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Abstract

In [3] the authors introduced a relative category for a map that differ from
the sectional category by just one. The relative category has specific proper-
ties (for instance a homotopy pushout does not increase it) which make it a
convenient tool to study the sectional category. The question to know when
secat equals relcat arises. We give here some sufficient conditions. Applica-
tions are given to the topological complexity, which is nothing but the sectional
category of the diagonal.

In [3], we have introduced an approximation of James’ sectional category of a
map that we called relative category. For any continuous map ι : A → X, we
have secat (ι) 6 relcat (ι) 6 secat (ι) + 1. It is an important information to know
whether secat (ι) = relcat (ι). For instance, when the equality holds, if C is the
homotopy cofibre of ι, we have cat (C) 6 secat (ι) 6 cat (X), see Corollary 5. For
the null map 0X : ∗ → X, the equality is trivial: secat (0X) = relcat (0X) = cat (X).
Here we establish the equality in three cases: the homotopy fibre of a map that
has a homotopy section, see Proposition 8; the diagonal map of a connected CW
H-space, see Theorem 11; and a (q − 1)-connected map ι : A → X where A is CW
with dim A < (secat (ι) + 1)q − 1, see Theorem 14.

We work indifferently in the category of topological spaces Top or in the cat-
egory of well-pointed topological spaces Topw (well-pointed means that the inclu-
sion of the base point is a closed cofibration) [8]. We will denote these categories
ambiguously by T . However for most applications (for instance when we speak
of homotopy fibre or cofibre) we need the category to be pointed (the zero object
will be denoted by ∗). Every constructions are made ‘up to homotopy’.
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We use the same notations as in [3]. The homotopy pullback of maps f : A →
B and g : C → B is denoted by A×B C. If there are maps p : D → A and q : D → C
such that f ◦ p ≃ g ◦ q, the ‘whisker’ map D → A ×B C induced by the homotopy
pullback is denoted by (p, q). The homotopy pushout of maps v : U → V and
w : U → W is denoted by V ∨U W. If there are maps y : V → X and z : W → X
such that y ◦ v ≃ z ◦w, the ‘whisker’ map V ∨U W → X induced by the homotopy
pushout is denoted by (y, z). If W ≃ ∗, then V ∨U ∗ is the homotopy cofibre
of v and is denoted by V/U. Finally the join of f and g is the whisker map
( f , g) : A ∨P C → B where P ≃ A ×B C; A ∨P C is denoted by A ⊲⊳B C. For basic
definitions and properties about homotopy pullbacks and pushouts, we refer to
[6] or [2].

1 Sectional and relative categories

Definition 1. For any map ιX : A → X of T , the Ganea construction of ιX is the
following sequence of homotopy commutative diagrams (i > 0):
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❉❉

❉❉
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**❯❯❯
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Gi+1 gi+1 // X
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44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout and the map gi+1 = (gi, ιX) : Gi+1 → X is the whisker map induced by
this homotopy pushout. The iteration starts with g0 = ιX : A → X.

We denote Gi by Gi(ιX), or by Gi(X, A). If T is pointed, we write Gi(X) =
Gi(X, ∗).

The sequence of homotopy commutative diagrams above extends to:
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44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

where α0 = idA. Since gi ◦ αi ≃ ιX, the outside square commutes up to homotopy
and the homotopy pullback Fi induces the whisker map θi = (αi, idA) : A → Fi.
Notice also that γi ◦ αi ≃ αi+1.

Proposition 2. For any map ιX : A → X in T , we have Gi(ιX) ≃ ⊲⊳
i+1
X A, i.e. the

(i + 1)-fold join of A over X, and Fi(ιX) ≃ ⊲⊳
i+1
A F0(ιX).
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Proof. By definition, Gi ≃ ⊲⊳
i+1
X A. From the Join theorem, see [1], which asserts

that, roughly speaking, the join of homotopy pullbacks is a homotopy pullback,
we deduce that the following square is a homotopy pullback:

⊲⊳
i+1
A F0

gi(η0) //

��

A

ιX

��
Gi

gi(ιX)
// X

This means that Fi ≃ ⊲⊳
i+1
A F0.

Definition 3. Let ιX : A → X be a map of T .
1) The sectional category of ιX is the least integer n such that the map gn : Gn(ιX) →

X has a homotopy section, i.e. there exists a map σ : X → Gn(ιX) such that
gn ◦ σ ≃ idX.

2) The relative category of ιX is the least integer n such that the map gn : Gn(ιX) →
X has a homotopy section σ and σ ◦ ιX ≃ αn.

We denote the sectional category by secat (ιX) or secat (X, A), and the relative
category by relcat (ιX) or relcat (X, A). If T is pointed with ∗ as zero object, we
write cat (X) = secat (X, ∗) = relcat (X, ∗). The integer cat (X) is the ‘normal-
ized’ version of the Lusternik-Schnirelmann category.

The following basic facts about secat and relcat are proved in [3]:

Proposition 4. Suppose we are given any homotopy commutative diagram in T :

B
κY //

ζ
��

Y

f
��

A ιX

// X

1) If f has a homotopy section, then secat (ιX) 6 secat (κY).
2) If f has a homotopy section s, ζ has a homotopy section t, and s ◦ ιX ≃ κY ◦ t, then

relcat (ιX) 6 relcat (κY).
3) If the square is a homotopy pullback, then

secat (κY) 6 secat (ιX) and relcat (κY) 6 relcat (ιX).
4) If the square is a homotopy pushout, then relcat (ιX) 6 relcat (κY).
5) If f and ζ have homotopy inverses, then

secat (ιX) = secat (κY) and relcat (ιX) = relcat (κY).

Two particular cases (of statements 1 and 4) are worth to be remarked: For
any map ιX : A → X, we have secat (ιX) 6 cat (X) and cat (X/A) 6 relcat (ιX).

The following immediate consequence inlights the importance of knowing
when sectional and relative categories coincide:

Corollary 5. For any map ιX : A → X with homotopy cofibre X/A, if secat ιX =
relcat ιX , then

cat (X/A) 6 secat (ιX) 6 cat (X).
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Recall that in general cat (X/A) 6 cat (X) + 1. It is important to note that if
the sectional and relative categories of a map are equal, the category of its homo-
topy cofibre cannot be greater than the category of its target.

The following other consequence of Proposition 4 will be useful:

Proposition 6. If ιX : A → X and f : Y → X are maps of T , consider the following join
construction:

A

ι J ��❂
❂❂

❂❂
❂

ιX

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

B

κY ��❃
❃❃

❃❃
❃

ζ
??������

J j // X

Y

q
@@✁✁✁✁✁✁ f

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

where the outside square is a homotopy pullback, the inside square is a homotopy pushout,
and the map j = ( f , ιX) : J → X is the whisker map induced by the homotopy pushout.
We have

relcat (ιJ) 6 relcat (κY) 6 relcat (ιX).

Moreover, if f has a homotopy section, then

relcat (ιJ) = relcat (κY) = relcat (ιX).

Proof. The inequalities are direct applications of Proposition 4, statements 3 and
4.

If s is a homotopy section of f , the Prism lemma (see [2] for instance) gives the
two homotopy pullbacks:

A t //

ιX
��

B

κY
��

ζ
// A

ιX
��

X s
// Y

f
// X

and ζ ◦ t ≃ idA. We have j ◦ q ◦ s ≃ f ◦ s ≃ idX, so q ◦ s is a homotopy section of
j. Also we have q ◦ s ◦ ιX ≃ q ◦ κY ◦ t ≃ ιJ ◦ ζ ◦ t ≃ ιJ , and we obtain relcat (ιX) 6
relcat (ιJ) by Proposition 4, statement 2.

An interesting particular case of Proposition 6 is this one:

Corollary 7. Let i : F → E be the homotopy fibre of f : E → B and E/F be the homotopy
cofibre of i. Then:

cat (E/F) 6 relcat (i) 6 cat (B).

2 Comparing sectional and relative categories

We obtain a first sufficient condition for the equality of sectional and relative cat-
egories of a map:

Proposition 8. Let i : F → E be the homotopy fibre of f : E → B. If f has a homotopy
section then cat (E/F) = relcat (i) = cat (B) = secat (i).
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Proof. The first two equalities are direct applications of Proposition 6. Proposi-
tion 4, statements 1 and 3, imply the third equality.

Example 9. The map in1 = (idA, 0) : A → A × B is the (homotopy) fibre of
pr2 : A × B → B, thus cat ((A × B)/A) = secat (in1) = relcat (in1) = cat (B).

For any X in T , and m > 2, recall from [7], that the higher topological complexity
TC m(X) is defined as TC m(X) = secat (∆m), i.e. it is the sectional category of
the diagonal ∆m : X → Xm. Farber’s topological complexity TC (X) = TC 2(X).
(Originally, there was a shift by one; we use here the ‘normalized’ definition.)

Proposition 10. For any X in T , and m > 2, we have

cat (Xm−1) 6 TC m(X) 6 cat (Xm).

Proof. Follows from Proposition 4, see [3].

Theorem 11. Let X be a connected, CW H-space. For any m > 2, we have

cat (Xm/X) = TC m(X) = secat (∆m) = relcat (∆m) = cat (Xm−1).

Proof. It is shown in [5] that for a connected CW H-space X, there is a homotopy
pullback:

X

��

∆m

// Xm

fm−1
��

∗ // Xm−1

and fm−1 has an obvious homotopy section. Thus we obtain the desired equalities
by Proposition 8.

Our own contribution here is the equality secat (∆m) = relcat (∆m). The
equality secat (∆m) = cat (Xm−1) is shown in [5] and the equality cat (Xm/X) =
secat (∆m) is shown in [4]; both these relations are linked to the fact that
secat (∆m) = relcat (∆m).

We proved the next result indirectly in [3]. We give here a direct proof for
convenience.

Proposition 12. For any map ιX : A → X of T , we have:

secat (ιX) 6 relcat (ιX) 6 secat (ιX) + 1.

Proof. Let secat (ιX) 6 n. Consider any homotopy section σ : X → Gn of
gn : Gn → X and let σ+ = γn ◦ σ. Following the proof of Proposition 6, we have
that σ+ is a homotopy section of gn+1 and σ+ ◦ ιX ≃ αn+1. We have obtained that
relcat (ιX) 6 n + 1.



774 J.-P. Doeraene – M. El Haouari

Let be given any map ιX : A → X with secat (ιX) 6 n and any homotopy
section σ : X → Gn of gn : Gn → X. Consider the following homotopy pullbacks:

P

π′

��

π // A

θn
�� ❆❆

❆❆
❆❆

❆❆

❆❆
❆❆

❆❆
❆❆

A
σ̄

//

ιX

��

Fn ηn
//

βn
��

A

ιX

��
X

σ
// Gn gn

// X

By the Prism lemma, we know that the homotopy pullback of σ and βn is indeed
A, and that ηn ◦ σ̄ ≃ idA. Also notice that π ≃ π′ since π ≃ ηn ◦ θn ◦ π ≃
ηn ◦ σ̄ ◦ π′ ≃ π′.

Proposition 13. Let be given any map ιX : A → X with secat (ιX) 6 n and any
homotopy section σ : X → Gn(ιX) of gn : Gn(ιX) → X. With the same definitions and
notations as above, the following conditions are equivalent:

(i) σ ◦ ιX ≃ αn.

(ii) π has a homotopy section.

(iii) π is a homotopy epimorphism.

(iv) θn ≃ σ̄.

Proof. We have the following sequence of implications:
(i) =⇒ (ii): Since σ ◦ ιX ≃ αn ≃ βn ◦ θn ◦ idA, we have a whisker map

(ιX , idA) : A → P induced by the homotopy pullback P which is a homotopy
section of π.

(ii) =⇒ (iii): Obvious.
(iii) =⇒ (iv): We have θn ◦ π ≃ σ̄ ◦ π since π ≃ π′. Thus θn ≃ σ̄ since π is a

homotopy epimorphism.
(iv) =⇒ (i): We have σ ◦ ιX ≃ βn ◦ σ̄ ≃ βn ◦ θn ≃ αn.

Theorem 14. Let be given a CW-complex A and a (q − 1)-connected map ιX : A → X.
If dim A < (secat ιX + 1)q − 1 then secat ιX = relcat ιX.

Proof. Recall that gi is the (i + 1)-fold join of ιX. Thus by [6], Theorem 47, we
obtain that, for each i > 0, gi : Gi → X is (i + 1)q − 1-connected. As gi and
ηi have the same homotopy fibre, the Five lemma implies that ηi : Fi → A is
(i+ 1)q− 1-connected, too. By [9], Theorem IV.7.16, this means that for every CW-
complex K with dim K < (i + 1)q − 1, ηi induces a one-to-one correspondence
[K, Fi ] → [K, A]. Since θn and σ̄ are both homotopy sections of ηn, we obtain
θn ≃ σ̄, and Proposition 13 implies the desired result.

Example 15. Let ι : Sr → Sm with r > m. If r < 2m − 1, then relcat (ι) = secat (ι);
this is 1 except for the identity for which it is 0. In particular this means that
α1 : Sr → Sr

⊲⊳Sm Sr factorizes through ι up to homotopy.
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Example 16. Let h be any of the Hopf maps S3 → S2, S7 → S4 and S15 → S8.
Since they have a target of category 1 and a homotopy cofibre of category 2, we
have secat h = 1 while relcat h = 2. This is a counterexample which illustrates
that the inequality in the hypothesis of Theorem 14 is sharp, because in the three
cases we have exactly dim A = (secat h + 1)q − 1.

In [3], we have introduced the complexity of a map ιX : A → X; we write
TC (ι) = secat (idA, ιX) where (idA, ιX) : A → A × X is the whisker map induced
by the homotopy pullback. In particular the complexity of the null map ∗ → X is
cat (X) (see Example 9) and the complexity of idX is secat (∆) = TC (X). We will
also write relTC (ιX) = relcat (idA, ιX).

Proposition 17. For any map ιX : A → X in T , we have:

cat (X) 6 TC (ιX) 6 TC (X) 6 cat (X × X).

Proof. Follows from Proposition 4, see [3].

Applying Theorem 14 to topological complexity, we obtain:

Corollary 18. Let be given any map ιX : A → X between CW-complexes, A connected
and X (q − 1)-connected. If dim A < (TC (ιX) + 1)q − 1, then

cat ((A × X)/A) 6 relTC (ιX) = TC (ιX) 6 cat (A × X)

where (A × X)/A is the homotopy cofibre of (idA, ιX).

Proof. With the hypothesis, (idA, ιX) is (q− 1)-connected, and we may apply The-
orem 14 to obtain the equality. This implies the inequalities by Corollary 5.

The first inequality is proved in [4] for the particular case ιX = idX.

Example 19. Consider the Hopf fibration S7 → S4 and factor by the action of
S1 on S7 to get ι : CP3 → S4. We have shown in [3] that TC (ι) = 2. We have
dim CP3 = 6 < 3.4 − 1 = (TC (ι) + 1).q − 1, so relTC (ι) = TC (ι) = 2.

Example 20. More generally assume A is a connected CW-complex and consider
any map ι : A → Sm. We have TC (ι) > cat (Sm) = 1 and Sm is (m − 1)-connected.
Thus if dim A < 2m − 1, we have relTC (ι) = TC (ι).

For the particular case ι = idSm , dim Sm
< 2m − 1 for any m > 2, so we have

relTC (Sm) = TC (Sm) for any m > 2.

3 Open problems

Let be given a map ιX : A → X. Consider the map αi : A → Gi(ιX) of the
Ganea construction 1. In [3], we showed that relcat (αi) = secat (αi) = i for
i 6 secat (ιX) and relcat (αi) = relcat (ιX) for i > relcat (ιX). We have no evidence
that relcat (αi) = secat (αi) for any i but we think it would be true:

Conjecture 21. For any map ιX : A → X, any i > 0, we have

secat (αi) = relcat (αi) = min{i, relcat (ιX)}.
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Another more tricky conjecture is:

Conjecture 22. For any map ιX : A → X, if ιX has a homotopy retraction, then we have
secat (ιX) = relcat (ιX).

A positive answer to this question would imply that TC (X) = relTC (X) for
any X and even TC (ι) = relTC (ι) for any map ιX : A → X, since (idA, ιX) : A →
A × X has an obvious (homotopy) retraction pr1 : A × X → A.
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