boundedness and compactness of composition operators acting between their spaces.

1 Introduction

Throughout this paper, let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . We denote by $\mathcal{S}(\mathbb{D})$ the set of analytic self-maps of \mathbb{D} . Each $\varphi \in \mathcal{S}(\mathbb{D})$ induces the composition operator C_{φ} defined by $C_{\varphi}f = f \circ \varphi$ for analytic function f on \mathbb{D} . Properties of composition operators have been actively investigated during these decades. In [9], Shapiro and Taylor considered the Hilbert-Schmidtness of composition operators on the Hilbert Hardy space and moreover characterized results related to the Dirichlet space. The classical Hilbert Hardy space H^2 is the space of analytic functions f on \mathbb{D} such that

$$\|f\|_{H^2}^2 = \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} |f^*(e^{i\theta})|^2 d\theta < \infty,$$

Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 759-767

^{*}The author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No.24540190).

Received by the editors in December 2012.

Communicated by H. De Schepper.

²⁰¹⁰ *Mathematics Subject Classification* : primary 47B33; secondary 30H10, 30H25. *Key words and phrases* : composition operator, Hardy spaces, Dirichlet space.

where $f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$ a.e. on the boundary $\partial \mathbb{D}$ of \mathbb{D} . Let \mathcal{D} denote the Dirichlet space of analytic functions f on \mathbb{D} for which

$$\int_{\mathbb{D}} |f'(z)|^2 \, dA(z) < \infty,$$

where dA is the normalized area measure on \mathbb{D} . The norm is defined by

$$||f||_{\mathcal{D}}^2 = |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 dA(z).$$

A linear operator *T* from a Hilbert space *X* to another Hilbert space *Y* is called a Hilbert-Schmidt operator if there exists an orthonormal basis $\{e_n\}$ in *X* such that

$$\sum_n \|Te_n\|_Y < \infty.$$

The following results are presented in [9].

Theorem A. (i) C_{φ} is a Hilbert-Schmidt operator from \mathcal{D} to H^2 if and only if

$$\int_0^{2\pi} \log(1 - |\varphi^*(e^{i\theta})|) d\theta > -\infty.$$

(ii) C_{φ} is a Hilbert-Schmidt operator from H^2 to \mathcal{D} if and only if

$$\int_{\mathbb{D}} \frac{|\varphi'(z)|^2}{(1-|\varphi(z)|^2)^3} dA(z) < \infty.$$

It is known by de Leeuw and Rudin [3] that φ is not an extreme point of the unit ball of the space of bounded analytic functions on \mathbb{D} if and only if φ satisfies the condition in (i) above.

During the past decades, composition operators on \mathcal{D} have been investigated in [4, 5, 7, 10]. But there is no information on boundedness or compactness of composition operators acting between H^2 and \mathcal{D} in literature. So we will consider them. In the next section we will see that $C_{\varphi} : \mathcal{D} \to H^2$ is always compact. In section 3, we characterize the boundedness and compactness of composition operators C_{φ} acting from H^2 to \mathcal{D} . Furthermore we will present examples concerning boundedness and compactness.

Throughout the paper, *C* will stand for positive constants whose values may change from one occurrence to another.

2 $C_{\varphi}: \mathcal{D} \to H^2$

As $\mathcal{D} \subset H^2$ and C_{φ} is bounded on H^2 , it is trivial that C_{φ} is bounded from \mathcal{D} to H^2 .

In the proof of characterization of compactness we usually need the so-called "weak convergence theorem" by adapting the proof of [2, Proposition 3.11].

Lemma 2.1. Let X, Y be H^2 or \mathcal{D} . For $\varphi \in \mathcal{S}(\mathbb{D})$, suppose that $C_{\varphi} : X \to Y$ is bounded. Then C_{φ} is a compact operator from X to Y if and only if $||C_{\varphi}f_n||_Y \to 0$ for any bounded sequence $\{f_n\}$ in X such that f_n converges to 0 uniformly on every compact subset of \mathbb{D} .

Theorem 2.2. For $\varphi \in \mathcal{S}(\mathbb{D})$, C_{φ} is always a compact operator from \mathcal{D} to H^2 .

Proof. If $\varphi(0) \neq 0$, put $\lambda = \varphi(0)$ and $\alpha_{\lambda}(z) = (\lambda - z)/(1 - \overline{\lambda}z)$. Let $\psi = \alpha_{\lambda} \circ \varphi$. Then $\psi \in \mathcal{S}(\mathbb{D})$ and $\psi(0) = 0$. We will show that C_{ψ} is compact.

By the change-of-variable formula, for $f \in D$ we have

$$\|C_{\psi}f\|_{H^2}^2 = |f(\psi(0))|^2 + 2\int_{\mathbb{D}} |f'(w)|^2 N_{\psi}(w) dA(w)$$

where N_{ψ} is the Nevanlinna counting function of ψ (see [2, Theorem 2.31] and [8, p. 179], for instance). As $\psi(0) = 0$, it holds that

$$N_\psi(w) \leq \log rac{1}{|w|} \quad ext{for} \quad w \in \mathbb{D}$$

([8, p. 188, Corollary]).

So, for any $\varepsilon > 0$, there is a constant *R*, 0 < R < 1, such that

$$0 < \log \frac{1}{|w|} < \varepsilon$$
 whenever $R < |w| < 1$.

Let $\{f_n\}$ in \mathcal{D} such that $||f_n||_{\mathcal{D}} \leq 1$ and f_n converges to 0 uniformly on every compact subset of \mathbb{D} . Then

$$\begin{split} \|C_{\psi}f_{n}\|_{H^{2}}^{2} &= |f_{n}(0)|^{2} + 2\int_{\mathbb{D}} |f_{n}'(w)|^{2}N_{\psi}(w)dA(w) \\ &= |f_{n}(0)|^{2} + 2\Big(\int_{\{|w| \leq R\}} |f_{n}'(w)|^{2}N_{\psi}(w)dA(w) \\ &+ \int_{\{|w| > R\}} |f_{n}'(w)|^{2}N_{\psi}(w)dA(w)\Big) \\ &\leq |f_{n}(0)|^{2} + 2\Big(\sup_{\{|w| \leq R\}} |f_{n}'(w)|^{2}\int_{\mathbb{D}} N_{\psi}(w)dA(w) \\ &+ \varepsilon \int_{\mathbb{D}} |f_{n}'(w)|^{2}dA(w)\Big). \end{split}$$

Thus

$$\lim_{n\to\infty}\|C_{\psi}f_n\|_{H^2}^2\leq\varepsilon.$$

As ε is arbitrary, $\lim_{n \to \infty} \|C_{\psi} f_n\|_{H^2}^2 = 0$. By Lemma 2.1, C_{ψ} is compact from \mathcal{D} to H^2 .

Here we recall that C_{φ} is a Hilbert-Schmidt operator from \mathcal{D} to H^2 if and only if $c^{2\pi}$

$$\int_0^{2\pi} \log(1 - |\varphi^*(e^{i\theta})|) d\theta > -\infty.$$

So each inner function induces a bounded and compact composition operator acting from \mathcal{D} to H^2 , but does not satisfy the Hilbert-Schmidt condition. Let $\varphi(z) = (z+1)/2$. This φ satisfies the Hilbert-Schmidt condition.

3 $C_{\varphi}: H^2 \rightarrow \mathcal{D}$

Let $n_{\varphi}(w)$ be the cardinality of $\varphi^{-1}(w)$. Then, for $f \in H^2$ we have

$$\begin{split} \|C_{\varphi}f\|_{\mathcal{D}}^2 &= |f(\varphi(0))|^2 + \int_{\mathbb{D}} |(f \circ \varphi)'(z)|^2 dA(z) \\ &= |f(\varphi(0))|^2 + \int_{\mathbb{D}} |f'(\varphi(z))|^2 |\varphi'(z)|^2 dA(z) \\ &= |f(\varphi(0))|^2 + \int_{\mathbb{D}} |f'(w)|^2 n_{\varphi}(w) dA(w). \end{split}$$

Let $d\mu = n_{\varphi} dA$. Then C_{φ} is bounded from H^2 to \mathcal{D} if and only if it holds that

$$\int_{\mathbb{D}} |f'(w)|^2 d\mu(w) \le C \|f\|_{H^2}^2$$

for some constant C > 0. Such inequalities were characterized by Luecking [6].

For any $\zeta = e^{i\theta} \in \partial \mathbb{D}$ and h > 0, let

$$S(\theta, h) = \{ z = re^{it} \in \mathbb{D} : 1 - h \le r < 1, |t - \theta| < h \}.$$

Then $S(\theta, h)$ is called a Carleson square at $\zeta \in \partial \mathbb{D}$. It is clear that the area of $S(\theta, h)$ is comparable to h^2 (uniformly in ζ) as $h \to 0$.

For any $\lambda \in \mathbb{D}$, let $\alpha_{\lambda}(z) = (\lambda - z)/(1 - \overline{\lambda}z)$. Then we have the following.

Theorem 3.1. Let $d\mu = n_{\varphi} dA$. Then the following are equivalent.

- (*i*) C_{φ} is bounded from H^2 to \mathcal{D} .
- (ii) There exists a constant C > 0 such that

$$\mu(S(\theta,h)) \le Ch^3$$

for 0 < h < 1 *and* $0 \le \theta < 2\pi$ *.*

(iii) There exists a constant C > 0 such that

$$\int_{\mathbb{D}} |\alpha_{\lambda}'(z)|^3 d\mu(z) \leq C$$

for all $\lambda \in \mathbb{D}$ *.*

(iv)

$$\sup_{\lambda\in\mathbb{D}}\int_{\mathbb{D}}\frac{|\varphi'(z)|^2}{(1-|\varphi(z)|^2)^3}\Big(1-|\alpha_{\lambda}(\varphi(z))|^2\Big)^3\,dA(z)<\infty.$$

Proof. The equivalence between conditions (i) and (ii) is due to [6, Theorem 3.1] and the equivalence between conditions (ii) and (iii) is due to [1, Theorem 1.3] (Also see [10]).

Moreover, we have

$$\begin{aligned} \int_{\mathbb{D}} |\alpha_{\lambda}'(z)|^{3} d\mu(z) \qquad (3.1) \\ &= \int_{\mathbb{D}} \left(\frac{1 - |\lambda|^{2}}{|1 - \overline{\lambda}\varphi(z)|^{2}} \right)^{3} |\varphi'(z)|^{2} dA(z) \\ &= \int_{\mathbb{D}} \frac{|\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{3}} \left(\frac{(1 - |\lambda|^{2})(1 - |\varphi(z)|^{2})}{|1 - \overline{\lambda}\varphi(z)|^{2}} \right)^{3} dA(z) \\ &= \int_{\mathbb{D}} \frac{|\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{3}} \left(1 - |\alpha_{\lambda}(\varphi(z))|^{2} \right)^{3} dA(z). \end{aligned}$$

So we obtain the equivalence between (iii) and (iv).

Example 3.2. (1) Let Ω be a simply connected region in \mathbb{D} touching $\partial \mathbb{D}$ only at 1 and suppose that near 1 the boundary of Ω is a piece of the curve $(x - 1)^4 - y^2 = 0$ (z = x + iy).

Let φ be a univalent map of \mathbb{D} onto Ω . Then

$$\int_{\mathcal{S}(1,h)} n_{\varphi}(z) dA(z) = |\varphi(\mathbb{D})) \cap \mathcal{S}(1,h)|$$
$$\simeq \int_{1-h}^{1} (x-1)^2 dx = \frac{h^3}{3},$$

where |E| is the area of a subset *E*. So C_{φ} is bounded from H^2 to \mathcal{D} .

(2) Note that if C_{φ} is bounded from H^2 to \mathcal{D} , C_{φ} is bounded from \mathcal{D} to \mathcal{D} . Let $\varphi(z) = (z+1)/2$.

$$\int_{S(1,h)} n_{\varphi}(z) dA(z) \simeq 2 \int_{0}^{h} \int_{1-h}^{\cos\theta} r \, dr d\theta$$

= $\frac{h}{2} + \frac{\sin 2h}{4} - (1-h)^{2}h$
 $\coloneqq \frac{h}{2} + \frac{2h}{4} - (1-h)^{2}h$ (whenever *h* is so small)
= $h^{2}(2-h)$.

So C_{φ} is bounded on \mathcal{D} but C_{φ} is not bounded from H^2 to \mathcal{D} .

Next we consider the compactness.

Theorem 3.3. Let $d\mu = n_{\varphi} dA$. Then the following are equivalent.

(*i*) C_{φ} is compact from H^2 to \mathcal{D} .

(*ii*)
$$\lim_{h \to 0} \sup_{\theta \in [0, 2\pi)} \frac{\mu(S(\theta, h))}{h^3} = 0.$$

(iii)
$$\lim_{|\lambda| \to 1} \int_{\mathbb{D}} |\alpha_{\lambda}'(z)|^{3} d\mu(z) = 0.$$

(iv)
$$\lim_{|\lambda| \to 1} \int_{\mathbb{D}} \frac{|\varphi'(z)|^{2}}{(1 - |\varphi(z)|^{2})^{3}} \left(1 - |\alpha_{\lambda}(\varphi(z))|^{2}\right)^{3} dA(z) = 0.$$

Proof. First we show the implication (i) \Rightarrow (iv). Suppose that C_{φ} is compact from H^2 to \mathcal{D} . For $\lambda \in \mathbb{D}$, let $k_{\lambda}(z) = \sqrt{1 - |\lambda|^2}/(1 - \overline{\lambda}z)$. Then $k_{\lambda} \in H^2$, $||k_{\lambda}||_{H^2} = 1$ and k_{λ} converges to 0 weakly in H^2 as $|\lambda| \to 1$. So $||C_{\varphi}k_{\lambda}||_{\mathcal{D}} \to 0$ as $|\lambda| \to 1$.

$$\begin{split} \|C_{\varphi}k_{\lambda}\|_{\mathcal{D}}^{2} \\ &\geq \int_{\mathbb{D}} \frac{(1-|\lambda|^{2})|\lambda|^{2}|\varphi'(z)|^{2}}{|1-\overline{\lambda}\varphi(z)|^{4}} dA(z) \\ &= \int_{\mathbb{D}} \frac{|\varphi'(z)|^{2}}{(1-|\varphi(z)|^{2})^{3}} \frac{(1-|\lambda|^{2})^{3}|\lambda|^{2}(1-|\varphi(z)|^{2})^{3}}{|1-\overline{\lambda}\varphi(z)|^{6}} \frac{|1-\overline{\lambda}\varphi(z)|^{2}}{(1-|\lambda|^{2})^{2}} dA(z) \\ &\geq \int_{\mathbb{D}} \frac{|\varphi'(z)|^{2}}{(1-|\varphi(z)|^{2})^{3}} \Big(\frac{(1-|\lambda|^{2})(1-|\varphi(z)|^{2})}{|1-\overline{\lambda}\varphi(z)|^{2}} \Big)^{3} |\lambda|^{2} \frac{(1-|\lambda|)^{2}}{(1-|\lambda|^{2})^{2}} dA(z) \\ &\geq \frac{1}{4} \int_{\mathbb{D}} \frac{|\varphi'(z)|^{2}}{(1-|\varphi(z)|^{2})^{3}} \Big(\frac{(1-|\lambda|^{2})(1-|\varphi(z)|^{2})}{|1-\overline{\lambda}\varphi(z)|^{2}} \Big)^{3} |\lambda|^{2} dA(z). \end{split}$$

So we obtain condition (iv), that is,

$$\lim_{|\lambda| \to 1} \int_{\mathbb{D}} \frac{|\varphi'(z)|^2}{(1-|\varphi(z)|^2)^3} \Big(1-|\alpha_{\lambda}(\varphi(z))|^2\Big)^3 \, dA(z) = 0.$$

The implication (iv) \Rightarrow (iii) could be checked by the equalities (3.1) and the equivalence between (iii) and (ii) is due to [10, Theorem 3.4].

Finally we see the implication (ii) \Rightarrow (i). Let $\{f_n\}$ be a bounded sequence in H^2 that converges to 0 uniformly on compact sets. To show the compactness of C_{φ} , it is sufficient to see that $\|C_{\varphi}f_n\|_{\mathcal{D}} \rightarrow 0$ as $n \rightarrow \infty$ by Lemma 2.1.

For $w \in \mathbb{D}$ and 0 < r < 1, let $\Delta(w, r) = \{z \in \mathbb{D} : |z - w| < r\}$. As the absolute values of analytic functions are subharmonic,

$$\begin{split} |f_n'(w)|^2 &\leq \frac{C}{|\Delta(w, \frac{1-|w|}{2})|} \int_{\Delta(w, \frac{1-|w|}{2})} |f_n'(z)|^2 dA(z) \\ &\leq \frac{C}{(1-|w|)^2} \int_{\Delta(w, \frac{1-|w|}{2})} |f_n'(z)|^2 dA(z). \end{split}$$

So

$$\begin{split} &\int_{\mathbb{D}} |f'_{n}(\varphi(z))|^{2} |\varphi'(z)|^{2} dA(z) \\ &= \int_{\mathbb{D}} |f'_{n}(w)|^{2} d\mu(w) \\ &\leq \int_{\mathbb{D}} \frac{C}{(1-|w|)^{2}} \bigg(\int_{\Delta(w,\frac{1-|w|}{2})} |f'_{n}(z)|^{2} dA(z) \bigg) d\mu(w) \\ &= C \int_{\mathbb{D}} |f'_{n}(z)|^{2} \bigg(\int_{\mathbb{D}} \frac{\chi_{\Delta(w,\frac{1-|w|}{2})}(z)}{(1-|w|)^{2}} d\mu(w) \bigg) dA(z). \end{split}$$

764

Here, if
$$|w - z| < \frac{1 - |w|}{2}$$
, then $\frac{1 - |w|}{2} < 1 - |z|$ and so
 $|w - e^{i\theta}| < |w - z| + |z - \frac{z}{|z|}|$
 $< \frac{1 - |w|}{2} + |z|\frac{1 - |z|}{|z|}$
 $< 2(1 - |z|),$

where $z = |z|e^{i\theta}$. Thus $w \in S(\theta, s(1 - |z|))$ for some s > 0 and also if $|w - z| < \frac{1 - |w|}{2}$, then $\frac{1}{1 - |w|} < \frac{3}{2} \frac{1}{1 - |z|}$. Therefore

$$\begin{aligned} \|C_{\varphi}f_{n}\|_{\mathcal{D}}^{2} &\leq C \int_{\mathbb{D}} \frac{|f_{n}'(z)|^{2}}{(1-|z|)^{2}} \Big(\int_{S(\theta,s(1-|z|))} d\mu(w) \Big) dA(z) \\ &= C \Big(\int_{|z| \leq 1-\delta} + \int_{|z| > 1-\delta} \Big) \frac{|f_{n}'(z)|^{2}}{(1-|z|)^{2}} \mu(S(\theta,s(1-|z|))) dA(z) \end{aligned}$$

for $0 < \delta < 1$. By condition (ii), For any $\varepsilon > 0$,

$$\int_{S(\theta,h)} d\mu(w) = \mu(S(\theta,h)) < \varepsilon h^3$$

for *h* close enough to 0. So, for $0 < \delta < h/s$,

$$\|C_{\varphi}f_n\|_{\mathcal{D}}^2 \leq C\Big(\frac{1}{\delta^2}\sup_{|z|\leq 1-\delta}|f'_n(z)|^2+\varepsilon\|f_n\|_{H^2}^2\Big).$$

Consequently

$$\lim_{n\to\infty}\|C_{\varphi}f_n\|_{\mathcal{D}}^2\leq C\varepsilon.$$

As ε is arbitrary, $\lim_{n\to\infty} \|C_{\varphi}f_n\|_{\mathcal{D}}^2 = 0.$

Example 3.4. Let Ω be a simply connected region in \mathbb{D} touching $\partial \mathbb{D}$ only at 1 and suppose that near 1 the boundary of Ω is a piece of the curve $(x - 1)^6 - y^2 = 0$ (z = x + iy).

Let φ be a univalent map of \mathbb{D} onto Ω . Then

$$\begin{split} \int_{\mathcal{S}(1,h)} n_{\varphi}(z) dA(z) &= |\varphi(\mathbb{D})) \cap \mathcal{S}(1,h)| \\ &\simeq -2 \int_{1-h}^{1} (x-1)^3 dx = \frac{h^4}{2}. \end{split}$$

So C_{φ} is compact from H^2 to \mathcal{D} .

Finally we make a comparison amongst the known results on the Hilbert-Schmidtness of composition operators related to our case (refer to [4, 5, 9, 10]).

Theorem 3.5. For $\varphi \in S(\mathbb{D})$, the following hold.

(*i*) C_{φ} is Hilbert-Schmidt on H^2 if and only if

$$\int_{\mathbb{D}} \frac{|\varphi'(z)|^2}{(1-|\varphi(z)|^2)^3} (1-|z|^2) \, dA(z) < \infty.$$

(ii) C_{φ} is Hilbert-Schmidt on \mathcal{D} if and only if

$$\int_{\mathbb{D}} \frac{|\varphi'(z)|^2}{(1-|\varphi(z)|^2)^2} \, dA(z) < \infty.$$

(iii) C_{φ} is Hilbert-Schmidt from H^2 to \mathcal{D} if and only if

$$\int_{\mathbb{D}} \frac{|\varphi'(z)|^2}{(1-|\varphi(z)|^2)^3} \, dA(z) < \infty.$$

Thus, if C_{φ} is Hilbert-Schmidt from H^2 to \mathcal{D} , then C_{φ} is Hilbert-Schmidt on \mathcal{D} and so on H^2 .

Let $\varphi(z) = (z+1)/2$. It is known that C_{φ} is neither Hilbert-Schmidt on H^2 nor on \mathcal{D} ([4]). So C_{φ} is not Hilbert-Schmidt from H^2 to \mathcal{D} .

A function φ in Example 3.4 induces a Hilbert-Schmidt operator C_{φ} from H^2 to \mathcal{D} .

References

- J. Arazy, S.D. Fisher and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363(1985), 110–145.
- [2] C.C. Cowen and B.D. MacCluer, *Composition Operators on Spaces of Analytic Functions*, CRC Press, Boca Raton, FL, 1995.
- [3] K. de Leeuw and W. Rudin, Extreme points and extremum problems in H¹, Pacific J. Math.8(1958), 467–485.
- [4] E.A. Gallardo-Gutiérrez and M.J. González, *Exceptional sets and Hilbert-Schmidt composition operators*, J. Funct. Anal. **199**(2003), 287–300.
- [5] M. Jovović and B.D. MacCluer, Composition operators on Dirichlet spaces, Acta Sci. Math. (Szeged) 63(1997), 229–247.
- [6] D.H. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. **107**(1985), 85–111.
- [7] B.D. MacCluer and J.H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canadian J. Math. **38**(1986), 878–906.

- [8] J.H. Shapiro, *Composition Operators and Classical Function Theory*, Springer-Verlag, New York, 1993.
- [9] J. H. Shapiro and P.D. Taylor, *Compact, nuclear, and Hilbert-Schmidt composition operators on H*², *Indiana Univ. Math. J.* **23**(1973), 471–496.
- [10] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355(2003), 4683–4698.

Nippon Institute of Technology, Miyashiro, Minami-Saitama 345-8501, Japan email:ohno@nit.ac.jp