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Abstract

For v ∈ Rn let K be a compact set in Rn containing a suitable smooth sur-
face and such that the intersection {tv + x : t ∈ R} ∩ K is a closed interval
or a single point for all x ∈ K. We prove that every linear first order differ-
ential operator with constant coefficients in direction v on space of Whitney
functions E(K) admits a continuous linear right inverse.

1 Introduction

In this paper we consider linear partial differential operators P(D) with constant
coefficients on the space of smooth Whitney functions E(K) on a given compact
set K ⊂ Rn. By surjectivity of P(D) on the space E(Rn) of smooth functions on
Rn (see [3, Cor. 3.5.2]) it follows that P(D) on E(K) is surjective as well (see also
[1, p. 40]). In other words, for all f ∈ E(K) the equation

P(D)g = f

has a solution g ∈ E(K). Now we can ask if it is possible to give solutions in
a continuous and linear way. More precisely, we are interested in the following
problem: does P(D) admit a continuous linear right inverse, i.e., an operator
S : E(K) → E(K) such that P(D) ◦ S = id E(K)? So far, we know very little, and
even there is no negative example.
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We say that a compact set K ⊂ R
n has the extension property if there exists

a continuous linear extension operator E : E(K) → E(Rn), i.e., E satisfies the
identity rK ◦ E = id E(K), where rK : E(Rn) → E(K) is the continuous restriction
operator (for the precise definition see Section 2). It is well known (see Prop.
2.1 below) that for K with the extension property every linear partial differential
operator P(D) with constant coefficients on E(K) has a continuous linear right
inverse. Compact sets with this property are very well characterized in terms
of so called property (DN) (K has the extension property if and only if E(K)
has the property (DN); see [2, Th. 3.3] or [8, Folgerung 2.4]) but a geometric
characterization is still not known.

The case of compact sets without the extension property is much more com-
plicated and to our best knowledge there is no (nontrivial) results in that case so
far. In this paper we consider compact sets K and partial differential operators

P(D) such that there exists a continuous linear right inverse S̃ for P(D) on E(Rn)

so that S̃(IK) ⊆ IK (IK stands for the ideal of functions flat on K). Hence the
operator

S f := rK(S̃F)

is defined independently of the choice of the extension F ∈ E(Rn) of f ∈ E(K)
and defines a continuous linear right inverse on E(K) for a given differential
operator (see Propostion 3.12). It appears that in the case of first order differ-
ential operator with constant coefficients in direction v ∈ Rn we can obtain such

a S̃ if a compact set K contains a suitable smooth surface and it is so that the in-
tersection {tv + x : t ∈ R} ∩ K is a closed interval or a single point for all x ∈ K
(v-normal sets with a smooth surface defined in 2.2). This is the main result of
this paper (Theorem 3.1).

We divide the proof in a few steps. We start with the case of normal set in di-
rection ej which contains the zero surface. Then using composition operators we
pass to normal sets containing a smooth surface. The last step - right inverse in
the case of v-normal sets with a smooth surface - is the result of a ”rotation”,
i.e., the compostion with an appriopriate orthogonal linear map. Composing
obtained in this way rigth inverses we get a right inverse in the case of compact
sets which are normal in several directions simultaneously (Corollary 3.3).

2 Preliminaries

Let us fix n ∈ N and let E(Rn) denote the space of smooth functions on Rn with
its natural Fréchet space topology. For an index α = (α1, . . . , αn) ∈ N

n
0 we write

Dα := Dα1
1 . . . Dαn

n , where Dj : E(Rn) → E(Rn), Dj := ∂
∂xj

. More generally, for

P ∈ C[x1, . . . , xn] a polynomial of degree N, we consider the partial differential
operator P(D) : E(Rn) → E(Rn),

P(D) := ∑
|α|≤N

DαP(0)

α!
Dα,

where |α| := α1 + . . . + αn, α! := α1! · . . . · αn!. In particular, for a fixed
v = (v1, . . . , vn) ∈ Rn, the directional derivative ∑

n
j=1 vjDj is denoted by Dv.
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For a compact set K ⊂ R
n we define the restriction operator rK : E(Rn) →

∏β∈Nn
0

C(K),

rKF := ((DβF) |K)β∈Nn
0
,

and by IK we denote the ideal of smooth functions which are flat on K, namely
IK := ker rK. Let E(K) denote the space of Whitney functions on K,

E(K) := { f =
(

f β
)

β∈Nn
0

: rKF = f for some F ∈ E(Rn)}.

The topology in E(K) is defined as the finest topology such that the restriction
operator rK : E(Rn) → E(K) is continuous. It is easy to see that E(K) with
this topology is a Fréchet space. For more information about spaces of Whitney
functions, we refer to [2] and [5].

We introduce partial differential operators Dj, Dα, P(D) and Dv on E(K) using
the same notation as in the case of the space E(Rn). In this way we denote Dj f :=

( f β+ej)β∈Nn
0
, Dα f := ( f β+α)β∈Nn

0
, P(D) := ∑|α|≤N

DαP(0)
α! Dα and Dv := ∑

n
j=1 vjDj,

where ej is the vector in Rn which j-th coordinate equals 1 and the others equal 0.
The following result is well known (for the proof see also [1, Prop. 6.1]).

Proposition 2.1. Let K be a compact set in Rn with the extension property. Then every
linear partial differential operator P(D) with constant coefficients admits a continuous
linear right inverse.

Proof. Let D′(Rn) denote the space of distributions on Rn with compact sup-
port. If σ ∈ D′(Rn) is a fundamental solution for P(D) : D′(Rn) → D′(Rn),
E : E(K) → E(Rn) is a linear continuous extension operator and ψ is a test func-
tion so that ψ ≡ 1 on a neighborhood of K, then

S f := rK(σ ∗ (ψ · E f ))

is a continuous linear right inverse for P(D) on E(K).

Let ||x|| := (∑n
k=1 x2

k)
1
2 denote the euclidean norm of x ∈ Rn. We denote by

〈x, y〉 := ∑
n
k=1 xkyk the scalar product of vectors x, y ∈ Rn. For v ∈ Rn let

H
(n)
v := {x ∈ R

n : 〈x, v〉 = 0}

be the hyperplane in Rn orthogonal to v containing 0. In particular, for
j = 1, . . . , n we write

H
(n)
j := {x ∈ R

n : 〈x, ej〉 = 0}.

Let Kv ⊂ H
(n)
v be compact and let φv, ψv : Kv → R, φv ≤ ψv. We denote

K(Kv , φv, ψv) := {tv + x : x ∈ Kv, t ∈ [φv(x), ψv(x)]}.

Definition 2.2. Let v1, . . . , vk ∈ Rn. We say that a set K ⊂ Rn is (v1, . . . , vk)-

normal if there exist compact sets Kvm ⊂ H
(n)
vm and functions φvm , ψvm : Kvm → R,

φvm ≤ ψvm such that K = K(Kvm , φvm , ψvm) for m = 1, . . . , k. Futhermore, if there
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exist γvm ∈ E(Kvm) such that φvm ≤ γ0
vm

≤ ψvm for m = 1, . . . , k, then we say that
K is (v1, . . . , vk)-normal with a smooth surface. In particular, if φvm ≤ 0 ≤ ψvm for
m = 1, . . . , k, then we say that K is (v1, . . . , vk)-normal with the zero surface. If
v1 = el1 , . . . , vk = elk

for some l1, . . . , lk ∈ {1, . . . , n}, then we write for simplicity
(l1, . . . , lk)-normal instead of (el1 , . . . , elk

)-normal. If k = 1 we write v-normal (j-
normal) for appropriate v ∈ R

n (j ∈ {1, . . . , n}).

In view of Proposition 2.1, the problem of the existence of a continuous linear
right inverse for P(D) on E(K) is interesting only for compact sets without the ex-
tension property. We give below examples of such sets which are simultaneously
in the class described in Definition 2.2.

Example 2.3. (i) Let K1 := {(x1, x2) ∈ R
2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ exp(−1/x1)} and

K2 := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, xs
1 ≤ x2 ≤ xs

1 + exp(−1/x1)}, where s ≥ 1 is
not rational. Then K1, K2 are compact, (1, 2)-normal sets with a smooth surface
(K1 has even the zero surface) and they do not have the extension property (see
e.g. [2, Ex. 3.12 and Ex. 4.15]).
(ii) Let f : Rn−1 → R be a smooth function and let K := {(x1, . . . , xn−1, f (x1, . . . ,
xn−1)) ∈ Rn : (x1, . . . , xn−1) ∈ K0}, where K0 is an arbitrary compact set in
Rn−1. Then one can easily check that the space E(K) does not have a continuous
norm (consider functions (xn − f (x1, . . . , xn−1))

r , r ∈ N) so, clearly, it does not
have the property (DN) (see [6, p. 359] for definition). Hence, from the Tidten’s
characterization (see [8, Folgerung 2.4]), K does not have the extension property
and, obviously, K is a compact, n-normal set with a smooth surface.

3 Right inverse in the case of v-normal sets

Let us formulate our main result.

Theorem 3.1. Let λ ∈ C, v = (v1, . . . , vn) ∈ Rn, v 6= 0 and let K ⊂ Rn be a
compact, v-normal set with a smooth surface. Then the differential operator ∑

n
j=1 vjDj −

λ : E(K) → E(K) admits a continuous linear right inverse.

We can easily pass from the case of the first order differential operator to par-
tial differential operators of any given order using the following lemma.

Lemma 3.2. Let P ∈ C[x1, . . . , xn], P = P1 · . . . · Pk for some polynomials P1, . . . , Pk ∈
C[x1, . . . , xn] and let K ∈ Rn be compact. Then P(D) : E(K) → E(K) has a continuous
linear right inverse if and only if every Pj(D) has a continuous linear right inverse.

Proof. Let S be a continuous linear right inverse for P(D). Then

Pj(D) ◦ (P1(D) ◦ . . . ◦ Pj−1(D) ◦ Pj+1(D) ◦ . . . ◦ Pk(D) ◦ S) = P(D) ◦ S = id E(K),

hence P1(D) ◦ . . . ◦ Pj−1(D) ◦ Pj+1(D) ◦ . . . ◦ Pk(D) ◦ S is a continuous linear right
inverse for Pj(D).

Conversly, if Sj is a continuous linear right inverse for Pj(D), then Sk ◦ . . . ◦ S1

is a continuous linear right inverse for P(D).
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Corollary 3.3. Let P1, . . . , Pk be complex polynomials of one variable, v1, . . . , vk ∈ R
n

and let K ⊂ Rn be a compact, (v1, . . . , vk)-normal with a smooth surface set. Then

P(D) = P1(Dv1
) ◦ . . . ◦ Pk(Dvk

)

admits a continuous linear right inverse.

Proof. Follows from Theorem 3.1 and Lemma 3.2.

In the case of compact set whithout a smooth surface and without the exten-
sion property our method fails. It would be worth to solve the following problem.

Problem. Give an example of compact, 1-normal set K in Rn which has no smooth
surface, without the extension property and such that D1 : E(K) → E(K) admits a
continuous linear right inverse.

In order to prove Theorem 3.1 we need several lemmas. First, we explain
commutativity of differential operators with other types of operators. It is easy
to prove the following lemma.

Lemma 3.4. Let K ⊂ Rn be a compact set. Then P(D) ◦ rK = rK ◦ P(D) for every
polynomial P ∈ C[x1, . . . , xn].

Let us recall that for a smooth function Φ : Rn → Rn the composition operator

C̃Φ : E(Rn) → E(Rn) is defined by the formula C̃ΦF = F ◦ Φ.

Lemma 3.5. Let Φ : Rn → Rn be a smooth function and let K ⊂ Rn a be compact set.

Then C̃Φ

(
IΦ(K)

)
⊂ IK.

Proof. Follows from the Faà di Bruno formula (see e.g. [7]).

The preceding lemma allows us to define a composition operator CΦ,K :
E(Φ(K)) → E(K),

CΦ,K f := rK(C̃ΦF),

where F is arbitrarily choosen function from E(Rn) with rΦ(K)F = f . One can
show that if Φ is a smooth bijection with the smooth inverse, then CΦ,K is a con-

tinuous isomorphism with the inverse C−1
Φ,K = CΦ−1,Φ(K).

Proposition 3.6. Let Φ : Rn → Rn be a smooth bijection with the smooth inverse
and let K ⊂ R

n a be compact set. If Q(D) ◦ CΦ−1,Φ(K) = CΦ−1,Φ(K) ◦ P(D) and

S : E(K) → E(K) is a contionuous linear right inverse for P(D) : E(K) → E(K), then
SΦ : E(Φ(K)) → E(Φ(K)), SΦ := CΦ−1,Φ(K) ◦ S ◦ CΦ,K is a continuous linear right

inverse for Q(D) : E(Φ(K)) → E(Φ(K)).

Proof. SΦ is continuous as it is a composition of continuous operators. Clearly,

Q(D) ◦ SΦ = Q(D) ◦ CΦ−1,Φ(K) ◦ S ◦ CΦ,K = CΦ−1,Φ(K) ◦ P(D) ◦ S ◦ CΦ,K

= CΦ−1,Φ(K) ◦ CΦ,K = id E(Φ(K))

which means that SΦ is a continuous linear right inverse for Q(D).
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Lemma 3.7. Let j ∈ {1, . . . , n}, λ ∈ C be fixed, and let Ψ = (Ψ1, . . . , Ψn) : R
n → R

n

be a smooth bijection such that

DjΨl =

{
1 if l = j,
0 if l 6= j.

For a compact set K ⊂ Rn let CΨ := CΨ,K be a composition operator. Then

(Dj − λ) ◦ CΨ = CΨ ◦ (Dj − λ).

Proof. For f ∈ E(Ψ(K)) let F be its smooth extension, that is rΨ(K)F = f . By
Lemma 3.4, we get

Dj(CΨ f ) =Dj(rK(F ◦ Ψ)) = rK(Dj(F ◦ Ψ)) = rK

( n

∑
l=1

((Dl F) ◦ Ψ)DjΨl

)

=rK((DjF) ◦ Ψ) = CΨ(rΨ(K)(DjF)) = CΨ(Dj(rΨ(K)F)) = CΨ(Dj f ),

hence

(Dj − λ) ◦ CΨ = Dj ◦ CΨ − λCΨ = CΨ ◦ Dj − CΨ ◦ λ = CΨ ◦ (Dj − λ).

Lemma 3.8. Let λ ∈ C, u, v ∈ Rn, u, v 6= 0 and let A : Rn → Rn be a linear bijection
such that Au = v. For a compact set K ⊂ Rn let CA−1 := CA−1,K be the composition
operator. Then

(Dv − λ) ◦ CA−1 = CA−1 ◦ (Du − λ).

Proof. Clearly, λ ◦ CA−1 = CA−1 ◦ λ. For f ∈ E(A−1(K)) set F ∈ E(Rn) such that
rA−1(K)F = f . By Lemma 3.4,

(Dv ◦ CA−1)( f ) = Dv(CA−1 f ) = Dv(rK(F ◦ A−1)) = rK(Dv(F ◦ A−1))

and, on the other hand,

(CA−1 ◦ Du)( f ) = CA−1(Du f ) = CA−1(Du(rA−1(K)F)) = CA−1(rA−1(K)DuF)

= rK(DuF ◦ A−1),

hence it remains to observe that (A−1 is linear) Dv(F ◦ A−1) = DuF ◦ A−1.

Now we shall construct a right inverse on E(Rn). For j ∈ {1, . . . , n} and λ ∈ C

we introduce the linear map S̃j,λ : E(Rn) → E(Rn),

(S̃j,λF)(x) =
∫ xj

0
F(x(j,t))eλ(xj−t)dt,

where x(j,t) = (x1, . . . , xj−1, t, xj+1, . . . , xn).

Lemma 3.9. Let j ∈ {1, . . . , n}, λ ∈ C and F ∈ E(Rn). Then

Dα(S̃j,λF) = S̃j,λ(D
αF)

for α with αj = 0 and

D
βj

j Dα(S̃j,λF) =

βj−1

∑
l=0

λl D
βj−l−1

j DαF + λβj S̃j,λ(D
αF)

for α with αj = 0 and β j > 0.
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Proof. Let l 6= j. Then

(Dl(S̃j,λF))(x) = Dl

∫ xj

0
F(x(j,t))eλ(xj−t)dt =

∫ xj

0
Dl

(
F(x(j,t))eλ(xj−t)

)
dt

=
∫ xj

0
(DlF)(x

(j,t))eλ(xj−t)dt,

hence by induction we get the first formula.
Now applying induction with respect to β j we will show that

D
βj

j (S̃j,λF) =

βj−1

∑
l=0

λlD
βj−l−1

j F + λβj S̃j,λF.

For β j = 1 we obtain

(Dj(S̃j,λF))(x) = Dj

( ∫ xj

0
F(x(j,t))e−λtdt · eλxj

)

= F(x)e−λxj eλxj + λ
∫ xj

0
F(x(j,t))e−λtdt · eλxj = F(x) + λ(S̃j,λF)(x).

Let us assume that

D
βj−1

j (S̃j,λF) =

βj−2

∑
l=0

λlD
βj−l−2

j F + λβj−1S̃j,λF.

Then

D
βj

j (S̃j,λF) =Dj(D
βj−1

j (S̃j,λF)) = Dj

( βj−2

∑
l=0

λl D
βj−l−2

j F + λβj−1S̃j,λF

)

=

βj−2

∑
l=0

λl D
βj−l−1

j F + λβj−1(F + λS̃j,λF) =

βj−1

∑
l=0

λl D
βj−l−1

j F + λβj S̃j,λF.

Finally, we have

D
βj

j Dα(S̃j,λF) = D
βj

j (S̃j,λ(D
αF)) =

βj−1

∑
l=0

λl D
βj−l−1

j DαF + λβj S̃j,λ(D
αF)

for α with αj = 0 and β j > 0.

Proposition 3.10. Let j ∈ {1, . . . , n}, λ ∈ C and let K be a compact, j-normal set with

the zero surface. Then operator S̃j,λ is a continuous linear right inverse for the differential

operator Dj − λ : E(Rn) → E(Rn) such that S̃j,λ(IK) ⊂ IK.

Proof. Let F ∈ E(Rn). By Lemma 3.9 (for β j = 1), we get

((Dj − λ) ◦ S̃j,λ)F = F
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hence S̃j,λ is a right inverse for Dj − λ. Now we shall show that S̃j,λ is continuous.
Let (Fn)n∈N be a sequence in E(Rn) such that

lim
n→∞

Fn = F and lim
n→∞

S̃j,λFn = G

for some F, G ∈ E(Rn). This implies that (Fn)n∈N is uniformly convergent on
every compact subset of Rn. Therefore, for fixed x ∈ Rn the sequence

(Fn(x(j,·))eλ(xj−·))n∈N of smooth functions in one variable is uniformly conver-
gent on the interval [0, xj] (or [xj, 0] if xj < 0). Hence

(S̃j,λF)(x) =
∫ xj

0
F(x(j,t))eλ(xj−t)dt =

∫ xj

0
lim

n→∞
Fn(x

(j,t))eλ(xj−t)dt

= lim
n→∞

∫ xj

0
Fn(x

(j,t))eλ(xj−t)dt = lim
n→∞

(S̃j,λFn)(x) = G(x).

By the closed graph theorem, S̃j,λ is continuous. Inclusion S̃j,λ(IK) ⊂ IK follows
immediately from the formulas given in Lemma 3.9.

Now we get results which allow to transfer solutions from simpler cases to
more complicated ones. Firstly, let us recall a simple lemma about factoriza-
tion of linear maps beetwen locally convex spaces by the quotient map (see e.g.
[6, Prop. 22.11]).

Lemma 3.11. Let T : X → Z be a linear map beetwen locally convex spaces, Y be a
closed subspace of X and q : X → X/Y be the quotient map. Let us also assume that
Y ⊂ ker T. Then there exists exactly one linear map S : X/Y → Z such that T = S ◦ q.
Moreover, S is continuous if and only if T is continuous.

Proposition 3.12. Let S̃ be a continuous linear right inverse for the differential operator

P(D) : E(Rn) → E(Rn) and let K ⊂ Rn be a compact set such that S̃(IK) ⊂ IK. Let
us define operator S : E(K) → E(K),

S f := rK(S̃F),

where F ∈ E(Rn), rKF = f , is arbitrarily choosen. Then S is a continous linear right
inverse for the differential operator P(D) : E(K) → E(K).

Proof. By Lemma 3.4,

(P(D) ◦ S) f = P(D)(rK(S̃F)) = rK(P(D)(S̃F)) = rKF = f

hence S is a right inverse for P(D). From S̃(IK) ⊂ IK we get that S is well
defined and its definition does not depend on the choice of the extension F of

f . Moreover, IK ⊂ ker(rK ◦ S̃) and, of course, we have rK ◦ S̃ = S ◦ rK. Now

applying Lemma 3.11 to the continuous operator rK ◦ S̃ and the quotient map rK

we obtain continuity of S.
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Lemma 3.13. Let j ∈ {1, . . . , n} and let K ⊂ R
n be a compact, j-normal set with a

smooth surface. Then there exist a compact, j-normal set K0 ⊂ Rn with the zero surface
and a smooth bijection Φ = (Φ1, . . . , Φn) : Rn → Rn with the smooth inverse such that

DjΦ
−1
l =

{
1 if l = j,
0 if l 6= j

and Φ(K0) = K.

Proof. We have K = K(Kj, φj, ψj) for some real valued functions φj, ψj defined

on a compact set Kj. Let γj ∈ E(Kj) satisfies φj ≤ γ0
j ≤ ψj and set Γj ∈ E(Rn),

rKj
Γj = γj. Let us define Φ = (Φ1, . . . , Φn) : Rn → Rn by the formula

Φ(x) = (x1, . . . , xj−1, xj + Γj(x
(j,0)), xj+1, . . . , xn).

Clearly, Φ is smooth bijection with the smooth inverse and

Φ−1
l (x) =

{
xj − Γj(x

(j,0)) if l = j,
xl if l 6= j,

hence

DjΦ
−1
l =

{
1 if l = j,
0 if l 6= j.

Let K0 := Φ−1(K). It is easy to see that K0 = K(Kj, φj − γ0
j , ψj − γ0

j ). Moreover,

φj − γ0
j ≤ 0 ≤ ψj − γ0

j , hence K0 is a j-normal set with the zero surface. Finally,

K0 is compact as a continuous image of compact set K and since Φ is a bijection,
we have Φ(K0) = Φ(Φ−1(K)) = K.

Lemma 3.14. Let u, v ∈ Rn, ||u|| = ||v|| = 1 and let K ⊂ Rn be a compact, v-normal
set with a smooth surface. Then there exist a compact, u-normal set K′ ⊂ Rn with a
smooth surface and a linear bijection A : Rn → Rn such that Au = v and A(K′) = K.

Proof. By the Steinitz theorem and the Gram-Schmidt orthogonalization proce-
dure, there is an orthogonal bijection A : Rn → Rn, with Au = v (i.e., AT = A−1,
where AT is the conjugate operator for A). Then, it is easy to see that A and
K′ := A−1(K) have desired properties.

Now we are ready to prove the main result.
Proof of Theorem 3.1. Case of v = ej for some j ∈ {1, . . . , n}, K with the zero
surface: Combining Propositions 3.10 and 3.12 we get a right inverse Sj,λ for
Dj − λ on E(K).

Case of v = ej for some j ∈ {1, . . . , n}, K with an arbitrary smooth surface: By
Lemma 3.13, there exist a compact, j-normal set K0 ⊂ Rn with the zero surface
and a smooth bijection Φ = (Φ1, . . . , Φn) : R

n → R
n with the smooth inverse

such that

DjΦ
−1
l =

{
1 if l = j,
0 if l 6= j

and Φ(K0) = K. By Lemma 3.7,

(Dj − λ) ◦ CΦ−1,K = CΦ−1,K ◦ (Dj − λ).
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Now applying Proposition 3.6 to the function Φ, the set K0, the operator Dj − λ
and the operator Sj,λ : E(K0) → E(K0) from the previous case, we conclude that
CΦ−1,K ◦ Sj,λ ◦CΦ,K0

is a continuous linear right inverse for Dj − λ : E(K) → E(K).
Case of ||v|| = 1, K with an arbitrary smooth surface: By Lemma 3.14, there

exist 1-normal set K′ ⊂ Rn with a smooth surface and a linear bijection A : Rn →
R

n such that Ae1 = v and A(K′) = K. By Lemma 3.8,

(Dv − λ) ◦ CA−1 = CA−1 ◦ (D1 − λ).

From the previous case we obtain a continuous linear operator
S′ : E(K′) → E(K′) such that (D1 − λ) ◦ S′ = id E(K′). Thus, by Proposition

3.6, SA := CA−1 ◦ S′ ◦ CA is a continuous linear right inverse for Dv − λ : E(K) →
E(K).

General case: Easily follows from the previous case.
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