When does secat equal relcat?

Jean-Paul Doeraene

Mohammed El Haouari

Abstract

In [3] the authors introduced a *relative category* for a map that differ from the *sectional category* by just one. The relative category has specific properties (for instance a homotopy pushout does not increase it) which make it a convenient tool to study the sectional category. The question to know when secat equals relcat arises. We give here some sufficient conditions. Applications are given to the *topological complexity*, which is nothing but the sectional category of the diagonal.

In [3], we have introduced an approximation of James' sectional category of a map that we called *relative category*. For any continuous map $\iota : A \to X$, we have secat $(\iota) \leq \text{relcat}(\iota) \leq \text{secat}(\iota) + 1$. It is an important information to know whether secat $(\iota) = \text{relcat}(\iota)$. For instance, when the equality holds, if *C* is the homotopy cofibre of ι , we have cat $(C) \leq \text{secat}(\iota) \leq \text{cat}(X)$, see Corollary 5. For the null map $0_X : * \to X$, the equality is trivial: secat $(0_X) = \text{relcat}(0_X) = \text{cat}(X)$. Here we establish the equality in three cases: the homotopy fibre of a map that has a homotopy section, see Proposition 8; the diagonal map of a connected CW H-space, see Theorem 11; and a (q - 1)-connected map $\iota : A \to X$ where *A* is CW with dim $A < (\text{secat}(\iota) + 1)q - 1$, see Theorem 14.

We work indifferently in the category of topological spaces **Top** or in the category of well-pointed topological spaces **Top**^w (*well-pointed* means that the inclusion of the base point is a closed cofibration) [8]. We will denote these categories ambiguously by \mathcal{T} . However for most applications (for instance when we speak of homotopy fibre or cofibre) we need the category to be pointed (the zero object will be denoted by *). Every constructions are made 'up to homotopy'.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 769-776

Received by the editors in June 2012 - In revised form in August 2012. Communicated by Y. Félix.

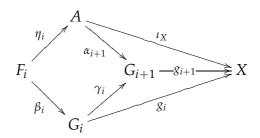
²⁰¹⁰ Mathematics Subject Classification : 55M30.

Key words and phrases : Ganea fibration, sectional category, topological complexity.

We use the same notations as in [3]. The homotopy pullback of maps $f: A \rightarrow B$ and $g: C \rightarrow B$ is denoted by $A \times_B C$. If there are maps $p: D \rightarrow A$ and $q: D \rightarrow C$ such that $f \circ p \simeq g \circ q$, the 'whisker' map $D \rightarrow A \times_B C$ induced by the homotopy pullback is denoted by (p,q). The homotopy pushout of maps $v: U \rightarrow V$ and $w: U \rightarrow W$ is denoted by $V \vee_U W$. If there are maps $y: V \rightarrow X$ and $z: W \rightarrow X$ such that $y \circ v \simeq z \circ w$, the 'whisker' map $V \vee_U W \rightarrow X$ induced by the homotopy pushout is denoted by (y,z). If $W \simeq *$, then $V \vee_U *$ is the homotopy cofibre of v and is denoted by V/U. Finally the join of f and g is the whisker map $(f,g): A \vee_P C \rightarrow B$ where $P \simeq A \times_B C$; $A \vee_P C$ is denoted by $A \bowtie_B C$. For basic definitions and properties about homotopy pullbacks and pushouts, we refer to [6] or [2].

1 Sectional and relative categories

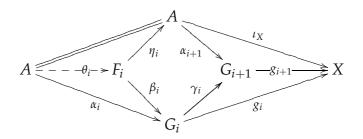
Definition 1. For any map $\iota_X : A \to X$ of \mathcal{T} , the *Ganea construction* of ι_X is the following sequence of homotopy commutative diagrams ($i \ge 0$):



where the outside square is a homotopy pullback, the inside square is a homotopy pushout and the map $g_{i+1} = (g_i, \iota_X) : G_{i+1} \to X$ is the whisker map induced by this homotopy pushout. The iteration starts with $g_0 = \iota_X : A \to X$.

We denote G_i by $G_i(\iota_X)$, or by $G_i(X, A)$. If \mathcal{T} is pointed, we write $G_i(X) = G_i(X, *)$.

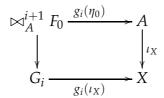
The sequence of homotopy commutative diagrams above extends to:



where $\alpha_0 = id_A$. Since $g_i \circ \alpha_i \simeq \iota_X$, the outside square commutes up to homotopy and the homotopy pullback F_i induces the whisker map $\theta_i = (\alpha_i, id_A) \colon A \to F_i$. Notice also that $\gamma_i \circ \alpha_i \simeq \alpha_{i+1}$.

Proposition 2. For any map $\iota_X : A \to X$ in \mathcal{T} , we have $G_i(\iota_X) \simeq \bowtie_X^{i+1} A$, i.e. the (i+1)-fold join of A over X, and $F_i(\iota_X) \simeq \bowtie_A^{i+1} F_0(\iota_X)$.

Proof. By definition, $G_i \simeq \bowtie_X^{i+1} A$. From the Join theorem, see [1], which asserts that, roughly speaking, the join of homotopy pullbacks is a homotopy pullback, we deduce that the following square is a homotopy pullback:



This means that $F_i \simeq \bowtie_A^{i+1} F_0$.

Definition 3. Let $\iota_X \colon A \to X$ be a map of \mathcal{T} .

1) The *sectional category* of ι_X is the least integer *n* such that the map $g_n : G_n(\iota_X) \to X$ has a homotopy section, i.e. there exists a map $\sigma : X \to G_n(\iota_X)$ such that $g_n \circ \sigma \simeq \operatorname{id}_X$.

2) The *relative category* of ι_X is the least integer *n* such that the map $g_n \colon G_n(\iota_X) \to X$ has a homotopy section σ and $\sigma \circ \iota_X \simeq \alpha_n$.

We denote the sectional category by secat (ι_X) or secat (X, A), and the relative category by relcat (ι_X) or relcat (X, A). If \mathcal{T} is pointed with * as zero object, we write cat (X) = secat(X, *) = relcat(X, *). The integer cat (X) is the 'normal-ized' version of the Lusternik-Schnirelmann category.

The following basic facts about secat and relcat are proved in [3]:

Proposition 4. Suppose we are given any homotopy commutative diagram in T:

$$\begin{array}{c}
B \xrightarrow{\kappa_{Y}} Y \\
\zeta \downarrow & \downarrow f \\
A \xrightarrow{\iota_{X}} X
\end{array}$$

1) If *f* has a homotopy section, then secat $(\iota_X) \leq \text{secat}(\kappa_Y)$.

2) If *f* has a homotopy section *s*, ζ has a homotopy section *t*, and $s \circ \iota_X \simeq \kappa_Y \circ t$, then relcat $(\iota_X) \leq \text{relcat}(\kappa_Y)$.

3) If the square is a homotopy pullback, then

secat $(\kappa_Y) \leq \text{secat}(\iota_X)$ and relcat $(\kappa_Y) \leq \text{relcat}(\iota_X)$.

4) If the square is a homotopy pushout, then relcat $(\iota_X) \leq \text{relcat}(\kappa_Y)$.

5) If f and ζ have homotopy inverses, then

secat (ι_X) = secat (κ_Y) and relcat (ι_X) = relcat (κ_Y) .

Two particular cases (of statements 1 and 4) are worth to be remarked: For any map $\iota_X : A \to X$, we have secat $(\iota_X) \leq \operatorname{cat}(X)$ and $\operatorname{cat}(X/A) \leq \operatorname{relcat}(\iota_X)$.

The following immediate consequence inlights the importance of knowing when sectional and relative categories coincide:

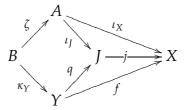
Corollary 5. For any map $\iota_X \colon A \to X$ with homotopy cofibre X/A, if secat ι_X = relcat ι_X , then

$$\operatorname{cat}(X/A) \leq \operatorname{secat}(\iota_X) \leq \operatorname{cat}(X).$$

Recall that in general cat $(X/A) \leq \operatorname{cat}(X) + 1$. It is important to note that if the sectional and relative categories of a map are equal, the category of its homotopy cofibre cannot be greater than the category of its target.

The following other consequence of Proposition 4 will be useful:

Proposition 6. *If* $\iota_X : A \to X$ *and* $f : Y \to X$ *are maps of* \mathcal{T} *, consider the following join construction:*



where the outside square is a homotopy pullback, the inside square is a homotopy pushout, and the map $j = (f, \iota_X) \colon J \to X$ is the whisker map induced by the homotopy pushout. We have

relcat $(\iota_I) \leq \operatorname{relcat}(\kappa_Y) \leq \operatorname{relcat}(\iota_X).$

Moreover, if f has a homotopy section, then

relcat
$$(\iota_I) = \operatorname{relcat}(\kappa_Y) = \operatorname{relcat}(\iota_X).$$

Proof. The inequalities are direct applications of Proposition 4, statements 3 and 4.

If *s* is a homotopy section of *f*, the Prism lemma (see [2] for instance) gives the two homotopy pullbacks:

$$\begin{array}{c} A \xrightarrow{t} B \xrightarrow{\zeta} A \\ \iota_X \downarrow & \kappa_Y \downarrow & \downarrow \iota_X \\ X \xrightarrow{s} Y \xrightarrow{f} X \end{array}$$

and $\zeta \circ t \simeq id_A$. We have $j \circ q \circ s \simeq f \circ s \simeq id_X$, so $q \circ s$ is a homotopy section of *j*. Also we have $q \circ s \circ \iota_X \simeq q \circ \kappa_Y \circ t \simeq \iota_J \circ \zeta \circ t \simeq \iota_J$, and we obtain relcat $(\iota_X) \leq$ relcat (ι_I) by Proposition 4, statement 2.

An interesting particular case of Proposition 6 is this one:

Corollary 7. *Let* $i: F \to E$ *be the homotopy fibre of* $f: E \to B$ *and* E/F *be the homotopy cofibre of* i*. Then:*

$$\operatorname{cat}(E/F) \leq \operatorname{relcat}(i) \leq \operatorname{cat}(B).$$

2 Comparing sectional and relative categories

We obtain a first sufficient condition for the equality of sectional and relative categories of a map:

Proposition 8. Let $i: F \to E$ be the homotopy fibre of $f: E \to B$. If f has a homotopy section then cat (E/F) = relcat(i) = cat(B) = secat(i).

Proof. The first two equalities are direct applications of Proposition 6. Proposition 4, statements 1 and 3, imply the third equality.

Example 9. The map $in_1 = (id_A, 0): A \to A \times B$ is the (homotopy) fibre of $pr_2: A \times B \to B$, thus $cat((A \times B)/A) = secat(in_1) = relcat(in_1) = cat(B)$.

For any X in \mathcal{T} , and $m \ge 2$, recall from [7], that the *higher topological complexity* $\operatorname{TC}_m(X)$ is defined as $\operatorname{TC}_m(X) = \operatorname{secat}(\Delta_m)$, i.e. it is the sectional category of the diagonal $\Delta_m \colon X \to X^m$. Farber's topological complexity $\operatorname{TC}(X) = \operatorname{TC}_2(X)$. (Originally, there was a shift by one; we use here the 'normalized' definition.)

Proposition 10. *For any X in* T*, and* $m \ge 2$ *, we have*

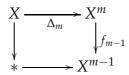
$$\operatorname{cat}(X^{m-1}) \leq \operatorname{TC}_m(X) \leq \operatorname{cat}(X^m).$$

Proof. Follows from Proposition 4, see [3].

Theorem 11. *Let X be a connected, CW H-space. For any* $m \ge 2$ *, we have*

$$\operatorname{cat}(X^m/X) = \operatorname{TC}_m(X) = \operatorname{secat}(\Delta_m) = \operatorname{relcat}(\Delta_m) = \operatorname{cat}(X^{m-1}).$$

Proof. It is shown in [5] that for a connected CW H-space *X*, there is a homotopy pullback:



and f_{m-1} has an obvious homotopy section. Thus we obtain the desired equalities by Proposition 8.

Our own contribution here is the equality secat $(\Delta_m) = \operatorname{relcat} (\Delta_m)$. The equality secat $(\Delta_m) = \operatorname{cat} (X^{m-1})$ is shown in [5] and the equality $\operatorname{cat} (X^m/X) = \operatorname{secat} (\Delta_m)$ is shown in [4]; both these relations are linked to the fact that $\operatorname{secat} (\Delta_m) = \operatorname{relcat} (\Delta_m)$.

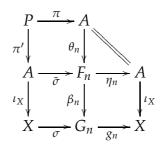
We proved the next result indirectly in [3]. We give here a direct proof for convenience.

Proposition 12. *For any map* $\iota_X : A \to X$ *of* \mathcal{T} *, we have:*

$$\operatorname{secat}(\iota_X) \leq \operatorname{relcat}(\iota_X) \leq \operatorname{secat}(\iota_X) + 1.$$

Proof. Let secat $(\iota_X) \leq n$. Consider any homotopy section $\sigma: X \to G_n$ of $g_n: G_n \to X$ and let $\sigma^+ = \gamma_n \circ \sigma$. Following the proof of Proposition 6, we have that σ^+ is a homotopy section of g_{n+1} and $\sigma^+ \circ \iota_X \simeq \alpha_{n+1}$. We have obtained that relcat $(\iota_X) \leq n+1$.

Let be given any map $\iota_X \colon A \to X$ with secat $(\iota_X) \leq n$ and any homotopy section $\sigma \colon X \to G_n$ of $g_n \colon G_n \to X$. Consider the following homotopy pullbacks:



By the Prism lemma, we know that the homotopy pullback of σ and β_n is indeed A, and that $\eta_n \circ \bar{\sigma} \simeq id_A$. Also notice that $\pi \simeq \pi'$ since $\pi \simeq \eta_n \circ \theta_n \circ \pi \simeq \eta_n \circ \theta_n \circ \pi \simeq \eta_n \circ \bar{\sigma} \circ \pi' \simeq \pi'$.

Proposition 13. Let be given any map $\iota_X : A \to X$ with secat $(\iota_X) \leq n$ and any homotopy section $\sigma : X \to G_n(\iota_X)$ of $g_n : G_n(\iota_X) \to X$. With the same definitions and notations as above, the following conditions are equivalent:

- (*i*) $\sigma \circ \iota_X \simeq \alpha_n$.
- (ii) π has a homotopy section.

(iii) π is a homotopy epimorphism.

(*iv*) $\theta_n \simeq \bar{\sigma}$.

Proof. We have the following sequence of implications:

(i) \implies (ii): Since $\sigma \circ \iota_X \simeq \alpha_n \simeq \beta_n \circ \theta_n \circ id_A$, we have a whisker map $(\iota_X, id_A): A \to P$ induced by the homotopy pullback *P* which is a homotopy section of π .

(ii) \implies (iii): Obvious.

(iii) \implies (iv): We have $\theta_n \circ \pi \simeq \overline{\sigma} \circ \pi$ since $\pi \simeq \pi'$. Thus $\theta_n \simeq \overline{\sigma}$ since π is a homotopy epimorphism.

(iv) \implies (i): We have $\sigma \circ \iota_X \simeq \beta_n \circ \bar{\sigma} \simeq \beta_n \circ \theta_n \simeq \alpha_n$.

Theorem 14. *Let be given a CW-complex A and a* (q - 1)*-connected map* $\iota_X : A \to X$. *If* dim $A < (\operatorname{secat} \iota_X + 1)q - 1$ *then* $\operatorname{secat} \iota_X = \operatorname{relcat} \iota_X$.

Proof. Recall that g_i is the (i + 1)-fold join of ι_X . Thus by [6], Theorem 47, we obtain that, for each $i \ge 0$, $g_i : G_i \to X$ is (i + 1)q - 1-connected. As g_i and η_i have the same homotopy fibre, the Five lemma implies that $\eta_i : F_i \to A$ is (i+1)q - 1-connected, too. By [9], Theorem IV.7.16, this means that for every CW-complex K with dim K < (i + 1)q - 1, η_i induces a one-to-one correspondence $[K, F_i] \to [K, A]$. Since θ_n and $\bar{\sigma}$ are both homotopy sections of η_n , we obtain $\theta_n \simeq \bar{\sigma}$, and Proposition 13 implies the desired result.

Example 15. Let $\iota: S^r \to S^m$ with $r \ge m$. If r < 2m - 1, then relcat $(\iota) = \text{secat}(\iota)$; this is 1 except for the identity for which it is 0. In particular this means that $\alpha_1: S^r \to S^r \bowtie_{S^m} S^r$ factorizes through ι up to homotopy.

Example 16. Let *h* be any of the Hopf maps $S^3 \rightarrow S^2$, $S^7 \rightarrow S^4$ and $S^{15} \rightarrow S^8$. Since they have a target of category 1 and a homotopy cofibre of category 2, we have secat h = 1 while relcat h = 2. This is a counterexample which illustrates that the inequality in the hypothesis of Theorem 14 is sharp, because in the three cases we have exactly dim A = (secat h + 1)q - 1.

In [3], we have introduced the *complexity of a map* $\iota_X : A \to X$; we write TC (ι) = secat (id_A, ι_X) where (id_A, ι_X): $A \to A \times X$ is the whisker map induced by the homotopy pullback. In particular the complexity of the null map $* \to X$ is cat (X) (see Example 9) and the complexity of id_X is secat (Δ) = TC (X). We will also write relTC (ι_X) = relcat (id_A, ι_X).

Proposition 17. *For any map* $\iota_X : A \to X$ *in* \mathcal{T} *, we have:*

$$\operatorname{cat}(X) \leq \operatorname{TC}(\iota_X) \leq \operatorname{TC}(X) \leq \operatorname{cat}(X \times X).$$

Proof. Follows from Proposition 4, see [3].

Applying Theorem 14 to topological complexity, we obtain:

Corollary 18. Let be given any map $\iota_X : A \to X$ between CW-complexes, A connected and X (q-1)-connected. If dim $A < (\text{TC}(\iota_X) + 1)q - 1$, then

$$\operatorname{cat}((A \times X)/A) \leq \operatorname{relTC}(\iota_X) = \operatorname{TC}(\iota_X) \leq \operatorname{cat}(A \times X)$$

where $(A \times X) / A$ is the homotopy cofibre of (id_A, ι_X) .

Proof. With the hypothesis, (id_A, ι_X) is (q - 1)-connected, and we may apply Theorem 14 to obtain the equality. This implies the inequalities by Corollary 5.

The first inequality is proved in [4] for the particular case $\iota_X = id_X$.

Example 19. Consider the Hopf fibration $S^7 \to S^4$ and factor by the action of S^1 on S^7 to get $\iota: \mathbb{C}P^3 \to S^4$. We have shown in [3] that TC (ι) = 2. We have dim $\mathbb{C}P^3 = 6 < 3.4 - 1 = (\text{TC}(\iota) + 1).q - 1$, so relTC (ι) = TC (ι) = 2.

Example 20. More generally assume *A* is a connected CW-complex and consider any map ι : $A \to S^m$. We have TC (ι) \geq cat (S^m) = 1 and S^m is (m – 1)-connected. Thus if dim A < 2m - 1, we have relTC (ι) = TC (ι).

For the particular case $\iota = \operatorname{id}_{S^m}$, dim $S^m < 2m - 1$ for any $m \ge 2$, so we have relTC $(S^m) = \operatorname{TC}(S^m)$ for any $m \ge 2$.

3 Open problems

Let be given a map $\iota_X : A \to X$. Consider the map $\alpha_i : A \to G_i(\iota_X)$ of the Ganea construction 1. In [3], we showed that relcat $(\alpha_i) = \text{secat}(\alpha_i) = i$ for $i \leq \text{secat}(\iota_X)$ and relcat $(\alpha_i) = \text{relcat}(\iota_X)$ for $i \geq \text{relcat}(\iota_X)$. We have no evidence that relcat $(\alpha_i) = \text{secat}(\alpha_i)$ for any *i* but we think it would be true:

Conjecture 21. *For any map* $\iota_X : A \to X$ *, any* $i \ge 0$ *, we have*

secat
$$(\alpha_i)$$
 = relcat (α_i) = min{ i , relcat (ι_X) }.

Another more tricky conjecture is:

Conjecture 22. *For any map* $\iota_X : A \to X$ *, if* ι_X *has a homotopy retraction, then we have* secat $(\iota_X) = \text{relcat}(\iota_X)$.

A positive answer to this question would imply that TC(X) = relTC(X) for any *X* and even $TC(\iota) = relTC(\iota)$ for any map $\iota_X : A \to X$, since $(id_A, \iota_X) : A \to A \times X$ has an obvious (homotopy) retraction $pr_1 : A \times X \to A$.

References

- [1] Jean-Paul Doeraene. L.S.-category in a model category. *J. Pure Appl. Algebra*, 84(3):215–261, 1993.
- [2] Jean-Paul Doeraene. Homotopy pull backs, homotopy push outs and joins. *Bull. Belg. Math. Soc. Simon Stevin*, 5(1):15–38, 1998.
- [3] Jean-Paul Doeraene and Mohammed El Haouari. Up-to-one approximations for sectional category and topological complexity. Topology and its Appl. 160:766-783, 2013.
- [4] José Manuel García-Calcines and Lucile Vandembroucq. Topological complexity and the homotopy cofibre of the diagonal map. Math. Zeitschrift, 274(1-2):145-165, 2013.
- [5] Gregory Lupton and Jérôme Scherer. Topological complexity of H-spaces. Proc. Amer. Math. Soc. 141:1827-1838, 2013.
- [6] Michael Mather. Pull-backs in homotopy theory. *Canad. Journ. Math.*, 28(2):225–263, 1976.
- [7] Yuli Rudyak. On higher analogs of topological complexity. *Topology Appl.*, 5:916–920, 2010.
- [8] Arne Strøm. The homotopy category is a homotopy category. *Arch. Math.* (*Basel*), 23:435–441, 1972.
- [9] George W. Whitehead. *Elements of homotopy theory*, volume 64 of *Graduate texts in mathematics*. Springer-Verlag, New York, 1978.

Département de Mathématiques UMR-CNRS 8524 Université de Lille 1 59655 Villeneuve d'Ascq Cedex France email:doeraene@math.univ-lille1.fr