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Abstract

In this paper we prove Carleman’s approximation type theorems in the
framework of slice regular functions of a quaternionic variable. Specifically,
we show that any continuous function defined on R and quaternion valued,
can be approximated by an entire slice regular function, uniformly on R, with
an arbitrary continuous ”error” function. As a byproduct, one immediately
obtains result on uniform approximation by polynomials on compact subin-
tervals of R. We also prove an approximation result for both a quaternion
valued function and its derivative and, finally, we show some applications.

1 Introduction and Preliminaries

Carleman’s approximation theorem in complex setting was proved in Carleman
[2] and can be stated as follows.

Theorem 1.1. Let f : R → C and ε : R → (0,+∞) be continuous on R. Then there
exists an entire function G : C → C such that

| f (x)− G(x)| < ε(x), for all x ∈ R.

The Carleman’s theorem is a pointwise approximation result which general-
izes the Weierstrass result on uniform approximation by polynomials in compact
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intervals, since on any compact subinterval of R, the entire function can in turn
be approximated uniformly by polynomials, more exactly by the partial sums of
is power series (see Remark 2.9 for the quaternionic setting).

A natural question is to ask what kind of approximation results one can ob-
tain in the quaternionic setting. In the literature, there are approximation results
obtained on balls, see [6], [7], [8], [9] and also Runge theorems, see [4], on uniform
approximation for slice regular functions by using rational functions or polyno-
mials.
The goal of the present paper is to extend Theorem 1.1 and other Carleman-type
results to the case of entire functions of a quaternionic variable. The class of func-
tions we will consider are expressed by converging power series of the quater-
nion variable q. This class is a subset of the class of the so-called slice regular
functions, see e.g. [3] for a systematic treatment of these functions as well as
their applications to the construction of a quaternionic functional calculus. To the
best of our knowledge, a Carleman-type theorem has never proved neither for
Cauchy-Fueter regular functions of a quaternionic variable nor for monogenic
functions with values in a Clifford algebra.

In order to introduce the framework in which we will work, let us introduce
some preliminary notations and definitions.

The noncommutative field H of quaternions consists of elements of the form
q = x0 + x1i + x2 j + x3k, xi ∈ R, i = 0, 1, 2, 3, where the imaginary units i, j, k
satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The real number x0 is called real part of q, and is denoted by Re(q), while
x1i + x2j + x3k is called imaginary part of q and is denoted by Im(q). We de-

fine the norm of a quaternion q as ‖q‖ =
√

x2
0 + x2

1 + x2
2 + x3

3. By S we denote the

unit sphere of purely imaginary quaternion, i.e.

S = {q = ix1 + jx2 + kx3, such that x2
1 + x2

2 + x3
3 = 1}.

Note that if I ∈ S, then I2 = −1. For any fixed I ∈ S we define CI :=
{x + Iy; | x, y ∈ R}, which can be can be identified with a complex plane. Ob-
viously, the real axis belongs to CI for every I ∈ S. Any non real quaternion
q is uniquely associated to the element Iq ∈ S defined by Iq := (ix1 + jx2 +
kx3)/‖ix1 + jx2 + kx3‖ and so q belongs to the complex plane CIq .

The functions we will consider are entire in a suitable sense of analyticity, the
so called left slice regularity (or left slice hyperholomorphy) for functions of a
quaternion variable, see [5].

Definition 1.2. Let U be an open set in H and let f : U → H be real differentiable. The
function f is called left slice regular if for every I ∈ S, its restriction f I to the complex
plane CI = R + IR satisfies

∂I f (x + Iy) :=
1

2

(

∂

∂x
+ I

∂

∂y

)

f I(x + Iy) = 0, on U ∩ CI .
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The following result allows to look at slice regular functions as power series
of the variable q with quaternionic coefficients on the right (see [5]):

Theorem 1.3. Let BR = {q ∈ H ; ‖q‖ < R}. A function f : BR → H is left slice
regular on BR if and only if it has a series representation of the form

f (q) =
∞

∑
n=0

qnan, an ∈ H (1)

uniformly convergent on BR.

Unless otherwise stated, the entire functions considered in this paper will be
power series of the form (1) converging for any R > 0.

Definition 1.4. The functions which, on a ball BR, admit a series expansion of the form
(1) with real coefficients an are called quaternionic intrinsic. They form a class denoted
by N (BR).

To complete the preliminary notions we note that for any slice regular function
we have

∂

∂x
f (x + Iy) = −I

∂

∂y
f (x + Iy) ∀I ∈ S,

and therefore, analogously to what happens in the complex case, for all I ∈ S the
following equality holds:

1

2

(

∂

∂x
+ I

∂

∂y

)

f (x + Iy) = ∂x( f )(x + Iy).

By setting q = x + Iy we will write f ′(q) instead of ∂x( f )(q). For a discussion
of the relation between f ′(q) and the so-called slice derivative of a slice regular
function, we refer the interested reader to [3], p.115.

The plan of the present paper goes as follows. In Section 2 we prove the Carle-
man’s approximation theorem i.e. a pointwise approximation for the class of slice
regular functions. In Section 3 we prove a simultaneous approximation result,
namely an approximation for both a quaternion valued function and its deriva-
tive. Finally, in Section 4 we discuss some applications.

2 Carleman Approximation Theorem

The first main result of this section is the following.

Theorem 2.1. Let f : R → H and ε : R → (0,+∞) be continuous on R. Then there
exists an entire function G : H → H such that

‖ f (x)− G(x)‖ < ε(x), for all x ∈ R.

The proof of Theorem 2.1 requires some auxiliary results and follows the ideas
in the complex case in Hoischen’s paper [10], see also Burckel’s book [1], pp. 273-
276.
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Lemma 2.2. Let f : R → H be continuous on R. There exists a zero free entire function
g : H → H such that g(x) ∈ R for all x ∈ R and g(x) > ‖ f (x)‖, for all x ∈ R.

Proof. For n ∈ N denote Mn = max{‖ f (x)‖; |x| ≤ n + 1} and choose a natural

number kn ≥ n such that
(

n2

n+1

)kn

> Mn. If q ∈ H is such that ‖q‖ ≤ N, then

‖q2/(n + 1)‖ < 1/2 for all n ≥ 2N2, which implies that the power series in

quaternions h(q) = M0 + ∑
∞
n=1

(

q2

n+1

)kn

converges uniformly in any closed ball

B(0; N), with arbitrary N > 0, which shows that h is entire on H. Also, note that
the coefficients in the series development are all real (and positive).

Evidently h(x) ≥ 0 for all x ∈ R. Then for |x| < 1 we have h(x) ≥ M0 ≥

‖ f (x)‖, while for 1 ≤ n ≤ |x| < n + 1 we have h(x) >

(

x2

n+1

)kn

≥
(

n2

n+1

)kn

>

Mn ≥ ‖ f (x)‖, which implies h(x) ≥ ‖ f (x)‖, for all x ∈ R. Finally, set g(q) = eh(q)

to get the required entire function. Here a comment is in order: in general the
composition f ◦ h of two slice regular functions f and h is not, in general, slice
regular, but it is so when h is quaternionic intrinsic, see [3]. It also worth noting
that g ∈ N (B(0; R)) for all R > 0, i.e. the coefficients in its series development
are all real.

Lemma 2.3. Let I = [a, b] be an interval in R and let f : I :→ H be a continuous
function. For any k ∈ N define

fk(x) =
k

C

∫ b

a
e−k2(x−t)2

f (t) dt, x ∈ R, (2)

where C =
∫ +∞

−∞
e−x2

dx. Then for every ε > 0

lim
k→+∞

fk(x) =

{

f (x) uniformly for x ∈ [a + ε, b − ε]
0 uniformly for x ∈ R \ [a + ε, b − ε]

Proof. Let us choose a basis {1, i, j, k}, with i2 = j2 = k2 = −1, ij = −ji = k for the
(real) vector space of quaternions. Let us write f (x) = f0(x) + f1(x)i + f2(x)j +
f3(x)k = ϕ(x)+ψ(x)j where the functions ϕ(x) = f0(x)+ f1(x)i, ψ(x) = f2(x)+
f3(x)i have values in the complex plane z = x + iy. Since the result holds true
for complex valued functions, see e.g. [1, Exercise 8.26 (ii)], we can define, for
each k ∈ N, the functions ϕk(x) and ψk(x) as in formula (2) by writing ϕ(t), ψ(t)
instead of f (t) in the integrand. Then for every ε > 0 we have that, uniformly,
limk→+∞ ϕk(x) is ϕ(x) in [a + ε, b − ε] and is 0 outside. In an analogous way, we
have that, uniformly, limk→+∞ ψk(x) is ψ(x) in [a + ε, b − ε] and is 0 outside. By
setting fk(x) = ϕk(x) + ψk(x) we obtain the statement.

Lemma 2.4. Let f : R → H be continuous on R. Then for each n ∈ Z, there exists a
continuous function fn : R → H with support in [−1, 1], such that for all x ∈ R we
have f (x) = ∑

+∞
n=−∞ fn(x − n).

Proof. We write the function f (x) as ϕ(x) + ψ(x)j as we have done in the proof
of Lemma 2.3. Since the result is true for complex valued functions, see e. g.



Carleman Type Approximation Theorem 235

[1, Exercise 8.28 (i)], we have

ϕ(x) =
+∞

∑
n=−∞

ϕn(x − n)

ψ(x) =
+∞

∑
n=−∞

ψn(x − n),

and by setting fn(x − n) = ϕn(x − n) + ψn(x − n)j the result follows.

Remark 2.5. It is interesting for the sequel to explicitly construct the functions
ϕn(x − n), ψn(x − n) following [1]. Let σ(x) be a piecewise linear function which
is equal 1 on (−1/2, 1/2) and is 0 outside (−1, 1) and let

Σ(x) =
∞

∑
n=−∞

σ(x − n), x ∈ R

Then the functions ϕn(x) can be constructed as

ϕn(x) =
σ(n)ϕ(x + n)

Σ(x + n)
, n ∈ N.

and similarly we can construct ψn(x).

Lemma 2.6. Let f : R → H be continuous on R and having compact support in [−1, 1].
Set

T = {q ∈ H : |Re(q)| > 3 and |Re(q)| > 2‖Im(q)‖}.

For any number ε > 0, there exists an entire function F : H → H, such that
‖ f (x)− F(x)‖ < ε for all x ∈ R and ‖F(q)‖ < ε for all q ∈ T.

Proof. For any k ∈ N let us define

fk(q) =
k

C

∫ 1

−1
e−k2(q−t)2

f (t)dt, q ∈ H,

where C =
∫ +∞

−∞
e−x2

dx. First of all note that the function e−k2(q−t)2
is slice regular

and when we multiply it on the right by the quaternion valued function f (t) it
remains slice regular, since slice regular functions form a right vector space over
H, and with compact support in [−1, 1], since so is f . If we expand the exponen-
tial in power series, by the uniform convergence we can exchange the series and
the integral, thus fk(q) can be written as power series and so it is an entire slice
regular function for all k ∈ N. If we apply Lemma 2.3 to the function f (x) by
choosing a = −2, b = 2 we obtain that fk → f uniformly in [−3/2, 3/2] while, by
choosing a = −1, b = 1 we have that f → 0 uniformly in R \ [−3/2, 3/2] and so
fk → f uniformly on R. Let q ∈ T and t ∈ [−1, 1] and write q = x0 + Im(q). Easy
computations show that

Re(k2(q − t)2) = k2((x0 − t)2 − ‖Im(q)‖2) >
3

4
k2.
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On each interval [a, b], the function fk(x), that we can write in real components
as fk = fk0 + fk1i + fk2 j + fk3k, is such that

‖
∫ b

a
fk(x) dx‖ ≤

√

√

√

√

3

∑
n=0

(

∫ b

a
fkn(x)dx

)2

≤
3

∑
n=0

∫ b

a
‖ fkn(x)‖dx ≤ 4

∫ b

a
‖ fk(x)‖ dx

Then, for all q ∈ T, we have

‖ fk(q)‖ ≤ 4
k

C

∫ 1

−1
‖e−k2(q−t)2

f (t)‖dt

≤ 4
k

C

∫ 1

−1
e−Re(−k2(q−t)2)‖ f (t)‖dt

≤ 4
k

C
e−

3
4 k2

∫ 1

−1
‖ f (t)‖dt ≤

k

C

16

3k2
M

(3)

where M =
∫ 1
−1 ‖ f (t)‖dt. If we choose F(q) = fk(q) for k large we have that

‖ f (x) − F(x)‖ < ε for x ∈ R since fk → f uniformly on R, moreover ‖F(q)‖ < ε
for q ∈ T by the estimate (3).

Lemma 2.7. Let f : R → H be continuous on R. There exists an entire function
F : H → H, such that ‖ f (x)− F(x)‖ < 1 for all x ∈ R.

Proof. Let fn be as in Lemma 2.4, for n ∈ Z. By Lemma 2.6 we can associate

to each fn an entire function Fn such that ‖ fn(x)− Fn(x)‖ < 2−|n|−2, ‖Fn(x)‖ <

2−|n|. Let N ∈ N, then choose q such that ‖q‖ ≤ N and n ∈ Z such that |n| >
3N + 3. We have

|Re(q − n)| ≥ |n| − |Re(q)| > 3

and

‖Im(q − n)‖ = ‖Im(q)‖ ≤ N <
1

3
(|n| − N) ≤

1

2
|Re(q − n)|.

The above inequalities allows to conclude that q − n belongs to the set T defined
in Lemma 2.6. Our assumption allows to obtain

‖Fn(q − n)‖ < 2−|n| for ‖q‖ ≤ N, |n| > 3N + 3.

The estimate implies that the series ∑
+∞
n=−∞ Fn(q− n) converges uniformly for any

q such that ‖q‖ ≤ N, for any N ∈ N. Thus the sequence sm(q) = ∑
m
n=−m Fn(q− n)

converges uniformly to a function F, as well as its restrictions to any complex
plane CI, for all I ∈ S. Thus we have that

(∂x + I∂y)F(x+ Iy) = (∂x + I∂y) lim
m→∞

sm(x+ Iy) = lim
m→∞

(∂x + I∂y)sm(x+ Iy) = 0,

for any q such that ‖q‖ ≤ N, for any N ∈ N and and so F is an entire function.
Moreover for any x ∈ R we have

‖F(x) − f (x)‖ ≤ ‖
+∞

∑
n=−∞

Fn(x − n)− fn(x − n)‖

≤
+∞

∑
n=−∞

‖Fn(x)− fn(x)‖ <

+∞

∑
n=−∞

2−|n|−2
< 1

and this concludes the proof.
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Proof of Theorem 2.1. By Lemma 2.2 there exists a zero free entire function
h : H → H, with all the coefficients in its series development being real numbers,
such that h(x) >

1
ε(x)

, for all x ∈ R. Then, Lemma 2.7 gives an entire function

F : H → H such that ‖h(x) f (x) − F(x)‖ < 1, for all x ∈ R. Since h(x) is real
valued, this implies

∥

∥

∥

∥

f (x)−
F(x)

h(x)

∥

∥

∥

∥

<
1

h(x)
< ε(x), for all x ∈ R.

Then the proof follows by choosing G(q) = [h(q)]−1 · F(q).

Remark 2.8. Note that if the function h(q) 6∈ N (H) then one would have chosen
G(q) = [h(q)]−∗ ∗ F(q) where ∗ denotes the star multiplication, see [3], i.e. a
multiplication which preserves slice regularity.

Remark 2.9. The Weierstrass result on uniform approximation by polynomials
on compact subintervals of R easily follows from Theorem 2.1. Indeed, choose
[A, B] ⊂ R and an arbitrary small constant ε(x) := ε/2 > 0, for all x ∈ R. By The-
orem 2.1, there exists an entire function G(q) = ∑

∞
k=0 qkak, such that

‖ f (x) − G(x)‖ < ε/2, for all x ∈ [A, B]. But from the uniform convergence of

the series G(q) in a closed ball B(0; R) that includes [A, B], clearly there exists n0

such that for all n ≥ n0 we have ‖G(q) − ∑
n
k=0 qkak‖ < ε/2, for all q ∈ B(0; R),

which implies

‖ f (x)−
n

∑
k=0

xkak‖ ≤ ‖ f (x)− G(x)‖+ ‖G(x)−
n

∑
k=0

xkak‖ < ε/2 + ε/2 = ε,

for all x ∈ [A, B] and all n ≥ n0.

3 Carleman-Type Theorem on Simultaneous Approximation

In this section we derive the following Carleman-type result on simultaneous
approximation generalizing those obtained in Kaplan [11] in the complex case.

Theorem 3.1. Let f : R → H having a continuous derivative on R and E : R →
(0,+∞) be continuous on R. Then there exists an entire function G : H → H such that
simultaneously we have

‖ f (x)− G(x)‖ < E(x), ‖ f ′(x)− G′(x)‖ < E(x), for all x ∈ R.

We will adapt the proof of [11, Theorem 3] which holds in the case of a com-
plex variable to our setting. That proof is based on Lemma 1 and Lemma 2 in the
same paper. Since Lemma 1 refers only to real valued functions of real variable,
it will remain unchanged. Therefore we have to deal just with the analogue of
Lemma 2 in the quaternionic setting. We have:

Lemma 3.2. Let E1 : R → R+ be continuous, satisfying E1(x) = E1(−x), for all x ∈

R and such that k =
∫ +∞

−∞
E1(t)dt is finite. Let A, B ∈ H be satisfying ‖A − B‖ < 2k.

Then there exists an entire function h : H → H, such that

‖h′(x)‖ < E1(x), for all x ∈ R, and lim
x→−∞

h(x) = A, lim
x→+∞

h(x) = B.
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Proof. If A = B, then clearly we can choose h(q) = A, for all q ∈ H. If A 6= B,
denote r = ‖A− B‖/(2k) and s = (1− r)/(2(1+ r)). By Theorem 2.1, there exists
an entire function G : H → H, such that for all x ∈ R we have ‖G(x)− E1(x)‖ <

sE1(x).
Now, if G(q) = ∑

∞
n=0 qnan then h0(q) = ∑

∞
n=0 qn+1 · an

n+1 remains a convergent
series with the same ray of convergence as G, therefore h0 is also entire. In addi-
tion, it is clear that ∂sh0(q) = G(q) for all q. Therefore, we get that there exists an
entire function h0 : H → H, such that

‖h′0(x)− E1(x)‖ < sE1(x), for all x ∈ R.

This last inequality implies ‖h′(x)‖ ≤ (1 + s)E1(x) and therefore by the Leibniz-
Newton formula h0(x) =

∫ x
0 h′(t)dt + h0(0), we get that the next two limits exist

(in H)

lim
x→+∞

h0(x) =
∫ +∞

0
h′0(t)dt + h0(0) := B0,

lim
x→−∞

h0(x) =
∫ −∞

0
h′0(t)dt + h0(0) := A0.

In addition, we easily get Re[h′(x)] > (1 − s)E1(x) for all x ∈ R and therefore

‖A0 − B0‖ =

∥

∥

∥

∥

∫ +∞

−∞
h′(x)dx

∥

∥

∥

∥

>

∫ +∞

−∞
Re[h′(x)]dx > 2k(1 − s).

Choosing now the constants a, b ∈ H such that aA0 + b = A, aB0 + b = B
and defining h(q) = ah0(q) + b, by similar reasonings with those in the proof
of Lemma 2 in [11] we get the desired conclusion.

Proof of Theorem 3.1. Without loss of generality, we may suppose that
E(x) = E(−x), for all x ∈ R (this is due to the simple fact for any positive func-
tion E(x) on R, we can define E∗(x) = min(E(x), E(−x)), which is now an even
function on R). Let E1(x) (depending on E(x) as in Lemma 1 in [11]) so that E1

is also an even function. By Theorem 2.1, there exists an entire function G1 such
that ‖G1(x)− f ′(x)‖ < E1(x), for all x ∈ R.

Set g(x) =
∫ x

0 [G1(t) − f ′(t)]dt. By the choice of E1(x), there exist (in H) the

limits limx→+∞ g(x) = B, limx→−∞ g(x) = A and ‖A − B‖ <

∫ +∞

−∞
E1(x)dx := 2k.

For these A, B and E1(x), let h the entire function given by the above Lemma 3.2.
Define now G(q) =

∫ q
0 G1(t)dt + f (0) − h(q), q ∈ H. The conclusion of the

theorem follows as in the proof of Theorem 3 in [11].

4 Applications

The first application of Theorem 2.1 is the following.

Theorem 4.1. Let f : (−1, 1) → H and ε : (−1, 1) → (0,+∞) be continuous on
(−1, 1). Then there exists a power series P(u) = ∑

∞
n=0 unan, with an ∈ H, such that

‖ f (u) − P(u)‖ < ε(u), for all u ∈ (−1, 1).

In addition, if f is real-valued on (−1, 1) then also P can be chosen real-valued on
(−1, 1).
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Proof. It is an immediate consequence of Theorem 2.1 by using the entire function
w ∈ N (B(0; R)) for all R > 0, defined by

w(q) = tan
(π

2
q
)

=
∞

∑
n=1

q2n−1 ·
(−1)n−122n(22n − 1)B2n

(2n)!

= q + q3 ·
1

3
+ q5 ·

2

15
+ q7 ·

17

315
+ ...+,

where Bn denotes the nth Bernoulli number.
Indeed, defining F : R → H by F(x) = f ((2/π) arctan(x)), clearly F is con-

tinuous on R and then by Theorem 2.1, for the continuous function E : R → R+

defined by E(x) = ε((2/π) arctan(x)), there exists an entire function G : H → H,
such that ‖F(x) − G(x)‖ < E(x), for all x ∈ R, i.e. ‖ f ((2/π) arctan(x)) −
G(x)‖ < E(x) for all x ∈ R.

Denoting (2/π) arctan(x) = u and replacing in the last inequality, we obtain

‖ f (u)− G(tan(πu/2))‖ < E(tan(πu/2)) = ε(u), for all u ∈ (−1, 1).

Denoting now P(q) = G(w(q)), since w ∈ N (B(0; R)) for all R > 0 it follows that
P is an entire function on H and therefore we can write P(q) = ∑

∞
n=0 qnan, for all

q ∈ H and the statement follows.

Similar to the case of complex variable of Theorem 7 in Kaplan [11], one can
prove the following.

Corollary 4.2. Let f : ∂(B(0; 1)) → R be real-valued and measurable. Then there

exists a function u : B(0; 1) → H, harmonic in B(0; 1) (that is if u(q) = u(x + Iy)

then ∂2u
∂x2 +

∂2u
∂y2 = 0, for all ‖q‖ < 1), such that for any I ∈ S we have u(reIϕ) → f (eIϕ)

as r ր 1, for almost everywhere ϕ.
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