Maximal lineability of the set of continuous surjections

Nacib Gurgel Albuquerque^{*}

Abstract

Let *m*, *n* be positive integers. In this short note we prove that the set of all continuous and surjective functions from \mathbb{R}^m to \mathbb{R}^n contains (excluding the 0 function) a c-dimensional vector space. This result is optimal in terms of dimension.

1 Preliminaries

Lately the study of the linear structure of certain subsets of surjective functions in $\mathbb{R}^{\mathbb{R}}$ (such as everywhere surjective functions, perfectly everywhere surjective functions, or Jones functions) has attracted the attention of several authors working on Real Analysis and Set Theory (see, e.g. [1, 2, 4, 6, 7]). The previously mentioned functions are, indeed, very "pathological": for instance an everywhere surjective function f in $\mathbb{R}^{\mathbb{R}}$ verifies that $f(I) = \mathbb{R}$ for every interval $I \subset \mathbb{R}$ and the other classes (perfectly everywhere surjective functions and Jones functions) are particular cases of everywhere surjective functions and, thus, with even "worse" behavior. It has been shown [5] that there exists a 2^c-dimensional vector space every non-zero element of which is a Jones function and, thus, everywhere surjective (here, \mathfrak{c} stands for the cardinality of \mathbb{R}). Of course, this previous result is optimal in terms of dimension since dim $(\mathbb{R}^{\mathbb{R}})= 2^{\mathfrak{c}}$. However, all the previous classes are nowhere continuous, thus, it is natural to ask about the set of continuous surjections. The aim of this short note is to prove, in a more general

Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 83-87

^{*}The author is supported by Capes

Received by the editors in April 2013.

Communicated by F. Bastin.

²⁰¹⁰ Mathematics Subject Classification : 15A03.

Key words and phrases : lineability; spaceability; algebrability; Peano type function.

framework than that of $\mathbb{R}^{\mathbb{R}}$, that (for every $m, n \in \mathbb{N}$) the set of continuous surjections from \mathbb{R}^{m} onto \mathbb{R}^{n} is c-lineable [1] (that is, it contains a c-dimensional vector space every non-zero element of which is a continuous surjective function from \mathbb{R}^{m} onto \mathbb{R}^{n}). Since dim $\mathcal{C}(\mathbb{R}^{m}, \mathbb{R}^{n}) = \mathfrak{c}$ we have that this result would be the best possible in terms of dimension, that is, the set of continuous surjections from \mathbb{R}^{m} onto \mathbb{R}^{n} is maximal lineable [3].

While there are many trivial examples of surjective continuous functions in $\mathbb{R}^{\mathbb{R}}$, coming up with a concrete example of a continuous surjective function from \mathbb{R} onto \mathbb{R}^2 is a totally different story. The existence of a continuous surjection from \mathbb{R} onto \mathbb{R}^2 (a *Peano type* function) can be found in [8, p. 42] or [9, p. 274]. Both references use the existence of a continuous surjection from [0,1] onto $[0,1]^2$ (a *Peano curve* in $[0,1]^2$ or a *space filling curve*). The existence of this kind of curve was proved by G. Peano in the classical paper [10]. In [8] this result is proved by invoking a result due to A. D. Alexandrov: there is a continuous surjection from the Cantor space \mathcal{K} onto any arbitrary nonempty compact metric space (see [8, p. 40]); in [9, section 44] the construction of the Peano curve is done geometrically, and is a consequence of the completeness of the space $\mathcal{C}(X, M)$ of all continuous functions from a topological space X to a complete metric space M, considering $\mathcal{C}(X, M)$ with the uniform metric.

2 The lineability of the set of continuous surjections from ℝ^m to ℝⁿ

Let *m* and *n* be positive integers. Throughout this note we shall denote

 $S_{m,n} = \{ f : \mathbb{R}^m \longrightarrow \mathbb{R}^n ; f \text{ is continuous and surjective} \}.$

The following result shows that $S_{m,n} \neq \emptyset$, and uses the fact that $S_{1,2} \neq \emptyset$ ([8, p. 42]).

Proposition 2.1. Let $m, n \in \mathbb{N}$. There exists a continuous surjection $f : \mathbb{R}^m \to \mathbb{R}^n$.

Proof. Let us take $f \in S_{1,2}$. If $f_i := \pi_i \circ f$, i = 1, 2 denotes the *i*-coordinates functions of f ($f = (f_1, f_2)$), then the map $id_{\mathbb{R}} \times f$: $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$ defined by $(id_{\mathbb{R}} \times f)(t,s) := (t, f_1(s), f_2(s))$ is a continuous surjection. Thus, $(id_{\mathbb{R}} \times f) \circ f$ is in $S_{1,3}$. Proceeding in an induction manner, we can assure the existence of a function *g* belonging to $S_{1,n}$ for every $n \in \mathbb{N}$. Hence, defining $F : \mathbb{R}^m \longrightarrow \mathbb{R}^n$ by $F := g \circ \pi_1$, i.e.,

$$F(x) = F(x_1, ..., x_m) = g(x_1)$$
, for all $x = (x_1, ..., x_m) \in \mathbb{R}^m$

 $(\pi_1 : \mathbb{R}^m \longrightarrow \mathbb{R}$ denotes the canonical projection over the first coordinate), we conclude that $F \in S_{m,n}$ (*F* is composition of continuous surjective functions).

Attempting maximal lineability of $S_{m,n}$ (that is, c-lineability) we make use of the following remark (inspired in a result from [1]), which indicates a method to obtain our main result.

Remark 2.2. Given a continuous surjection $f : \mathbb{R}^m \longrightarrow \mathbb{R}^n$, suppose we have $\mathcal{X} \subset \mathcal{C}(\mathbb{R}^n; \mathbb{R}^n)$ a subset of *c*-many linearly independent functions such that every nonzero element of span(\mathcal{X}) is a continuous surjection. Then, we have that

$$\mathcal{Y} := \{F \circ f\}_{F \in \mathcal{X}} \subset \mathcal{C}\left(\mathbb{R}^m; \mathbb{R}^n\right)$$

has cardinality **c***, is linearly independent and is formed just by continuous surjections. Moreover,*

$$span(\mathcal{Y}) \subset \mathcal{S}_{m,n} \cup \{0\},\$$

obtaining the c-lineability of $S_{m,n}$.

In order to continue we shall need two lemmas and some notation. First, let us consider (for r > 0) the homeomorphism $\phi_r : \mathbb{R} \to \mathbb{R}$ given by

$$\phi_r(t) := e^{rt} - e^{-rt}.$$

Lemma 2.3. The subset $\mathfrak{A} := \{\phi_r\}_{r \in \mathbb{R}^+}$ of $\mathbb{R}^{\mathbb{R}}$ is linearly independent, has cardinality \mathfrak{c} , and every nonzero element of span (\mathfrak{A}) is continuous and surjective.

Proof. First let us prove that every nonzero element $\phi = \sum_{i=1}^{k} \alpha_i \cdot \phi_{r_i} \in \text{span}(\mathfrak{A})$ is surjective. We may suppose that $r_1 > r_2 > \cdots > r_k$ and $\alpha_1 \neq 0$. Writing

$$\phi(t) = e^{r_1 t} \cdot \left(\alpha_1 + \sum_{i=2}^k \alpha_i \cdot e^{(r_i - r_1)t} \right) - \sum_{i=1}^k \alpha_i \cdot e^{-r_i t},$$

we conclude that $\lim_{t\to+\infty} \phi(t) = \operatorname{sign}(\alpha_1) \cdot \infty$ and, by a similar argument, $\lim_{t\to-\infty} \phi(t) = -\operatorname{sign}(\alpha_1) \cdot \infty$. Thus, the continuity of ϕ assures its surjection. Now let us see that \mathfrak{A} is linearly independent: suppose that $\psi = \sum_{i=1}^{n} \lambda_i \cdot \phi_{s_i} = 0$. If there is some $\lambda_j \neq 0$, we may suppose that $s_1 > \cdots > s_n$ and $\lambda_1 \neq 0$. Repeating the argument above, we obtain

$$\lim_{t \to +\infty} \psi(t) = \operatorname{sign}(\lambda_1) \cdot \infty \text{ and } \lim_{t \to -\infty} \psi(t) = -\operatorname{sign}(\lambda_1) \cdot \infty,$$

which contradicts $\psi = 0$. This proves that \mathfrak{A} is linearly independent. The other assertions are easy to prove.

For each $r = (r_1, ..., r_n) \in (\mathbb{R}^+)^n$, let φ_r be the homeomorphism from \mathbb{R}^n to \mathbb{R}^n defined by $\varphi_r = (\phi_{r_1}, ..., \phi_{r_n})$, *i.e.*,

$$\varphi_r(x) := (\phi_{r_1}(x_1), \dots, \phi_{r_n}(x_n)), \text{ for all } x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Working on each coordinate, and using the previous lemma, we have the following.

Lemma 2.4. The set $\mathfrak{B} = \{\varphi_r\}_{r \in (\mathbb{R}^+)^n}$ of $\mathcal{C}(\mathbb{R}^n; \mathbb{R}^n)$ is linearly independent, has cardinality \mathfrak{c} , and every nonzero element of span (\mathfrak{B}) is continuous and surjective.

Now it is time to state and prove our main result.

Theorem 2.5. $S_{m,n}$ is c-lineable.

Proof. Let $f \in S_{m,n}$. Using the notation of the previous lemma and the ideas of the Remark 2.2, we now prove that the set $\mathfrak{C} = \{F \circ f\}_{F \in \mathfrak{B}}$ is so that span(\mathfrak{C}) is the space we are looking for.

The surjectivity of *f* assures that $G \circ f = 0$ implies G = 0, for every function *G* from \mathbb{R}^n to \mathbb{R}^n . Thus, if $G_i \in \mathfrak{B}$, i = 1, ..., k and

$$0 = \sum_{i=1}^{k} \alpha_i \cdot G_i \circ f = \left(\sum_{i=1}^{k} \alpha_i G_i\right) \circ f,$$

then $\sum_{i=1}^{k} \alpha_i G_i = 0$; so since \mathfrak{B} is linearly independent, we conclude that $\alpha_i = 0$, i = 1, ..., k and thus, \mathfrak{C} is linearly independent. Thus, clearly, it has cardinality \mathfrak{c} . Furthermore, any nonzero function

$$\sum_{i=1}^{l} \lambda_i \cdot F_i \circ f = \left(\sum_{i=1}^{l} \lambda_i F_i\right) \circ f$$

of span(\mathfrak{C}) is continuous and surjective, since it is the composition of continuous surjective functions (recall that, from Lemma 2.4, $\sum_{i=1}^{l} \lambda_i F_i$ is a continuous surjective function). Therefore, span(\mathfrak{C}) only contains, except for the zero function, continuous surjective functions.

Remark 2.6. As we mentioned in the Introduction, and since dim $C(\mathbb{R}^m, \mathbb{R}^n) = \mathfrak{c}$, this result is the best possible in terms of dimension. The next step (in sense of trying a similar result in higher dimensions) could be related to the lineability of $S_{m,\mathbb{N}}$ (the set of the continuous surjections from \mathbb{R} onto $\mathbb{R}^{\mathbb{N}}$ with the product topology). However this is not possible, since $S_{m,\mathbb{N}} = \emptyset$ ([9, p. 275]).

Remark 2.7. The case of injective functions deserves some comments. In $\mathbb{R}^{\mathbb{R}}$ the set of surjective functions is 2^c-lineable, while the set of injective functions is only 1-lineable and, consequently, also the set of bijections in $\mathbb{R}^{\mathbb{R}}$. In fact, given two linearly independent injective functions $f,g : \mathbb{R} \to \mathbb{R}$, take $x \neq y$ in \mathbb{R} and $\alpha = \frac{f(x) - f(y)}{g(y) - g(x)} \in \mathbb{R}$. Then the function $h := f + \alpha g \in \text{span}(f,g)$ satisfies h(x) = h(y) and, therefore, is not injective. This argument can be easily adapted to functions from \mathbb{R}^n to \mathbb{R} .

Acknowledgement. The author thanks the referee for important suggestions that helped to improve the paper.

References

- [1] R. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda, *Lineability and spaceability* of sets of functions on \mathbb{R} , Proc. Amer. Math. Soc. **133** (2005), no. 3, 795–803 (electronic).
- [2] R. M. Aron and J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25–31.
- [3] L. Bernal-González, *Algebraic genericity of strict-order integrability*, Studia Math. **199** (2010), no. 3, 279–293.
- [4] L. Bernal-González, D. M. Pellegrino, and J. B. Seoane-Sepúlveda, *Linear subsets of nonlinear sets in topological vector spaces*, Bull. Amer. Math. Soc. 51 (2014), 71–130.
- [5] J. L. Gámez-Merino, *Large algebraic structures inside the set of surjective functions*, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 2, 297–300.
- [6] J. L. Gámez-Merino, G. A. Muñoz-Fernández, V. M. Sánchez, and J. B. Seoane-Sepúlveda, *Sierpiński-Zygmund functions and other problems on lineability*, Proc. Amer. Math. Soc. **138** (2010), no. 11, 3863–3876.
- [7] J. L. Gámez-Merino, G. A. Muñoz-Fernández, and J. B. Seoane-Sepúlveda, *Lineability and additivity in* ℝ^ℝ, J. Math. Anal. Appl. **369** (2010), no. 1, 265– 272.
- [8] A. B. Kharazishvili, Strange functions in real analysis, 2nd ed., Pure and Applied Mathematics (Boca Raton), vol. 272, Chapman & Hall/CRC, Boca Raton, FL, 2006.
- [9] J. R. Munkres, *Topology*, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2000.
- [10] G. Peano, *Sur une courbe, qui remplit toute une aire plane*, Math. Ann. **36** (1890), no. 1, 157–160.

Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 - João Pessoa, Brazil. email:ngalbqrq@gmail.com