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Abstract

Let m, n be positive integers. In this short note we prove that the set of all
continuous and surjective functions from Rm to Rn contains (excluding the
0 function) a c-dimensional vector space. This result is optimal in terms of
dimension.

1 Preliminaries

Lately the study of the linear structure of certain subsets of surjective func-
tions in RR (such as everywhere surjective functions, perfectly everywhere sur-
jective functions, or Jones functions) has attracted the attention of several au-
thors working on Real Analysis and Set Theory (see, e.g. [1, 2, 4, 6, 7]). The pre-
viously mentioned functions are, indeed, very “pathological”: for instance an
everywhere surjective function f in RR verifies that f (I) = R for every interval
I ⊂ R and the other classes (perfectly everywhere surjective functions and Jones
functions) are particular cases of everywhere surjective functions and, thus, with
even “worse” behavior. It has been shown [5] that there exists a 2c-dimensional
vector space every non-zero element of which is a Jones function and, thus, every-
where surjective (here, c stands for the cardinality of R). Of course, this previous
result is optimal in terms of dimension since dim(RR)= 2c. However, all the pre-
vious classes are nowhere continuous, thus, it is natural to ask about the set of
continuous surjections. The aim of this short note is to prove, in a more general
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framework than that of R
R, that (for every m, n ∈ N) the set of continuous surjec-

tions from Rm onto Rn is c-lineable [1] (that is, it contains a c-dimensional vector
space every non-zero element of which is a continuous surjective function from
Rm onto Rn). Since dim C (Rm, Rn) = c we have that this result would be the best
possible in terms of dimension, that is, the set of continuous surjections from Rm

onto R
n is maximal lineable [3].

While there are many trivial examples of surjective continuous functions in
RR, coming up with a concrete example of a continuous surjective function from
R onto R2 is a totally different story. The existence of a continuous surjection
from R onto R

2 (a Peano type function) can be found in [8, p. 42] or [9, p. 274].

Both references use the existence of a continuous surjection from [0, 1] onto [0, 1]2

(a Peano curve in [0, 1]2 or a space filling curve). The existence of this kind of curve
was proved by G. Peano in the classical paper [10]. In [8] this result is proved by
invoking a result due to A. D. Alexandrov: there is a continuous surjection from
the Cantor space K onto any arbitrary nonempty compact metric space (see [8, p.
40]); in [9, section 44] the construction of the Peano curve is done geometrically,
and is a consequence of the completeness of the space C(X, M) of all continuous
functions from a topological space X to a complete metric space M, considering
C(X, M) with the uniform metric.

2 The lineability of the set of continuous surjections from Rm

to Rn

Let m and n be positive integers. Throughout this note we shall denote

Sm,n = { f : R
m −→ R

n ; f is continuous and surjective} .

The following result shows that Sm,n 6= ∅, and uses the fact that S1,2 6= ∅

([8, p. 42]).

Proposition 2.1. Let m, n ∈ N. There exists a continuous surjection f : R
m → R

n.

Proof. Let us take f ∈ S1,2. If fi := πi ◦ f , i = 1, 2 denotes the i-coordinates
functions of f ( f = ( f1, f2)), then the map idR × f : R2 −→ R3 defined by
(idR × f ) (t, s) := (t, f1(s), f2(s)) is a continuous surjection. Thus, (idR × f ) ◦ f
is in S1,3. Proceeding in an induction manner, we can assure the existence of a
function g belonging to S1,n for every n ∈ N. Hence, defining F : Rm −→ Rn by
F := g ◦ π1, i.e.,

F(x) = F(x1, . . . , xm) = g(x1) , for all x = (x1, . . . , xm) ∈ R
m

(π1 : R
m −→ R denotes the canonical projection over the first coordinate), we

conclude that F ∈ Sm,n (F is composition of continuous surjective functions).

Attempting maximal lineability of Sm,n (that is, c-lineability) we make use of
the following remark (inspired in a result from [1]), which indicates a method to
obtain our main result.
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Remark 2.2. Given a continuous surjection f : R
m −→ R

n, suppose we have
X ⊂ C (Rn; Rn) a subset of c-many linearly independent functions such that every
nonzero element of span(X ) is a continuous surjection. Then, we have that

Y := {F ◦ f}F∈X ⊂ C (Rm; R
n)

has cardinality c, is linearly independent and is formed just by continuous surjections.
Moreover,

span(Y) ⊂ Sm,n ∪ {0},

obtaining the c-lineability of Sm,n.

In order to continue we shall need two lemmas and some notation. First, let
us consider (for r > 0) the homeomorphism φr : R → R given by

φr(t) := ert − e−rt.

Lemma 2.3. The subset A := {φr}r∈R+ of RR is linearly independent, has cardinality
c, and every nonzero element of span(A) is continuous and surjective.

Proof. First let us prove that every nonzero element φ = ∑
k
i=1 αi · φri

∈ span(A) is
surjective. We may suppose that r1 > r2 > · · · > rk and α1 6= 0. Writing

φ(t) = er1t ·

(

α1 +
k

∑
i=2

αi · e(ri−r1)t

)

−
k

∑
i=1

αi · e−rit,

we conclude that lim
t→+∞

φ(t) = sign(α1) · ∞ and, by a similar argument,

lim
t→−∞

φ(t) = −sign(α1) · ∞. Thus, the continuity of φ assures its surjection. Now

let us see that A is linearly independent: suppose that ψ = ∑
n
i=1 λi · φsi

= 0. If
there is some λj 6= 0, we may suppose that s1 > · · · > sn and λ1 6= 0. Repeating
the argument above, we obtain

lim
t→+∞

ψ(t) = sign(λ1) · ∞ and lim
t→−∞

ψ(t) = −sign(λ1) · ∞,

which contradicts ψ = 0. This proves that A is linearly independent. The other
assertions are easy to prove.

For each r = (r1, . . . , rn) ∈ (R+)n, let ϕr be the homeomorphism from Rn to
Rn defined by ϕr = (φr1

, . . . , φrn), i.e.,

ϕr(x) := (φr1
(x1), . . . , φrn(xn)), for all x = (x1, . . . , xn) ∈ R

n.

Working on each coordinate, and using the previous lemma, we have the
following.

Lemma 2.4. The set B = {ϕr}r∈(R+)n of C(Rn; Rn) is linearly independent, has cardi-

nality c, and every nonzero element of span(B) is continuous and surjective.

Now it is time to state and prove our main result.
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Theorem 2.5. Sm,n is c-lineable.

Proof. Let f ∈ Sm,n. Using the notation of the previous lemma and the ideas of
the Remark 2.2, we now prove that the set C = {F ◦ f}F∈B is so that span(C) is
the space we are looking for.

The surjectivity of f assures that G ◦ f = 0 implies G = 0, for every function
G from R

n to R
n. Thus, if Gi ∈ B, i = 1, . . . , k and

0 =
k

∑
i=1

αi · Gi ◦ f =

(

k

∑
i=1

αiGi

)

◦ f ,

then ∑
k
i=1 αiGi = 0; so since B is linearly independent, we conclude that αi =

0, i = 1, . . . , k and thus, C is linearly independent. Thus, clearly, it has cardinality
c. Furthermore, any nonzero function

l

∑
i=1

λi · Fi ◦ f =

(

l

∑
i=1

λiFi

)

◦ f

of span(C) is continuous and surjective, since it is the composition of continuous

surjective functions (recall that, from Lemma 2.4, ∑
l
i=1 λiFi is a continuous sur-

jective function). Therefore, span(C) only contains, except for the zero function,
continuous surjective functions.

Remark 2.6. As we mentioned in the Introduction, and since dim C (Rm, Rn) = c,
this result is the best possible in terms of dimension. The next step (in sense of trying a
similar result in higher dimensions) could be related to the lineability of Sm,N (the set of
the continuous surjections from R onto RN with the product topology). However this is
not possible, since Sm,N = ∅ ([9, p. 275]).

Remark 2.7. The case of injective functions deserves some comments. In RR the set
of surjective functions is 2c-lineable, while the set of injective functions is only 1-lineable
and, consequently, also the set of bijections in RR. In fact, given two linearly independent

injective functions f , g : R → R, take x 6= y in R and α =
f (x)− f (y)
g(y)−g(x)

∈ R. Then the

function h := f + αg ∈ span ( f , g) satisfies h(x) = h(y) and, therefore, is not injective.
This argument can be easily adapted to functions from R

n to R.
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