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Abstract

For any locally compact group G, we show the existence and unique-
ness up to quasi-equivalence of a unitary C0-representation π0 of G such
that the coefficient functions of C0-representations of G are exactly the co-
efficient functions of π0. The present work, strongly influenced by [4] (which
dealt exclusively with discrete groups), leads to new characterizations of the
Haagerup property: G has that property if and only if the representation
π0 induces a ∗-isomorphism of C∗(G) onto C∗

π0
(G). When G is discrete and

countable, we also relate the Haagerup property to relative strong mixing
properties in the sense of [9] of the group von Neumann algebra L(G) into
finite von Neumann algebras.

1 Introduction

Throughout this article, G denotes a locally compact group. We associate to G a
unitary representation (π0, H0) which has the following properties:

• it is a C0-representation: every coefficient function s 7→ 〈π0(s)ξ|η〉 associated
with π0 tends to 0 as s → ∞;

• the coefficient functions of π0 are exactly the coefficient functions of
C0-representations of G;
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• the representation π0 is the unique C0-representation, up to quasi-equival-
ence, which satisfies the above properties.

The key idea is to use G. Arsac’s notion of Aπ-spaces from [1].
Using the same arguments as in Theorem 3.2 and Corollary 3.4 of [4], we de-

duce that:

Proposition A. Let G be a group as above. Then it has the Haagerup property if and
only if the maximal C∗-algebra C∗(G) is ∗-isomorphic to the C∗-algebra C∗

π0
(G).

The preceding proposition deserves a comment which we owe to A. Valette:
the Haagerup property of a group G is exactly property C0 in the sense of V. Bergel-
son and J. Rosenblatt in Definition 2.4 of [3]. Moreover, Theorem 2.5 of the same
article states the density of C0-representations in the set of all (classes of) unitary
representations on a fixed Hilbert space, and this suffices to prove that there is a
C0-representation whose extension to the maximal C∗-algebra C∗(G) is faithful.

In the last part of the present notes, we assume that G is discrete and count-
able. We relate the Haagerup property of G to the embedding of its von Neumann
algebra L(G) as a strongly mixing subalgebra of some finite von Neumann alge-
bra M in the sense of [9]: this means that, for all x, y ∈ M such that EL(G)(x) =

EL(G)(y) = 0 and for any sequence of unitary operators (un) ⊂ L(G) which con-
verges weakly to 0, one has

lim
n→∞

‖EL(G)(xuny)‖2 = 0.

In Section 3, we prove the following result which uses some results from Chapter
2 of [5]:

Theorem B. Let G be an infinite, countable group. Then it has the Haagerup property if
and only if L(G) can be embedded into some finite von Neumann algebra M in such a way
that L(G) is strongly mixing in M and that there is a sequence of elements (xk)k≥1 ⊂
M ⊖ L(G) such that ‖xk‖2 = 1 for every k, and

lim
k→∞

‖λ(g)xk − xkλ(g)‖2 = 0

for every g ∈ G.

Acknowledgements. We warmly thank A. Valette for his comment about Bergel-
son and Rosenblatt result mentioned above, and the referee for having detected
separability problems in a previous version of the present article and for many
valuable comments.

2 An enveloping C0-representation

In order to give precise statements of our results, we need to recall some notations
and facts on spaces of coefficient functions of unitary representations (Aπ-spaces
of G. Arsac) from [1] and from P. Eymard’s article [7].
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The Banach algebra of all continuous functions on G which tend to 0 at infinity
is denoted by C0(G), and its dense subalgebra formed by all continuous functions
with compact support is denoted by K(G).

Let (π, H) be a unitary representation of G. If ξ, η ∈ H, we denote by

ξ ∗π η̄(s) = 〈π(s)ξ|η〉 (s ∈ G)

the coefficient function associated to ξ and η. These functions are denoted by ξ ∗π η
in [1] for instance, but our notation reminds the fact that ξ ∗π η̄ is linear in ξ and
antilinear in η.

A representation (π, H) of G is a C0-representation if, for all ξ, η ∈ H, the asso-
ciated coefficient function ξ ∗π η̄ belongs to C0(G).

The Fourier-Stieltjes algebra is the set of all coefficient functions as above. It is
denoted by B(G) ([7]).

Recall that B(G) is a Banach algebra with respect to the norm

‖ϕ‖B = inf{‖ξ‖‖η‖ : ϕ = ξ ∗π η̄}.

It is the dual space of the enveloping C∗-algebra C∗(G) under the duality bracket
defined on the dense ∗-subalgebra K(G) by

〈ϕ, f 〉 =
∫

G
ϕ(s) f (s)ds ∀ϕ ∈ B(G), f ∈ K(G).

Every unitary representation (π, H) of G gives rise to a natural ∗-homomor-
phism, still denoted by π, from C∗(G) onto C∗

π(G), which extends the map
f 7→ π( f ) defined on K(G). (Recall that C∗

π(G) is the C∗-algebra generated by
{π( f ) : f ∈ K(G)}.)

If E(G) is any subset of B(G), we set

E1(G) = {ϕ ∈ E(G) : ‖ϕ‖B = 1}

the intersection with the unit sphere of B(G).
A continuous function ϕ : G → C is positive definite if, for all s1, . . . , sn ∈ G

and all t1, . . . , tn ∈ C, one has

n

∑
i,j=1

t̄itj ϕ(s
−1
i sj) ≥ 0.

We denote by P(G) the set of all positive definite functions on G. For instance,
every coefficient function ξ ∗π ξ̄ is positive definite, and, conversely, for every
ϕ ∈ P(G), there exists a unique (up to unitary equivalence) triple (πϕ, Hϕ, ξϕ)
where (πϕ, Hϕ) is a unitary representation of G and ξϕ is a cyclic vector for πϕ

that satisfies
ϕ = ξϕ ∗πϕ ξ̄ϕ.

We recall that ‖ϕ‖B = ϕ(1) for every positive definite function ϕ.

If ϕ ∈ B(G), the adjoint ϕ∗ of ϕ is defined by ϕ∗(s) = ϕ(s−1) for every s ∈ G.
We say that ϕ is selfadjoint if ϕ∗ = ϕ and we denote by Bsa(G) the real Banach
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algebra of all selfadjoint elements of B(G). Every element ϕ ∈ Bsa(G) admits a
unique decomposition, called Jordan decomposition, as

ϕ = ϕ+ − ϕ−

where ϕ± ∈ P(G) and ‖ϕ‖B = ‖ϕ+‖B + ‖ϕ−‖B. Thus Bsa(G) = P(G)− P(G).
The obvious decomposition of any ψ ∈ B(G)

ψ =
1

2
(ψ + ψ∗) + i ·

1

2i
(ψ − ψ∗)

and the Jordan decomposition imply that

B(G) = P(G)− P(G) + iP(G)− iP(G).

We also need to recall the definition and a few facts on Aπ-spaces in the sense
of G. Arsac [1] since they play an important role in the present notes. If (π, H) is
a unitary representation of G, Aπ(G) is the norm closed subspace of B(G) gen-
erated by the coefficient functions ξ ∗π η̄ of π. Every element ϕ ∈ Aπ(G) can be
written as

ϕ = ∑
n

ξn ∗π η̄n

where ξn, ηn ∈ H for every n, ∑n ‖ξn‖‖ηn‖ < ∞, and where

‖ϕ‖B = inf{∑
n

‖ξn‖‖ηn‖ : ϕ = ∑
n

ξn ∗π η̄n}.

The Banach space Aπ(G) identifies with the predual of the von Neumann algebra
Lπ(G) := π(G)′′ ⊂ B(H) under the duality bracket

〈ϕ, π( f )〉 =
∫

G
ϕ(g) f (g)dg

for every ϕ ∈ Aπ(G) and every f ∈ K(G).
As is usually the case, λ denotes the left regular representation of G, and

L(G) = Lλ(G) is its associated von Neumann algebra. In this case, A(G) = Aλ(G)
is the Fourier algebra of G ([7], Chapter 3).

If M is a von Neumann algebra, its predual is denoted by M∗, and if ϕ ∈ M∗

and a ∈ M, we define aϕ and ϕa ∈ M∗ by

〈aϕ, x〉 = 〈ϕ, xa〉 and 〈ϕa, x〉 = 〈ϕ, ax〉 ∀x ∈ M.

Hence, one has (a1a2)ϕ = a1(a2 ϕ) and ϕ(a1a2) = (ϕa1)a2 for all ϕ ∈ M∗ and
a1, a2 ∈ M. If (π, H) is a unitary representation of G, if ϕ = ∑n ξn ∗π η̄n ∈ Aπ(G),
then

〈ϕ, x〉 = ∑
n

〈xξn|ηn〉 ∀x ∈ Lπ(G).

If a ∈ Lπ(G), it is easily checked that

aϕ = ∑
n

(aξn) ∗π η̄n and ϕa = ∑
n

ξn ∗π a∗ηn.
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Finally, if (π1, H1) and (π2, H2) are two unitary representations of G, then:

(1) we say that they are quasi-equivalent if the map π1( f ) 7→ π2( f ), from
π1(K(G)) to π2(K(G)), extends to an isomorphism of Lπ1

(G) onto Lπ2(G);

(2) we say that they are disjoint if no non-zero subrepresentation of π1 is equiv-
alent to some subrepresentation of π2.

It follows from Propositions 3.1 and 3.12 of [1] that:

(a) the representations π1 and π2 are quasi-equivalent if and only if

Aπ1
(G) = Aπ2(G);

(b) the representations π1 and π2 are disjoint if and only if

Aπ1
(G) ∩ Aπ2(G) = {0}.

Let us now introduce one of the main objects of the present article: let A0(G) =
B(G) ∩ C0(G) be the space of all elements of B(G) that tend to 0 at infinity. We
also put P0(G) = P(G) ∩ C0(G), and let A0,sa(G) be the real subspace of selfad-
joint elements of A0(G).

The following result is inspired by [4].

Proposition 2.1. The set A0(G) is a closed two-sided ideal of B(G), it is equal to the
set of all coefficient functions of all C0-representations and every ϕ ∈ A0(G) can be
expressed as

ϕ = ϕ1 − ϕ2 + iϕ3 − iϕ4

with ϕj ∈ P0(G) for all j = 1, . . . , 4.

Proof. The space A0(G) is obviously a two-sided ideal of B(G). It is closed
because of the following inequality, which holds for every element ϕ ∈ B(G):

‖ϕ‖∞ ≤ ‖ϕ‖B.

Finally, the decomposition of ϕ as

ϕ =
1

2
(ϕ + ϕ∗) + i ·

1

2i
(ϕ − ϕ∗)

shows that it suffices to prove that for every selfadjoint element ϕ ∈ A0(G), the
positive definite functions ϕ± of the Jordan decomposition ϕ = ϕ+ − ϕ− both
belong to C0(G). But it is proved in Lemme 2.12 of [7] that ϕ+ and ϕ− are uniform
limits on G of linear combinations of right translates s 7→ ϕ(sg) of ϕ. As every
such translate belongs to C0(G), this proves the claim.

The reason why we denote the intersection B(G) ∩ C0(G) by A0(G) instead
of B0(G) for instance is that we will see that it is an Aπ-space for some suitable
representation that we introduce now.
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We choose some dense directed set (ϕi)i∈I in P0,1(G) and, for every i ∈ I, let
(πi, Hi, ξi) be the associated cyclic representation. Put first K0 =

⊕

i∈I Hi and
σ0 =

⊕

i∈I πi. For instance, if G is assumed to be discrete, one can set ϕ1 = δ1, so
that π1 = λ is the left regular representation of G. Next, set

H0 = K0 ⊗ ℓ
2(N) and π0 = σ0 ⊗ 1ℓ2(N).

Notice that both σ0 and π0 are C0-representations.

Proposition 2.2. Let G be a locally compact, second countable group, and let (π0, H0)
be the above representation. Then:

(1) For every C0-representation π of G, one has Aπ(G) ⊂ A0(G).

(2) One has A0(G) = Aπ0(G), and every coefficient function of any C0-representation
is a coefficient function associated to π0.

(3) The unitary representation π0 is the unique C0-representation such that A0(G) =
Aπ0(G), up to quasi-equivalence.

Proof. (1) Observe that every coefficient function ϕ of the C0-representation π
is a linear combination of four elements in P0,1(G), by the same argument as in
the proof of Proposition 2.1. As A0(G) is closed, this proves the first assertion. In
particular, Aσ0(G) and Aπ0(G) are contained in A0(G).
(2) First, if ϕ ∈ P0,1(G), then it is a norm limit of a subsequence (ψk)k≥1 of (ϕi).
This shows that ϕ ∈ Aσ0(G), and Proposition 2.1 proves that A0(G) ⊂ Aσ0(G) ⊂
Aπ0(G). Next, let ϕ ∈ A0(G). Let us prove that it is a coefficient function of π0.
As Aσ0(G) = A0(G), there exist sequences of vectors (ξn)n≥1, (ηn)n≥1 ⊂ K0 such
that

∑
n

‖ξn‖‖ηn‖ < ∞

and
ϕ = ∑

n

ξn ∗σ0 η̄n.

Replacing ξn by
√

‖ηn‖
‖ξn‖

ξn and ηn by
√

‖ξn‖
‖ηn‖

ηn, we assume that

∑
n

‖ξn‖
2 = ∑

n

‖ηn‖
2 = ∑

n

‖ξn‖‖ηn‖ < ∞.

Put ξ =
⊕

n ξn, η =
⊕

n ηn ∈ H0. Then ϕ = ξ ∗π0 η̄.
(3) follows immediately from (1) and (2).

Definition 2.3. The representation (π0, H0) is called the enveloping C0-repre-
sentation of G.

Remark 2.4. (1) As is well known, the left regular representation of G is a C0-
representation. Hence the Fourier algebra A(G) is contained in A0(G). In fact,
one can have equality A(G) = A0(G) as well as strict inclusion A(G) ( A0(G).
Indeed, on the one hand, I. Khalil proved in [10] that if G is the ax + b-group over
R, then A(G) = A0(G), and, on the other hand, A. Figà-Talamanca [8] proved
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that if G is unimodular and if its von Neumann algebra L(G) is not atomic (e.g.
it is the case whenever G is infinite and discrete), then A(G) ( A0(G).
(2) We are grateful to the referee for the following observation: the proofs of
Propositions 2.1 and 2.2 show that they hold with A0(G) replaced by any norm-
closed, G-invariant subspace of B(G).

The next proposition is strongly inspired by, and is a slight generalization of
Theorem 3.2 of [4]. It will be used to give characterizations of the Haagerup
property in terms of the enveloping C0-representation.

Proposition 2.5. Let G be locally compact, second countable group and let (π, H) be
a unitary representation of G, and let us assume that the space Aπ(G) is an ideal of
B(G). Then π : C∗(G) → C∗

π(G) is a ∗-isomorphism if and only if there is a sequence
(ϕn)n≥1 ⊂ Aπ(G) ∩ P1(G) such that ϕn → 1 uniformly on compact subsets of G.

Proof. Assume first that π is a ∗-isomorphism. We can suppose that C∗
π(G)

contains no non-zero compact operator. Let χ be the state on C∗
π(G) which comes

from the trivial character f 7→
∫

G f (s)ds on K(G) ⊂ C∗(G). By Glimm’s Lemma,
there exists an orthonormal sequence (ξn)n≥1 ⊂ H such that

χ(x) = lim
n→∞

〈xξn|ξn〉

for every x ∈ C∗
π(G). Put ϕn = ξn ∗π ξ̄n ∈ Aπ(G) ∩ P1(G) for every n. Then one

has for every f ∈ K(G):

lim
n→∞

∫

G
ϕn(t) f (t)dt = lim

n→∞
〈π( f )ξn |ξn〉 =

∫

G
f (t)dt.

Theorem 13.5.2 of [6] implies that ϕn → 1 uniformly on compact subsets of G.
Conversely, if there exists a sequence (ϕn)n≥1 ⊂ Aπ(G) ∩ P1(G) such that
ϕn → 1 uniformly on compact subsets of G, let x ∈ ker(π). We have to prove
that 〈ϕ, x∗x〉B,C∗ = 0 for every state ϕ on C∗(G). Observe first that, for every
ψ ∈ Aπ(G) and every y ∈ C∗(G), one has

〈ψ, y〉B,C∗ = 〈ψ, π(y)〉Aπ ,C∗
π
.

Indeed, if we write ψ = ∑k ξk ∗π η̄k, and if f ∈ K(G), we have

〈ψ, f 〉B,C∗ =
∫

G
ψ(s) f (s)ds = ∑

k

∫

G
〈π(s)ξk |ηk〉 f (s)ds = 〈ψ, π( f )〉Aπ ,C∗

π

and the formula holds by density of K(G) in C∗(G).
Let us fix such a state ϕ ∈ P1(G) and set ψn = ϕϕn ∈ Aπ(G) ∩ P1(G) for

every n. As ψn is a state on Lπ(G), its restriction to C∗
π(G) is still a state, and

〈ψn, x∗x〉 = 〈ψn, π(x∗x)〉 = 0 for every n. As ψn → ϕ in the weak∗ topology of
B(G) = C∗(G)∗, one has 〈ϕ, x∗x〉 = 0.
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3 The Haagerup property

As in the first section, G denotes a locally compact group and (π0, H0) denotes its
enveloping C0-representation.

Following M. Bekka [2], we say that (π, H) is an amenable representation if
π ⊗ π̄ weakly contains the trivial representation. Equivalently, this means that
there exists a net of unit vectors (ξi) ⊂ H ⊗ H̄ such that

〈π ⊗ π̄(s)ξi |ξi〉 → 1

uniformly on compact subsets of G; notice that π ⊗ π̄ is unitarily equivalent to the
representation (T, g) 7→ π(g)Tπ(g−1) acting on the space HS(H) of all Hilbert-
Schmidt operators.

If G is moreover second countable, we say that it has the Haagerup property if
there exists a sequence (ϕn)n≥1 ⊂ P0,1(G) which tends to 1 uniformly on compact
sets. Note that it is equivalent to say that G admits an amenable,
C0-representation. See [5] for more information on the Haagerup property.

The next result generalizes partly, and is inspired by Corollary 3.4 of [4].

Proposition 3.1. Let G and (π0, H0) be as above. Then the following conditions are
equivalent:

(1) G has the Haagerup property;

(2) C∗(G) = C∗
π0
(G), i.e. the ∗-homomorphism π0 : C∗(G) → C∗

π0
(G) is an isomor-

phism;

(3) the representation π0 weakly contains the trivial representation;

(4) the representation π0 is amenable.

Proof. (1) ⇒ (2). There exists a sequence (ϕn)n≥1 ⊂ P0,1(G) which converges
to 1 uniformly on compact sets. The assertion follows readily from Proposition
2.5.
(2) ⇒ (3). It follows also from Proposition 2.5.
(3) ⇒ (4) and (4) ⇒ (1) are obvious.

Remark 3.2. As A(G) ⊂ Aπ0(G), there exists a ∗-homomorphism Φ from Lπ0(G)
onto L(G) such that Φ(π0( f )) = λ( f ) for every f ∈ K(G). Thus, let zA ∈ Lπ0(G)
be the central projection such that Lπ0(G)zA is ∗-isomorphic to L(G). This al-
lows us to consider the following two subrepresentations of π0: set π00(s) =
π0(s)(1− zA) and λ0(s) = π0(s)zA for all s ∈ G. Then λ0 is quasi-equivalent to λ,
and since π00 is disjoint from λ, we have Aπ00(G) ∩ A(G) = {0}. It would be in-
teresting to get more information on π00, in particular when G has the Haagerup
property.

From now on, we assume that G is an infinite, discrete, countable group.
Following [4], for any (not necessarily closed) ideal D ⊂ ℓ∞(G), we say that a
unitary representation (π, H) of G is a D-representation if H contains a dense sub-
space K such that the coefficient function ξ ∗π η̄ ∈ D for all ξ, η ∈ K. We associate
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to D the following C∗-algebra C∗
D(G): it is the completion of K(G) with respect to

the C∗-norm

‖ f‖D := sup{‖π( f )‖ : π is a D − representation}.

When D = C0(G), one gets C∗
D(G) = C∗

π0
(G). This makes the link between

Proposition 3.1 above and the main results of N. Brown and E. Guentner in [4].

We end the present notes with a relationship between the Haagerup property
for discrete groups and strongly mixing von Neumann subalgebras in the sense
of [9], Definition 1.1. We need to recall some definitions and facts from [9] first
and from Chapter 2 of [5] next.

Let 1 ∈ B ⊂ M be finite von Neumann algebras (with separable preduals)
endowed with a normal, finite, faithful, normalized trace τ. We denote by EB the
τ-preserving conditional expectation from M onto B, and by M ⊖ B = {x ∈ M :
EB(x) = 0}. We assume that B is diffuse.

Definition 3.3. Let B ⊂ M be a pair as above. We say that B is strongly mixing
in M if

lim
n→∞

‖EB(xuny)‖2 = 0

for all x, y ∈ M ⊖ B and all sequences (un) ⊂ U(B) which converge to 0 in the
weak operator topology.

This definition is motivated by the following situation: if a countable group
G acts in a trace-preserving way on some finite von Neumann algebra (Q, τ) and
if we put B := L(G) ⊂ M := Q ⋊ G, then B is strongly mixing in M if and only
if the action of G on Q is strongly mixing in the usual sense: for all a, b ∈ Q, one
has limg→∞ τ(aσg(b)) = τ(a)τ(b).

Let now G be a countable group with the Haagerup property. By Theorems
2.1.5, 2.2.2 and 2.3.4 of [5], there exists a trace preserving and strongly mixing
action of G on some finite von Neumann algebra (Q, τ) which contains non trivial
asymptotically invariant sequences and Følner sequences in the sense below. For
instance, if G has the Haagerup property, there exists an action α of G on the
hyperfinite type II1-factor R such that:

• α is strongly mixing;

• the fixed point algebra (Rω)α, that is, the set of all (classes of) central
sequences x = [(xn)] ∈ Rω such that αω

g (x) = x for all g ∈ G, is of type
II1.

Definition 3.4. Let 1 ∈ B ⊂ M be a pair of finite von Neumann algebras as above,
and let (ek)k≥1 ⊂ M be a sequence of projections in M.

(1) We say that (ek)k≥1 is a non trivial asymptotically invariant sequence for
B if EB(ek) = τ(ek) for every k, if

lim
k→∞

‖bek − ekb‖2 = 0

for every b ∈ B and if

inf
k

τ(ek)(1 − τ(ek)) > 0.
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(2) We say that (ek)k≥1 is a Følner sequence for B if EB(ek) = τ(ek) for every k,
if limk ‖ek‖2 = 0 and if

lim
k→∞

‖bek − ekb‖2

‖ek‖2
= 0

for every b ∈ B.

In general, the existence of a non trivial asymptotically invariant sequence for
B implies the existence of a Følner sequence for B, but the converse does not hold.
See [5], p. 19, for more details.

Combining these types of properties, we get:

Theorem 3.5. Let G be an infinite, countable group. Then it has the Haagerup property
if and only if it satisfies one of the following equivalent conditions:

(1) (resp. (1′)) There exists a finite von Neumann algebra M containing L(G) such
that L(G) is strongly mixing in M and M contains a Følner sequence for L(G)
(resp. a non trivial asymptotically invariant sequence for L(G)).

(2) There exists a finite von Neumann algebra M containing L(G) such that L(G) is
strongly mixing in M and there is a sequence of elements (xk)k≥1 ⊂ M ⊖ B such
that ‖xk‖2 = 1 for every k, and

lim
k→∞

‖λ(g)xk − xkλ(g)‖2 = 0

for every g ∈ G.

Proof. If G has the Haagerup property, then each condition (1), (1’) and (2)
holds, by Theorem 2.3.4 of [5], and there are plenty of non trivial asymptoti-
cally invariant or Følner sequences in the hyperfinite type II1-factor R. Thus,
assume that condition (1) holds and that B := L(G) embeds into some finite von
Neumann algebra M such that B := L(G) is strongly mixing in M and that M
contains a Følner sequence for B. We have to show the existence of a sequence
(ϕk)k≥1 ⊂ P0,1(G) which tends to 1 pointwise.

Recall first that to any completely positive map Φ : M → M, one associates a
function ϕ on G by

ϕ(g) = τ(Φ(λ(g))λ(g−1)) (g ∈ G),

and that ϕ is positive definite. In particular, for every x ∈ M ⊖ B, the function
ϕx : G → C defined by

ϕx(g) = τ(EB(x
∗λ(g)x)λ(g−1)) = τ(x∗λ(g)xλ(g−1)) (g ∈ G)

is positive definite. Moreover, since B is strongly mixing in M and since λ(G) is
an orthonormal set, one has

|ϕx(g)| ≤ ‖EB(x
∗λ(g)x)‖2 → 0
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as g → ∞, which shows that ϕx ∈ P0(G) for every x ∈ M ⊖ B.
Next, let (ek)k≥1 ⊂ M be a Følner sequence for B and choose c > 0 and an integer
k0 > 0 such that

1 − τ(ek) ≥ c

holds for every k ≥ k0. Define then

xk =
ek − τ(ek)

√

τ(ek)(1 − τ(ek))
(= x∗k ) (k ≥ 1)

and put ϕk = ϕxk
for every k. One has, for every integer k ≥ k0 and every g ∈ G:

ϕk(g) = τ(xkλ(g)xkλ(g−1))

=
1

τ(ek)(1 − τ(ek))
· τ((ek − τ(ek))λ(g)(ek − τ(ek))λ(g

−1))

=
1

τ(ek)(1 − τ(ek))
· τ(ekλ(g)ekλ(g−1)− τ(ek)

2)

=
τ(ek(λ(g)ekλ(g−1)− ek))

τ(ek)(1 − τ(ek))
+ 1.

Hence, by Cauchy-Schwarz Inequality,

|ϕk(g)− 1| ≤
1

c
·
‖ek‖2‖λ(g)ekλ(g−1)− ek‖2

‖ek‖
2
2

=
1

c
·
‖λ(g)ek − ekλ(g)‖2

‖ek‖2
→ 0

as k → ∞ for every g ∈ G. A similar argument works if (ek) is a non trivial
asympotically invariant sequence.

Finally, assume that G satisfies condition (2), and let (xk) ⊂ M ⊖ B be as
above. Define ϕk(g) = τ(x∗k λ(g)xkλ(g−1)) exactly as above. Then by the same
arguments, ϕk ∈ P0,1(G) for every k, and, for fixed g ∈ G, one has:

|ϕk(g)− 1| = |τ(x∗k λ(g)xkλ(g−1))− τ(x∗k xk)|

= |〈λ(g)xkλ(g)− xk|xk〉|

≤ ‖λ(g)xkλ(g−1)− xk‖2‖xk‖2

= ‖λ(g)xkλ(g−1)− xk‖2 → 0

as k → ∞.

Remark 3.6. Assume that G has the Haagerup property. One can ask whether
there exists a group Γ containing G and such that the pair of finite von Neumann
algebras L(G) ⊂ L(Γ) satisfies condition (2) in Theorem 3.5. Unfortunately, it is
only the case when G is amenable, and this has no real interest. Indeed, assume
for simplicity that G is torsion free, that it embeds into some group Γ and that
the pair L(G) ⊂ L(Γ) satisfies condition (2) above. Then, on the one hand, by
Lemma 2.2 and Proposition 2.3 of [9], the pair of groups G ⊂ Γ satisfies condition
(ST), which means that, for every γ ∈ Γ \ G, the subgroup γGγ−1 ∩ G is finite,
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hence trivial. In other words, G is malnormal in Γ. On the other hand, by classi-
cal arguments, the existence of a sequence (xk) ⊂ L(Γ) ⊖ L(G) as above implies
that the action G y X := Γ \ G defined by (g, x) 7→ gxg−1 has an invariant
mean. This means that the associated representation λX weakly contains the triv-
ial representation. But the first condition implies that this action is free, hence
that λX is equivalent to a multiple of the regular representation. This forces G to
be amenable.
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