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Abstract

In this paper, we study the existence of nontrivial solutions and ground
state solutions for the second order Hamiltonian systems:

ü(t) + A(t)u(t) +∇F(t, u(t)) = 0 a.e. t ∈ [0, T],

where A(t) is a N × N symmetric matrix, continuous and T-periodic in t. Re-
placing the classical Ambrosetti-Rabinowitz superquadratic condition by a
general superquadratic condition, we prove some existence theorems, which
unify and improve some recent results in the literature.

1 Introduction and main results

Consider the second order Hamiltonian systems

ü(t) + A(t)u(t) +∇F(t, u(t)) = 0 a. e. t ∈ [0, T], (1.1)

where A(t) is a N × N symmetric matrix, continuous and T-periodic (T > 0) in t.
F : [0, T]× RN → R satisfies the following assumption:
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(A) F(t, x) is measurable in t for every x ∈ RN and continuously differentiable
in x for a.e. t ∈ [0, T], and there exist a ∈ C(R+, R+), b ∈ L1(0, T; R+) such
that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T].

Under assumption (A), the energy functional associated to problem (1.1) given
by

ϕ(u) =
1

2

∫ T

0
|u̇(t)|2dt − 1

2

∫ T

0
(A(t)u(t), u(t))dt −

∫ T

0
F(t, u(t))dt

is of class C1 on H1
T, where

H1
T =

{
u : [0, T] → RN

∣∣∣∣
u is absolutely continuous,
u(0) = u(T) and u̇ ∈ L2(0, T; RN)

}

is a Hilbert space with the norm defined by

‖u‖ =

(∫ T

0
|u(t)|2dt +

∫ T

0
|u̇(t)|2dt

)1/2

.

It is well known that the critical points of ϕ are weak solutions of problem (1.1)
(see [1]).

The existence of periodic solution of problem (1.1), where A(t) ≡ 0, was stud-
ied in Rabinowitz [2] under the following superquadratic condition:

(AR) There exist µ > 2 and L > 0 such that

0 < µF(t, x) ≤ (∇F(t, x), x), ∀|x| ≥ L, a.e. t ∈ [0, T].

Since then, this condition has appeared in most of the studies for superquadratic
problems, see [1, 3, 4] and references therein. A more natural condition than
condition (AR) is that:

(F1) F(t, x)/|x|2 → +∞ as |x| → ∞ uniformly for a.e. t ∈ [0, T].

Although the (AR) condition is quite natural and important not only to en-
sure that the Euler-Lagrange functional ϕ has a mountain pass geometry, but also
to guarantee that the Palais-Smale sequence of ϕ is bounded, it is somewhat re-
strictive and eliminates many functions. For example, the function

F(t, x) = |x|2 ln(1 + |x|2), ∀(t, x) ∈ R × RN

is superquadratic at infinity, but it does not satisfy condition (AR) for any µ > 2.
For this reason, in recent years, some authors tried to weaken condition (AR).

We refer the readers to [5-16]. Fei [5] studied problem (1.1), where A(t) ≡ 0,
replacing the (AR) condition by

lim inf
|x|→∞

(∇F(t, x), x) − 2F(t, x)

|x|β > 0 uniformly in t,
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for some β > 1. This result has been generalized in [6, 9, 10], where the existence
of periodic and subharmonic solutions of problem (1.1) was established by using
Rabinowitz’s generalized mountain pass theorem and the local linking theorem
related to it. See also [8, 15, 16]. On the other hand, Schechter [12] assumed the
local superquadratic condition: there is a subset E ⊂ [0, T] with meas(E) > 0
such that

lim inf
|x|→∞

F(t, x)

|x|2 > 0 uniformly for a.e. t ∈ E,

instead of (AR). By means of a Nehari type argument, Szulkin and Weth [13]
proved the existence of a ground state solution of problem (1.1), i.e., solutions
corresponding to the least energy of the action functional ϕ of problem (1.1). They
made the following assumptions:

(A1) F ∈ C(R × RN , R), ∇F ∈ C(R × RN , RN) and F is 2π-periodic in t.

(A2) F(t, x)/|x|2 → +∞ as |x| → ∞ uniformly in t.

(A3) |∇F(t, x)| = o(|x|) as |x| → 0 uniformly in t.

(A4) s 7−→ s−1(∇F(t, sx), x) is strictly increasing for all x 6= 0 and s > 0.

Theorem A (see [13, Theorem 29]). Suppose that F satisfies (A1)-(A4). Then prob-
lem (1.1), where A(t) = −IN, has a 2π-periodic ground state solution.

Very recently, Chen and Ma [14] considered the case that 0 lies in a gap of
σ(B), where B := −d2/dt2 − A(t), i.e.,

(L0) Λ := sup(σ(B)
⋂
(−∞, 0)) < 0 < Λ := inf(σ(B)

⋂
(0,+∞)).

They obtained a ground state solution of problem (1.1) under conditions (A2),
(A3) and:

(B1) (∇F(t, x), y) 6= (∇F(t, y), x) for any t ∈ R, if |x| 6= |y| and (x, y) 6= 0.

(B2) (∇F(t, x), y)(x, y) ≥ 0 uniformly in t.

(B3) |∇F(t, x)| ≤ a(1 + |x|λ−1) for some a > 0 and λ > 2.

(B4) F(t, x) ≥ 0 for all x ∈ RN , 1
2(∇F(t, x), x) > F(t, x) for all x ∈ RN\ {0}.

(B5) F(t, x) = F(t, y) and (∇F(t, x), y) ≤ (∇F(t, x), x) uniformly in t, if |x| = |y|.
Theorem B (see [14, Theorem 1.1]). Suppose that F : RN × R → R is continuous,
T-periodic in t and continuously differentiable in x. Assume that (L0), (A2), (A3)
and (B1)-(B5) are satisfied. Then problem (1.1) has at least one ground state T-periodic
solution.

We should mention that in [14], the authors applied a variant generalized
weak linking theorem for strongly indefinite functionals developed by Schechter
and Zou [17], which was used to investigate the existence of ground solutions for
Schrödinger equations, see [18, 19, 20]. This approach is not very satisfactory, be-
cause working with a family of perturbed functionals makes things unnecessarily
complicated.
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In this paper, using an approach different to that of [13, 14], i.e., the general-
ized mountain pass theorem of Rabinowitz, we can prove the same result under
more generic conditions, which unifies and improves Theorems A and B.

Theorem 1.1. Assume that assumptions (L0), (A) and (F1) are satisfied and:

(F2) |∇F(t, x)| = o(|x|) as |x| → 0 uniformly for a.e. t ∈ [0, T].

(F3) For each (t, x) ∈ [0, T]× RN ,

s 7−→ (∇F(t, sx), x)

s
is increasing in s > 0.

Then problem (1.1) has at least one T-periodic ground state solution.

Remark 1.1. It is important to note that condition (F3) holds for functions F in
Theorem B. Indeed, assumption (B1), together with (A3) and (B2), implies that

g(s) :=
(∇F(t, sx), x)

s
is strictly increasing in s > 0.

For s1, s2 ∈ (0,+∞) with s1 6= s2, using (B1), we get

(∇F(t, s1x), s2x) 6= (∇F(t, s2x), s1x), ∀t ∈ [0, T], x ∈ RN\ {0} ,

so that,

g(s1) =
(∇F(t, s1x), x)

s1
6= (∇F(t, s2x), x)

s2
= g(s2)

for all t ∈ [0, T] and x ∈ RN\ {0}. Hence g must be a strictly monotone mapping
on (0,+∞). It follows from (A3) that

|g(s)| ≤ |∇F(t, sx)||x|
s

=
|∇F(t, sx)|

|sx| |x|2 → 0 (s → 0+),

which implies that

lim
s→0+

g(s) = 0. (1.2)

Moreover, using (B2), we obtain

g(s)|sx|2 =
(∇F(t, sx), x)

s
(sx, sx) = (∇F(t, sx), x)(sx, x) ≥ 0

for all (t, x) ∈ [0, T]× RN and s > 0, which yields that

g(s) ≥ 0, ∀s > 0.

This, together with (1.2) and the monotonicity of g, shows that g is strictly in-
creasing in s > 0.
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Remark 1.2. Theorem 1.1 unifies and extends Theorems A and B.

• Comparing with Theorem A, the strictly increasing assumption is removed
and the range of the matrix A(t) is expanded. Hence our result applies to
more general situations. We emphasize that the strictly increasing assump-
tion plays an essential role in their argument. In fact, the starting point of
their approach is to show that for each w ∈ E\ {0}, there exists exactly one
point sw ∈ R such that sww belongs to the Nehari manifold

N =
{

u ∈ E\ {0} : ϕ′(u)u = 0
}

.

The uniqueness of sw enables one to define a map m̂ : E\ {0} → N
with m̂(w) = sww, which is important in the remaining proof.
If s → s−1(∇F(t, sx), x) is not strictly increasing, then sw may not unique
and their argument collapses.

• As stated in Remark 1.1, (B1), jointly with (A3) and (B2), is stronger than
(F3). Besides, the conditions (B3), (B4) and (B5) in Theorem B are com-
pletely removed. Therefore, Theorem 1.1 greatly improves Theorem B.

There are functions F satisfying our Theorem 1.1 and not satisfying Theorems A
and B. For example, let

F(t, x) =

{
|x|2 ln |x| − 1

2 |x|2 + 1
2 , |x| ≥ 1,

0, |x| < 1.

When the global condition (F3) is replaced by the local one:

(F4) For every (t, x) ∈ [0, T]× RN , there exists M > 0 such that

s 7−→ (∇F(t, sx), x)

s
is increasing in s > M.

We can establish the existence of nontrivial solution of problem (1.1) by using the
local linking theorem due to Luan and Mao (see [7]).

Theorem 1.2. Assume that assumptions (A), (F1), (F2) and (F4) are satisfied. If 0 is an
eigenvalue of −d2/dt2 − A(t) (with periodic boundary condition), assume also

(F5) F(t, x) ≥ 0 (or F(t, x) ≤ 0), ∀|x| ≤ r, t ∈ [0, T] for some r > 0.

Then problem (1.1) has at least one nontrivial T-periodic solution.

Remark 1.3. There are functions F(t, x) satisfying our Theorem 1.2 and not satis-
fying Theorems A, B and 1.1. For example, let

F(t, x) =

{ |x|2 ln |x| − |x|2 + 2
3 , |x| ≥ 1,

− 1
3 |x|3, |x| < 1.

It is easy to verify that F(t, x) satisfies all the conditions of Theorem 1.2. But it
does not satisfy Theorems A, B and 1.1, since for t ∈ [0, T] and x ∈ RN\ {0},
s 7−→ s−1(∇F(t, sx), x) is nonincreasing on (0, 1/|x|).
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We shall prove more general results than Theorems 1.1 and 1.2.

Theorem 1.3. Assume that assumptions (L0), (A), (F1) and (F2) are satisfied and:

(F′
3) There exists θ ≥ 1 such that

F (t, sx) ≤ θF (t, x), ∀(t, x) ∈ [0, T]× RN , s ∈ [0, 1].

Then problem (1.1) has at least one ground state T-periodic solution.

Remark 1.4. Condition (F′
3) is originally due to Jeanjean [21] for a semilinear

problem on RN . Later, it was used in Liu and Li [22] to obtain infinitely many
solutions for p-Laplacian equations setting on a bounded domain. To the best of
our knowledge, there are few works concerning Hamiltonian systems with this
assumption.

Theorem 1.4. Assume that assumptions (A), (F1) and (F2) are satisfied and:

(F′
4) There exists θ ≥ 1 and C∗ ∈ L1(0, T; R+) such that

F (t, sx) ≤ θF (t, x) + C∗(t)

for all (t, x) ∈ [0, T]× RN and s ∈ [0, 1].

If 0 is an eigenvalue of −d2/dt2 − A(t) (with periodic boundary condition), assume also
(F5). Then problem (1.1) has at least one nontrivial T-periodic solution.

Remark 1.5. If (F4) holds, then for each (t, x) ∈ [0, T] × RN , s 7−→ F (t, sx) is
increasing in s > M. Indeed, suppose that M ≤ a ≤ b, we have

F (t, bx)−F (t, ax)

= 2

[
1

2
((∇F(t, bx), bx) − (∇F(t, ax), ax)) − (F(t, bx) − F(t, ax))

]

= 2

[∫ b

M

(∇F(t, bx), x)

b
τdτ −

∫ a

M

(∇F(t, ax), x)

a
τdτ

−
∫ b

a

(∇F(t, τx), x)

τ
τdτ

]
+ M2

(
(∇F(t, bx), x)

b
− (∇F(t, ax), x)

a

)

= 2
∫ a

M

(
(∇F(t, bx), x)

b
− (∇F(t, ax), x)

a

)
τdτ

+2
∫ b

a

(
(∇F(t, bx), x)

b
− (∇F(t, τx), x)

τ

)
τdτ

+M2

(
(∇F(t, bx), x)

b
− (∇F(t, ax), x)

a

)

≥ 0.

Particularly, using assumption (A), we see that

C∗(t) = 1 + sup
|y|≤M

F (t, y)− inf
|y|≤M

F (t, y) ∈ L1(0, T; R+).

With this C∗(t) and θ = 1, it is easy to check that (F′
4) holds. Similarly, (F3)

implies (F′
3). Therefore, Theorems 1.3 and 1.4 generalize Theorems 1.1 and 1.2,

respectively.

The paper is organized as follows. In Section 2, we state some preliminaries
and discuss the (C)∗ condition. In Section 3, we prove the main theorems.
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2 Preliminaries

Since the embedding of H1
T into C(0, T; RN) is compact, there exists a constant

C > 0 such that

‖u‖∞ ≤ C‖u‖, ∀u ∈ H1
T, (2.1)

where ‖u‖∞ = maxt∈[0,T] |u(t)|.
By the spectral theorem for compact self-adjoint operators on a Hilbert space,

the differential operator u → −ü − A(t)u has a sequence of eigenvalues (counted
in their multiplicities)

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·
with λn → +∞ as n → ∞, and the corresponding system of eigenfunctions
{en : n ∈ N} (−ën − A(t)en = λnen) which forms an orthogonal basis of H1

T. Set

n− = # {i |λi < 0} , n0 = # {i |λi = 0} , n̄ = n− + n0,

and

H− = span {e1, · · · , en−} , H0 = span {en−+1, · · · , en̄} , H+ = span {en̄+1, · · · }.

Then one has
H1

T = H+
⊕

H− ⊕
H0,

and there exists δ > 0 such that

∫ T

0
|u̇|2dt −

∫ T

0
(A(t)u, u)dt ≥ δ‖u‖2 (2.2)

for u ∈ H+ and

∫ T

0
|u̇|2dt −

∫ T

0
(A(t)u, u)dt ≤ −δ‖u‖2 (2.3)

for u ∈ H− (see [1, p. 89]). For u ∈ H1
T, we always write u = u+ + u− + u0, where

u± ∈ H± and u0 ∈ H0.

In order to find the critical points of ϕ, we shall show that ϕ satisfies the (C)∗

condition. Let X be a real Banach space with X = X1 ⊕ X2 and X
j
0 ⊂ X

j
1 ⊂ · · · ⊂

X j such that X j =
⋃

n∈N X
j
n, j = 1, 2. For every multi-index α = (α1, α2) ∈ N2,

denote Xα = X1
α1

⊕
X2

α2
. We say α ≤ β ⇐⇒ α1 ≤ β1, α2 ≤ β2. A sequence (αn) ⊂

N2 is admissible if, for every α ∈ N2 there is m ∈ N such that n ≥ m ⇒ αn ≥ α.
We say that ϕ ∈ C1(X, R) satisfies the (C)∗ condition if every sequence (uαn) such
that (αn) is admissible and

uαn ∈ Xαn , sup
n

ϕ(uαn) < ∞, (1 + ‖uαn‖)‖ϕ′(uαn)‖ → 0

contains a subsequence which converges to a critical point of ϕ.
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Lemma 2.1. Suppose that assumptions (A), (F1) and (F′
4) hold, then ϕ satisfies the (C)∗

condition.

Proof. Let X = H1
T, X1 = H+, X2 = H− ⊕

H0 and define

X1
n = span {en̄+1, · · · , en̄+n} , ∀n ∈ N,

X2
n = X2, ∀n ∈ N.

Then

X j =
⋃

n∈N

X
j
n, j = 1, 2.

Set (uαn) be a sequence in H1
T such that (αn) is admissible and satisfying

uαn ∈ Xαn , c1 := sup
n

ϕ(uαn) < ∞, (1 + ‖uαn‖)‖ϕ′(uαn)‖ → 0.

Hence, with un := uαn , we have

lim sup
n→∞

∫ T

0

(
1

2
(∇F(t, un), un)− F(t, un)

)
dt =

lim sup
n→∞

(
ϕ(un)−

1

2
〈ϕ′(un), un〉

)
≤ c1. (2.4)

Arguing indirectly, assume ‖un‖ → ∞. Take wn = un/‖un‖, going if necessary to
a subsequence, we get

wn ⇀ w weakly in H1
T,

wn → w strongly in C(0, T; RN). (2.5)

If w = 0, inspired by [21, 23], we choose a sequence (sn) ⊂ R such that

ϕ(snun) = max
s∈[0,1]

ϕ(sun).

For any m > 0, taking vn =
√

2mwn, one has

vn → 0 in C(0, T; RN) (2.6)

by (2.5). Now for n large enough,
√

2m‖un‖−1 ∈ (0, 1), we deduce

ϕ(snun) ≥ ϕ(vn)

= m − 1

2

∫ T

0
|vn|2dt − 1

2

∫ T

0
(A(t)vn , vn)dt −

∫ T

0
F(t, vn)dt,

which implies that

lim inf
n→∞

ϕ(snun) ≥ m −
∫ T

0
F(t, 0)dt ≥ m − a(0)

∫ T

0
b(t)dt

by (2.6) and assumption (A). Since m is arbitrary, we have

lim
n→∞

ϕ(snun) = +∞.
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Noticing ϕ(0) < +∞ and sup
n

ϕ(un) ≤ c1, we see that, for n sufficiently large,

sn ∈ (0, 1), and

∫ T

0
|snu̇n|2dt −

∫ T

0
(A(t)snun, snun)dt −

∫ T

0
(∇F(t, snun), snun)dt

= 〈ϕ′(snun), snun〉

= sn
d

ds

∣∣∣∣
s=sn

ϕ(sun)

= 0.

Therefore, using (F′
4),

∫ T

0

(
1

2
(∇F(t, un), un)− F(t, un)

)
dt

≥ 1

2θ

∫ T

0
F (t, snun)dt − 1

2θ

∫ T

0
C∗(t)dt

=
1

θ

∫ T

0

(
1

2
(∇F(t, snun), snun)− F(t, snun)

)
dt

− 1

2θ

∫ T

0
C∗(t)dt

=
1

θ

∫ T

0

(
1

2
|snu̇n|2 −

1

2
(A(t)snun, snun)− F(t, snun)

)
dt

− 1

2θ

∫ T

0
C∗(t)dt

=
1

θ
ϕ(snun)−

1

2θ

∫ T

0
C∗(t)dt

→ +∞,

a contradiction with (2.4).
If w 6= 0, the set Ω1 = {t ∈ [0, T] : w(t) 6= 0} has positive Lebesgue measure.

For t ∈ Ω1, one has |un(t)| → ∞ as n → ∞, so that, using (F1),

F(t, un(t))

|un(t)|2
|wn(t)|2 → +∞ as n → ∞.

It follows from Lebesgue-Fatou Lemma (see [24]) that
∫

w 6=0

F(t, un)

‖un‖2
dt =

∫

w 6=0

F(t, un)

|un|2
|wn|2dt → +∞ as n → ∞. (2.7)

On the other hand, assumptions (A) and (F1) imply that there exists L > 0 such
that

F(t, x) ≥ − max
s∈[0,L]

a(s)b(t), ∀x ∈ RN and a.e. t ∈ [0, T]. (2.8)

Hence we obtain

∫

w=0

F(t, un)

‖un‖2
dt ≥ −

maxs∈[0,L] a(s)
∫ T

0 b(t)dt

‖un‖2
,
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which yields that

lim inf
n→∞

∫

w=0

F(t, un)

‖un‖2
dt ≥ 0. (2.9)

By the continuity of A(·), we deduce that there exists a constant G ≥ 1 such that

∣∣∣∣
∫ T

0
(A(t)u, u)dt

∣∣∣∣ ≤ G
∫ T

0
|u|2dt, ∀u ∈ H1

T. (2.10)

Note

ϕ(un) =
1

2
‖un‖2 − 1

2

∫ T

0
|un|2dt− 1

2

∫ T

0
(A(t)un , un)dt−

∫ T

0
F(t, un)dt, ∀n ∈ N.

Dividing both sides by ‖un‖2 and letting n → ∞, we obtain

1

2
=

1

2

∫ T

0
|w|2dt +

1

2

∫ T

0
(A(t)w, w)dt + lim

n→∞

∫ T

0

F(t, un)

‖un‖2
dt

≥ 1

2
(1 − G)

∫ T

0
|w|2dt + lim

n→∞

(∫

w=0
+

∫

w 6=0

)
F(t, un)

‖un‖2
dt

≥ 1

2
(1 − G)

∫ T

0
|w|2dt + lim

n→∞

∫

w 6=0

F(t, un)

‖un‖2
dt

= +∞

by (2.10), (2.9) and (2.7). This is impossible.
In any case, we deduce a contradiction. Hence (un) is a bounded sequence in

H1
T. Arguing then as in [1, Proposition 4.1], we conclude that the (C)∗ condition

is satisfied.

To end this section, we state the local linking theorem due to Luan and Mao.

Proposition 2.1. ([7, Theorem 2.2]). Suppose that ϕ ∈ C1(X, R) satisfies the
following assumptions:

(ϕ1) X1 6= {0} and ϕ has a local linking at 0 with respect to (X1, X2), i.e., for some
r0 > 0,

ϕ(u) ≥ 0, ∀ u ∈ X1 with ‖u‖ ≤ r0,

ϕ(u) ≤ 0, ∀ u ∈ X2 with ‖u‖ ≤ r0.

(ϕ2) ϕ satisfies (C)∗ condition.

(ϕ3) ϕ maps bounded sets into bounded sets.

(ϕ4) For every m ∈ N, ϕ(u) → −∞ as ‖u‖ → ∞ on X1
m
⊕

X2.

Then ϕ has at least one nonzero critical point.
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3 Proofs of the theorems

Since F(t, x) may be replaced by F(t, x) − F(t, 0), without loss of generality, we
may assume that F(t, 0) = 0 for all t ∈ R.

Proof of Theorem 1.3. The proof will be divided into several steps.
Step 1. Note that (F′

3) corresponds to the special case of (F′
4) with C∗(t) ≡ 0.

As in the proof of Lemma 2.1, we conclude that, under assumptions (A), (F1) and
(F′

3), ϕ satisfies the (C) condition, i.e., (un) has a convergent subsequence in H1
T

whenever {ϕ(un)} is bounded and (1 + ‖un‖)‖ϕ′(un)‖ → 0 as n → ∞.
Step 2. There exist constants α, ρ > 0 such that

ϕ(u) ≥ α > 0, ∀u ∈ H+
⋂

∂Bρ. (3.1)

Applying (F2), for 0 < ε < δ/4, there exists L1 > 0 such that

|∇F(t, x)| ≤ ε|x|, ∀|x| ≤ L1 and a.e. t ∈ [0, T]. (3.2)

Hence

|F(t, x)| ≤ ε|x|2, ∀|x| ≤ L1 and a.e. t ∈ [0, T]. (3.3)

Now for u ∈ H+ with ‖u‖ ≤ L1/C, we have, using (3.3), (2.2) and (2.1),

ϕ(u) ≥ δ

2
‖u‖2 −

∫ T

0
F(t, u)dt

≥ δ

2
‖u‖2 − ε

∫ T

0
|u|2dt

≥ δ

4
‖u‖2.

So, choosing ρ = L1/C and α = δρ2/4, it follows that (3.1) holds.

Step 3. Let e ∈ H+ with ‖e‖ = 1 and H̃ = H− ⊕
H0 ⊕span{e}. Then there

exists ε1 > 0 such that

meas {t ∈ [0, T] : |u(t)| ≥ ε1‖u‖} ≥ ε1, ∀u ∈ H̃\ {0} . (3.4)

Indeed, if this does not hold, we have, for any positive integer n, there exists

un ∈ H̃\ {0} such that

meas

{
t ∈ [0, T] : |un(t)| ≥

1

n
‖un‖

}
<

1

n
.

By the homogeneity of the above inequality, we may assume that ‖un‖ = 1 and

meas

{
t ∈ [0, T] : |un(t)| ≥

1

n

}
<

1

n
, ∀n ∈ N. (3.5)

Noting dimH̃ < +∞, it follows from the compactness of the unit sphere of H̃ that

there exists a subsequence, say (un), such that un → u0 for some u0 ∈ H̃. Hence,

using the equivalence of the norms on H̃, we have un → u0 in L2, i.e.,
∫ T

0
|un − u0|2dt → 0 as n → ∞. (3.6)
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Evidently, ‖u0‖ = 1. So there exist constants d1, d2 > 0 such that

meas {t ∈ [0, T] : |u0(t)| ≥ d1} ≥ d2. (3.7)

Otherwise, one has

meas

{
t ∈ [0, T] : |u0(t)| ≥

1

n

}
= 0, ∀n ∈ N,

which yields that

0 ≤
∫ T

0
|u0|2dt ≤ T‖u0‖2

∞ ≤ T

n2
→ 0

as n → ∞. Thus, u0 = 0, a contradiction with the fact ‖u0‖ = 1.
Now for n ∈ N, let

Λ0 = {t ∈ [0, T] : |u0(t)| ≥ d1} , Λn =

{
t ∈ [0, T] : |un(t)| <

1

n

}
,

and Λ
c
n = [0, T]\Λn. By (3.7) and (3.5), we obtain, for n sufficiently large,

meas(Λ0

⋂
Λn) ≥ meas(Λ0)− meas(Λc

n) ≥ d2 −
1

n
≥ d2

2
.

Therefore, for n large enough,

∫ T

0
|un − u0|2dt ≥

∫

Λ0
⋂

Λn

|un − u0|2dt

≥
∫

Λ0
⋂

Λn

(
d1 −

1

n

)2

dt

≥ d2
1

4
· meas(Λ0

⋂
Λn)

≥ d2
1d2

8
,

which contradicts (3.6). Hence (3.4) holds.
It follows from (F′

3) that

F (t, x) ≥ 1

θ
F (t, 0) = 0, ∀(t, x) ∈ [0, T]× RN ,

that is,

(∇F(t, x), x) − 2F(t, x) ≥ 0, ∀(t, x) ∈ [0, T]× RN . (3.8)

For (t, x) ∈ [0, T]× RN and s > 0, we have

d

ds

(
F(t, sx)

s2

)
=

(∇F(t, sx), sx) − 2F(t, sx)

s3
≥ 0. (3.9)

By (F2),

lim
s→0+

F(t, sx)

s2
= 0. (3.10)
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From (3.10) and (3.9), we deduce that

F(t, x) ≥ 0, ∀(t, x) ∈ [0, T]× RN . (3.11)

Now, for u ∈ H̃, take

Ωu = {t ∈ [0, T] : |u(t)| ≥ ε1‖u‖} .

By (F1), for M = Gε−3
1 , there exists L2 > 0 such that

F(t, x) ≥ M|x|2, ∀|x| ≥ L2 and a.e. t ∈ [0, T]. (3.12)

Hence, for u ∈ H̃ with ‖u‖ ≥ L2/ε1, we obtain

ϕ(u) ≤ −δ

2
‖u−‖2 +

1

2

∫ T

0
|u̇+|2dt − 1

2

∫ T

0
(A(t)u+ , u+)dt −

∫ T

0
F(t, u)dt

≤ 1

2

∫ T

0
|u̇+|2dt +

G

2

∫ T

0
|u+|2dt −

∫

Ωu

F(t, u)dt

≤ G

2
‖u+‖2 − M

∫

Ωu

|u|2dt

≤ G

2
‖u+‖2 − M · ε2

1‖u‖2 · measΩu

≤ G

2
‖u+‖2 − M · ε3

1‖u‖2

≤ −G

2
‖u‖2 (3.13)

by (3.12), (3.11), (2.10) and (2.3). Let

Q = {se : 0 ≤ s ≤ s1}
⊕{

u ∈ H− ⊕
H0 : ‖u‖ ≤ s1

}
.

Then we have
∂Q = Q1

⋃
Q2

⋃
Q3,

where

Q1 =
{

u ∈ H− ⊕
H0 : ‖u‖ ≤ s1

}
,

Q2 = s1e
⊕{

u ∈ H− ⊕
H0 : ‖u‖ ≤ s1

}
,

Q3 = {se : 0 ≤ s ≤ s1}
⊕{

u ∈ H− ⊕
H0 : ‖u‖ = s1

}
.

By (3.13), one has

ϕ(u) ≤ 0, ∀ u ∈ Q2

⋃
Q3

for s1 ≥ L2/ε1. It follows from (3.11) that

ϕ(u) ≤ −δ

2
‖u−‖2 −

∫ T

0
F(t, u)dt ≤ 0, ∀ u ∈ H− ⊕

H0,

which implies that
ϕ(u) ≤ 0, ∀ u ∈ Q1.
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Thus we obtain
ϕ(u) ≤ 0, ∀ u ∈ ∂Q

for s1 >max{ρ, L2/ε1}.
As shown in [25], a deformation lemma can be proved with the weaker con-

dition (C) replacing the usual Palais-Smale condition, and it turns out that the
generalized mountain pass theorem (see [26, Theorem 5.29]) holds true under
condition (C). Hence, by the generalized mountain pass theorem, there exists a
critical point u∗ ∈ H1

T such that ϕ(u∗) ≥ α > 0.
Step 4. Now suppose that 0 6∈ σ(B), then H0 = {0}. To get ground state so-

lution, we denote by K the critical set of ϕ, i.e., K =
{

u ∈ H1
T : ϕ′(u) = 0, u 6= 0

}
,

and adapt the argument of Jeanjean and Tanaka [27], where an asymptotically
linear problem in definite case is considered. Set

m = inf {ϕ(u) : u ∈ K} .

For any u ∈ K, using (3.8), we obtain

ϕ(u) = ϕ(u)− 1

2
〈ϕ′(u), u〉 =

∫ T

0

[
1

2
(∇F(t, u), u) − F(t, u)

]
dt ≥ 0.

Hence, 0 ≤ m ≤ ϕ(u∗), where u∗ is the nontrivial critical point found before.
Suppose that (un) ⊂ K such that ϕ(un) → m. Then (un) is a Cerami sequence.

By Step 1, (un) has a convergent subsequence. Without loss of generality, we can
assume that

un → u in H1
T,

un → u in C(0, T; RN).

If u = 0, one has ‖un‖∞ → 0 as n → ∞, so that, there exists N1 > 0 such that

‖un‖∞ ≤ L1, ∀n ≥ N1.

Note

0 = 〈ϕ′(un), u+
n 〉 ≥

δ

2
‖u+

n ‖2 −
∫ T

0
(∇F(t, un), u+

n )dt, ∀n ∈ N.

Using (3.2) and (2.1), we obtain

‖u+
n ‖2 ≤ 2

δ

∫ T

0
|∇F(t, un)||u+

n |dt

≤ 2ε

δ

∫ T

0
|un||u+

n |dt

≤ 2ε

δ
T‖un‖∞‖u+

n ‖∞

≤ 2ε

δ
TC2‖un‖‖u+

n ‖, ∀n ≥ N1.

Similarly, one has

‖u−
n ‖2 ≤ 2ε

δ
TC2‖un‖‖u−

n ‖, ∀n ≥ N1.
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Hence, we obtain

‖un‖2 = ‖u−
n ‖2 + ‖u+

n ‖2 ≤ 4ε

δ
TC2‖un‖2, ∀n ≥ N1.

As ‖un‖ 6= 0 and ε is arbitrary, this is a contradiction. Hence, u 6= 0, a nontrivial
critical point of ϕ. By (3.8) and Fatou’s lemma, we deduce

m = lim inf
n→∞

ϕ(un)

= lim inf
n→∞

(
ϕ(un)−

1

2
〈ϕ′(un), un〉

)

= lim inf
n→∞

∫ T

0

[
1

2
(∇F(t, un), un)− F(t, un)

]
dt

≥
∫ T

0

[
1

2
(∇F(t, u), u) − F(t, u)

]
dt

= ϕ(u)

≥ m.

Therefore, u is a nontrivial critical point of ϕ with ϕ(u) = m. This completes the
proof.

Proof of Theorem 1.4. We shall apply Proposition 2.1 to the functional ϕ associ-
ated to problem (1.1). We only consider the case where 0 is an eigenvalue of
−d2/dt2 − A(t) and

F(t, x) ≥ 0, ∀|x| ≤ r and t ∈ [0, T]. (3.14)

The other cases are similar.
(1) ϕ maps bounded sets into bounded sets.

It follows from (2.10) and (2.8) that

ϕ(u) =
1

2

∫ T

0
|u̇|2dt − 1

2

∫ T

0
(A(t)u, u)dt −

∫ T

0
F(t, u)dt

≤ 1

2

∫ T

0
|u̇|2dt +

G

2

∫ T

0
|u|2dt + max

s∈[0,L]
a(s)

∫ T

0
b(t)dt

≤ G

2
‖u‖2 + max

s∈[0,L]
a(s)

∫ T

0
b(t)dt

for u ∈ H1
T, so (ϕ3) holds.

(2) ϕ has a local linking at 0 with respect to (X1, X2).
Combining (3.3) with (2.2) and (2.1), we have, for u ∈ X1 with ‖u‖ ≤ r1 := L1/C,

ϕ(u) ≥ δ

2
‖u‖2 −

∫ T

0
F(t, u)dt

≥ δ

2
‖u‖2 − ε

∫ T

0
|u|2dt

≥ δ

4
‖u‖2,
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which implies that

ϕ(u) ≥ 0, u ∈ X1, ‖u‖ ≤ r1.

For u = u− + u0 ∈ X2 = H− ⊕
H0 satisfying ‖u‖ ≤ r2 := r/C, using (3.14), (2.3)

and (2.1), we obtain

ϕ(u) ≤ −δ

2
‖u−‖2 −

∫ T

0
F(t, u)dt

≤ −δ

2
‖u−‖2,

which implies that
ϕ(u) ≤ 0, u ∈ X2, ‖u‖ ≤ r2.

Hence, (ϕ1) holds with r0 = min {r1, r2}.
(3) Finally, we claim that, for every m ∈ N,

ϕ(u) → −∞ as ‖u‖ → ∞ on X1
m

⊕
X2.

Indeed, it follows from the equivalence of norms on finite-dimensional space
X1

m
⊕

H0, there exists c2 > 0 such that

‖u‖ ≤ c2|u|2, ∀u ∈ X1
m

⊕
H0.

Applying (F1), there exists L3 > 0 such that

F(t, x) ≥ 1

2
c2

2(G + δ)|x|2, ∀|x| ≥ L3 and a.e. t ∈ [0, T].

By assumption (A), one has

|F(t, x)| ≤ max
s∈[0,L3]

a(s)b(t), ∀|x| ≤ L3 and a.e. t ∈ [0, T],

which implies that

F(t, x) ≥ 1

2
c2

2(G + δ)|x|2 − 1

2
c2

2(G + δ)L2
3 − max

s∈[0,L3]
a(s)b(t),

∀x ∈ RN and a.e. t ∈ [0, T].

Combining this with (2.10) and (2.3), we obtain, for u ∈ X1
m
⊕

X2,

ϕ(u) =
1

2

∫ T

0
|u̇|2dt − 1

2

∫ T

0
(A(t)u, u)dt −

∫ T

0
F(t, u)dt

≤ −δ

2
‖u−‖2 +

1

2

∫ T

0
|u̇+|2dt − 1

2

∫ T

0
(A(t)u+ , u+)dt −

∫ T

0
F(t, u)dt

≤ −δ

2
‖u−‖2 +

G

2
‖u+‖2 − 1

2
c2

2(G + δ)|u|22 + c3

≤ −δ

2
‖u−‖2 +

G

2
‖u+‖2 − 1

2
c2

2(G + δ)(|u+ |22 + |u0|22) + c3

≤ −δ

2
‖u−‖2 +

G

2
‖u+‖2 − 1

2
(G + δ)‖u+‖2 − 1

2
(G + δ)‖u0‖2 + c3

≤ −δ

2
‖u−‖2 − δ

2
‖u+‖2 − 1

2
(G + δ)‖u0‖2 + c3

≤ −δ

2
‖u‖2 + c3,
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where c3 = c2
2(G + δ)L2

3T/2 + maxs∈[0,L3]
a(s)

∫ T
0 b(t)dt. This implies that

ϕ(u) → −∞ as ‖u‖ → ∞ on X1
m

⊕
X2.

Therefore, Theorem 1.4 follows from (1)-(3), Lemma 2.1 and Proposition 2.1.
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