Positive bounded solutions for semilinear elliptic equations in smooth domains

Imed Bachar H

Habib Mâagli

Abstract

We are concerned with the following semilinear elliptic equation $\Delta u = \lambda f(x, u)$ in *D*, subject to some Dirichlet conditions, where $\lambda \ge 0$ is a parameter and *D* is a smooth domain in \mathbb{R}^n ($n \ge 3$). Under some appropriate assumptions on the nonnegative nonlinearity term f(x, u), we show the existence of a positive bounded solution for the above semilinear elliptic equation. Our approach is based on Schauder's fixed point Theorem.

1 Introduction and Main result

Let $D \subset \mathbb{R}^n$ ($n \ge 3$), be a $C^{1,1}$ -domain with compact boundary and a, α nonnegative fixed constants such that $a + \alpha > 0$. Consider the following boundary value problem:

$$\begin{cases}
\Delta u = \lambda f(x, u) & \text{in } D, \text{ (in the sense of distributions)} \\
u > 0 & \text{in } D, \\
u = a\varphi & \text{on } \partial D, \\
\lim_{|x| \to \infty} u(x) = \alpha & \text{(whenever } D \text{ is unbounded)},
\end{cases}$$
(1.1)

where λ is a nonnegative real number and φ is a nontrivial nonnegative continuous function on ∂D .

When the nonlinearity f is negative, there exist a lot of works related to this subject; see for example, the papers of Alves, Carriao and Faria [1], de Figueiredo,

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 707-714

Received by the editors in May 2012.

Communicated by P. Godin.

²⁰¹⁰ Mathematics Subject Classification : 34B27, 35J65.

Key words and phrases : Green function, positive solutions, Schauder's fixed point theorem.

Girardi and Matzeu [5], Ghergu and Radulescu [6,7], Lair and Wood [9], Zhang [11] and references therein. In all these papers, the main tools used are Galerkin method, sub-supersolution method and variational techniques. Here, we show that the Schauder's fixed point theorem allows us to find solutions to (1.1) for nonnegative nonlinearity f.

More precisely, we assume that $f : D \times [0, \infty) \to [0, \infty)$ is Borel measurable function satisfying

 (H_1) *f* is continuous and nondecreasing with respect to the second variable.

$$(H_2) \forall c > 0, f(.,c) \in K(D),$$

where the Kato class K(D) is defined by means of the Green function $G_D(x, y)$ of the Dirichlet Laplacian in D as follows

Definition 1.1. A Borel measurable function q in D belongs to the Kato class K(D) if

$$\lim_{r \to 0} (\sup_{x \in D} \int_{(|x-y| \le r) \cap D} \frac{\rho_D(y)}{\rho_D(x)} G_D(x,y) |q(y)| dy) = 0$$
(1.2)

and satisfies further

$$\lim_{M \to \infty} (\sup_{x \in D} \int_{(|y| \ge M) \cap D} \frac{\rho_D(y)}{\rho_D(x)} G_D(x, y) |q(y)| dy = 0) \text{ (whenever D is unbounded),}$$
(1.3)

where $\rho_D(x) = \frac{\delta(x)}{\delta(x) + 1}$ and $\delta(x)$ denotes the Euclidean distance from x to the boundary of D.

This class was introduced and studied in [2] for unbounded domains and in [10] for the bounded ones. It is quite rich, it contains for example any function belonging to $L^p(D) \cap L^1(D)$, with $p > \frac{n}{2}$.

Throughout this paper, we denote by $H_D \varphi$ the unique harmonic function u in D with boundary value φ and satisfying further $\lim_{|x|\to\infty} u(x) = 0$ whenever D is unbounded. We also denote by $h = 1 - H_D 1$ and we remark that $h \equiv 0$ if D is bounded. Let $\omega(x) := aH_D\varphi(x) + \alpha h(x)$, for $x \in D$. It is clear that ω is the solution of the problem

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u > 0 & \text{in } D, \\ u = a\varphi & \text{on } \partial D, \\ \lim_{|x| \to \infty} u(x) = \alpha \quad (\text{whenever } D \text{ is unbounded}). \end{cases}$$
(1.4)

Here, we study a perturbation to the problem (1.4), that is problems of the form (1.1) and we obtain a solution which its behavior is not affected by the perturbed term. A fundamental role will be played by the number

$$\lambda_0 := \inf_{x \in D} \frac{\omega(x)}{V(f(.,\omega))(x)},\tag{1.5}$$

where *V* is the potential kernel associated to Δ (*i.e* $V = (-\Delta)^{-1}$).

Our main result is the following.

Theorem 1.2. Assume that $\lambda_0 > 0$ and f satisfies (H_1) - (H_2) . If $\lambda \in [0, \lambda_0)$, then the problem (1.1) has a continuous bounded solution u such that

$$(1-\frac{\lambda}{\lambda_0})\omega \leq u \leq \omega$$
 in D.

Remark 1.3. Let $\lambda \ge 0$ and D = B(0,1) be the unit ball of \mathbb{R}^n $(n \ge 3)$. Then the solution of the problem

$$\begin{cases} \Delta u = \lambda & in B, \\ u = 1 & on \partial B, \end{cases}$$
(1.6)

is given by

$$u(x) = 1 - \lambda V 1(x) = 1 - \lambda \frac{(1 - |x|^2)}{2n}, \text{ for } x \in B.$$
 (1.7)

Hence we deduce that

$$u > 0$$
, in $B \Leftrightarrow 0 \le \lambda < 2n = \inf_{x \in B} \frac{1}{\frac{(1-|x|^2)}{2n}} = \lambda_0$

This implies that λ_0 *is optimal.*

As usual, let $B^+(D)$ be the set of nonnegative Borel measurable functions in D. We denote by $\partial^{\infty}D = \partial D$ if D is bounded and $\partial^{\infty}D = \partial D \cup \{\infty\}$ whenever D is unbounded, $C_0(D)$ the set of continuous functions in \overline{D} vanishing at $\partial^{\infty}D$. Note that $C_0(D)$ is a Banach space with respect to the uniform norm $||u||_{\infty} = \sup_{x \in D} |u(x)|$. The letter C will denote a generic positive constant which may vary from line to

line. When two positive functions f and g are defined on a set S, we write $f \approx g$ if the two sided inequality $\frac{1}{C}g \leq f \leq Cg$ holds on S. Finally, for $f \in B^+(D)$, we denote by

$$Vf(x) := \int_D G_D(x,y)f(y)dy$$

and by

$$||f||_D := \sup_{x \in D} \int_D \frac{\rho_D(y)}{\rho_D(x)} G_D(x, y) f(y) \, dy.$$

Next we collect some properties of the Green function $G_D(x, y)$ and functions belonging to the Kato class K(D), which are useful to establish our main result. For the proofs we refer to [2] and [10].

Proposition 1.4. *For each* $x, y \in D$ *, we have*

$$G_D(x,y) \approx \frac{\lambda_D(x)\lambda_D(y)}{|x-y|^{n-2}\left(|x-y|^2 + \lambda_D(x)\lambda_D(y)\right)},$$
(1.8)

where $\lambda_D(x) = \delta(x)(\delta(x) + 1)$.

Moreover, for M > 1 *and* r > 0 *there exists a constant* C > 0 *such that for each* $x \in D$ *and* $y \in D$ *satisfying* $|x - y| \ge r$ *and* $|y| \le M$, we have

$$G_D(x,y) \le C \frac{\rho_D(x)\rho_D(y)}{|x-y|^{n-2}}.$$
 (1.9)

We remark that in the case where *D* is bounded, we have

$$\rho_D(x) \approx \delta(x) \approx \lambda_D(x).$$

Proposition 1.5. *Let q be a function in* K(D)*, then we have* (*i*) $||q||_D < \infty$ *,*

(*ii*) Let *h* be a positive superharmonic function in *D*. Then there exists a constant $C_0 > 0$ such that

$$\int_{D} G_{D}(x,y)h(y)|q(y)|dy \le C_{0} \|q\|_{D} h(x).$$
(1.10)

Furthermore, for each $x_0 \in \overline{D}$ *, we have*

$$\lim_{r \to 0} (\sup_{x \in D} \frac{1}{h(x)} \int_{B(x_0, r) \cap D} G_D(x, y) h(y) |q(y)| dy) = 0$$
(1.11)

and

$$\lim_{M \to \infty} (\sup_{x \in D} \frac{1}{h(x)} \int_{(|y| \ge M) \cap D} G_D(x, y) h(y) |q(y)| dy) = 0 \text{ (whenever D is unbounded).}$$
(1.12)

(iii) The function $x \to \frac{\delta(x)}{(|x|^{n-1}+1)}q(x)$ is in $L^1(D)$.

2 Proof of Theorem 1.2.

Let $\lambda \in [0, \lambda_0)$ and Λ be the nonempty closed bounded convex set given by

$$\Lambda = \{ v \in C(\overline{D} \cup \{\infty\}) : (1 - \frac{\lambda}{\lambda_0})\omega \le v \le \omega \}.$$

We define the operator *T* on Λ by

$$Tv(x) = \omega(x) - \lambda \int_D G_D(x, y) f(y, v(y)) \, dy.$$
(2.1)

We shall prove that the family $T\Lambda$ is relatively compact in $C(\overline{D} \cup \{\infty\})$. First, we claim that the family

$$\{\int_D G_D(x,y)f(y,v(y))\,dy,\ v\in\Lambda\},\tag{2.2}$$

is relatively compact in $C_0(D)$. Indeed, observe that from (H_1) - (H_2) , (1.10) and Proposition 1.5 (*i*), we have for each $v \in \Lambda$ and $x \in D$,

$$\int_{D} G_{D}(x,y) f(y,v(y)) \, dy \leq \int_{D} G_{D}(x,y) f(y,\|\omega\|_{\infty}) \, dy \leq C_{0} \, \|f(.,\|\omega\|_{\infty})\|_{D} < \infty.$$

So the family $\{\int_D G_D(.,y)f(y,v(y)) dy, v \in \Lambda\}$, is uniformly bounded.

Next we aim at proving that the family $\{\int_D G_D(., y)f(y, v(y)) dy, v \in \Lambda\}$, is equicontinuous on $\overline{D} \cup \{\infty\}$. Let $x_0 \in \overline{D}$ and $\varepsilon > 0$. By (H_2) , (1.11) and (1.12), there exist r > 0 and M > 1 such that

$$\sup_{z\in D}\int_{B(x_0,2r)\cap D}G_D(z,y)f(y,\|\omega\|_{\infty})\,dy\leq \frac{\varepsilon}{4}$$

and

$$\sup_{z \in D} \int_{(|y| \ge M) \cap D} G_D(z, y) f(y, \|\omega\|_{\infty}) \, dy \le \frac{\varepsilon}{4}.$$

Let $x, x' \in B(x_0, r) \cap D$, then for each $v \in \Lambda$, we have

Let
$$x, x' \in B(x_0, r) \cap D$$
, then for each $v \in \Lambda$, we have

$$\begin{vmatrix} \int_D G_D(x, y) f(y, v(y)) \, dy - \int_D G_D(x', y) f(y, v(y)) \, dy \end{vmatrix}$$

$$\leq \int_D |G_D(x, y) - G_D(x', y)| f(y, ||\omega||_{\infty}) \, dy$$

$$\leq 2 \sup_{z \in D} \int_{B(x_0, 2r) \cap D} G_D(z, y) f(y, ||\omega||_{\infty}) \, dy$$

$$+ 2 \sup_{z \in D} \int_{(|x_0 - y| \ge 2r) \cap (|y| \ge M) \cap D} G_D(z, y) f(y, ||\omega||_{\infty}) \, dy$$

$$+ \int_{(|x_0 - y| \ge 2r) \cap (|y| \le M) \cap D} |G_D(x, y) - G_D(x', y)| f(y, ||\omega||_{\infty}) \, dy$$

$$\leq \varepsilon + \int_{(|x_0 - y| \ge 2r) \cap (|y| \le M) \cap D} |G_D(x, y) - G_D(x', y)| f(y, ||\omega||_{\infty}) \, dy.$$

On the other hand, for every $y \in B^c(x_0, 2r) \cap B(0, M) \cap D$ and $x, x' \in B(x_0, r) \cap D$, we have by using (1.9),

$$\begin{aligned} |G_D(x,y) - G_D(x',y)| &\leq G_D(x,y) + G_D(x',y) \\ &\leq C \left[\frac{\rho_D(x)\rho_D(y)}{|x-y|^{n-2}} + \frac{\rho_D(x')\rho_D(y)}{|x'-y|^{n-2}} \right] \\ &\leq C \left[\frac{1}{|x-y|^{n-2}} + \frac{1}{|x'-y|^{n-2}} \right] \rho_D(y) \\ &\leq C.\delta(y) \\ &\leq C \frac{\delta(y)}{(|y|^{n-1}+1)} \end{aligned}$$

Now since G_D is continuous outside the diagonal, we deduce by the dominated convergence theorem, (H_2) and Proposition 1.5 (*iii*), that

$$\int_{(|x_0-y|\geq 2r)\cap(|y|\leq M)\cap D} \left|G_D(x,y) - G_D(x',y)\right| f\left(y, \|\omega\|_{\infty}\right) dy \to 0 \text{ as } |x-x'| \to 0.$$

Hence $\{\int_D G_D(., y) f(y, v(y)) dy, v \in \Lambda\}$, is equicontinuous on \overline{D} . Next, we need to prove that $\{\int_D G_D(., y) f(y, v(y)) dy, v \in \Lambda\}$, is equicontinuous at ∞ , whenever D is unbounded.

Let $x \in D$ such that $|x| \ge M + 1$. Then for each $v \in \Lambda$, we have

$$\begin{aligned} \left| \int_{D} G_{D}(x,y) f\left(y,v(y)\right) dy \right| &\leq \int_{(|y| \ge M) \cap D} G_{D}(x,y) f\left(y,\|\omega\|_{\infty}\right) dy \\ &+ \int_{(|y| \le M) \cap D} G_{D}(x,y) f\left(y,\|\omega\|_{\infty}\right) dy \\ &\leq \frac{\varepsilon}{4} + \int_{(|y| \le M) \cap D} G_{D}(x,y) f\left(y,\|\omega\|_{\infty}\right) dy. \end{aligned}$$

For $y \in B(0, M) \cap D$, we have $|x - y| \ge 1$. Hence by (1.9), we get

$$\begin{aligned} \left| \int_{D} G_{D}(x,y) f\left(y,v(y)\right) dy \right| &\leq \frac{\varepsilon}{4} + C \int_{(|y| \leq M) \cap D} \frac{\rho_{D}(y)}{|x-y|^{n-2}} f\left(y, \|\omega\|_{\infty}\right) dy \\ &\leq \frac{\varepsilon}{4} + \frac{C}{(|x|-M)^{n-2}} \int_{(|y| \leq M) \cap D} \delta(y) f\left(y, \|\omega\|_{\infty}\right) dy \\ &\leq \frac{\varepsilon}{4} + \frac{C}{(|x|-M)^{n-2}} \int_{(|y| \leq M) \cap D} \frac{\delta(y) f\left(y, \|\omega\|_{\infty}\right)}{(|y|^{n-1}+1)} dy. \end{aligned}$$

Using again Proposition 1.5(*iii*), we obtain $\int_D G_D(x,y)f(y,v(y)) dy \to 0$ as $|x| \to \infty$, uniformly in $v \in \Lambda$. Therefore by Ascoli's theorem, the family $\{\int_D G_D(x,y)f(y,v(y)) dy, v \in \Lambda\}$ becomes relatively compact in $C_0(D)$.

Since $\omega \in C(\overline{D} \cup \{\infty\})$, then we deduce that the set $T\Lambda$ is relatively compact in $C(\overline{D} \cup \{\infty\})$.

On the other hand, since *f* is a nonnegative function, it is clear from (2.1) and (1.5) that $T\Lambda \subset \Lambda$.

Next, we prove the continuity of the operator *T* in Λ in the supremum norm. Let $(v_k)_k$ be a sequence in Λ which converges uniformly to a function *v* in Λ . Then we have

$$|Tv_k(x) - Tv(x)| \leq \lambda \int_D G_D(x,y) |f(y,v_k(y)) - f(y,v(y))| dy.$$

From the monotonicity of *f*, we have

$$|f(y, v_k(y)) - f(y, v(y))| \le 2f(y, ||\omega||_{\infty}),$$

Since by (H_2) , (1.10) and Proposition 1.5 (*i*), $Vf(y, ||\omega||)$ is bounded, we conclude by the continuity of *f* with respect to the second variable and by the dominated convergence theorem, that

$$\forall x \in \overline{D} \cup \{\infty\}, \ Tv_k(x) \to Tv(x) \text{ as } k \to \infty.$$

Using the fact that $T\Lambda$ is relatively compact in $C(\overline{D} \cup \{\infty\})$, we obtain the uniform convergence, namely

$$||Tv_k - Tv||_{\infty} \to 0 \text{ as } k \to \infty.$$

Thus we have proved that *T* is a compact mapping from Λ to itself. Hence by the Schauder's fixed point theorem, there exists $u \in \Lambda$ such that

$$u(x) = \omega(x) - \lambda \int_D G_D(x, y) f(y, u(y)) \, dy.$$
(2.3)

In addition, since for each $x \in D$, $f(y, u(y)) \leq f(y, ||\omega||_{\infty})$, we deduce by the hypothesis (H_2) and Proposition 1.5 (*iii*) that the map $y \to f(y, u(y)) \in L^1_{loc}(D)$ and by (2.3), that $x \to \int_D G_D(x, y) f(y, u(y)) dy \in L^1_{loc}(D)$. Thus using these facts, (2.3) and (2.2), we deduce that u is the required solution.

Example 2.1. Assume that $g : [0, \infty) \to [0, \infty)$ is a continuous and nondecreasing function satisfying for each c > 0, there exists $\eta > 0$ such that

$$g(t) \le \eta t, \ \forall t \in [0, c]. \tag{2.4}$$

Let *p* be a positive measurable function satisfying

$$p(x) \leq \frac{C}{(\delta(x))^{\sigma}}$$
 with $\sigma < 2$, (if D is bounded)

or

$$p(x) \leq \frac{C}{\left(\delta(x)\right)^{\sigma} |x|^{\mu-\sigma}}$$
 with $\sigma < 2 < \mu$, (whenever D is unbounded).

Then form [2] and [10], $p \in K(D)$.

Let φ *is a positive continuous function on* ∂D *and* $a \ge 0$, $\alpha \ge 0$ *such that* $a + \alpha > 0$. *Put* $\omega(x) = aH_D\varphi(x) + \alpha h(x)$. *Then by* (2.4) *and* (1.10), *we have*

$$\frac{\omega(x)}{V(p(.)g(\omega))(x)} \ge \frac{\omega(x)}{\eta V(p\omega)(x)} \ge \frac{1}{\eta C_0 \|p\|_D} > 0.$$

This implies that $\lambda_0 \geq \frac{1}{\eta C_0 \|p\|_D} > 0$. Therefore by Theorem 1.2, for each $\lambda \in [0, \lambda_0)$, the problem

$$\begin{cases} \Delta u = \lambda p(x)g(u) & in D, (in the sense of distributions) \\ u > 0 & in D, \\ u = a\varphi & on \partial D, \\ \lim_{|x| \to \infty} u(x) = \alpha & (whenever D is unbounded), \end{cases}$$

has at least one continuous bounded solution u such that

$$(1-\frac{\lambda}{\lambda_0})\omega \leq u \leq \omega$$
 in D.

Acknowledgement 1. The authors want to thank the referee for a careful reading of the paper. The research of Imed Bachar is supported by NPST Program of King Saud University; project number 11-MAT1716-02.

References

- C. O. Alves, P. C. Carriao, L. O. Faria, *Existence of Solution to Singular Elliptic Equations with Convection Terms via the Galerkin Method*, Electronic Journal of Differential Equations, Vol. 2010(2010), No. 12, pp. 1–12.
- [2] I. Bachar, H. Mâagli and N. Zeddini, Estimates on the Green function and Existence of Positive Solutions of Nonlinear Singular Elliptic Equations, Commu. Contemp Math. 5, no. 3 (2003), 401-434.
- [3] H. Brezis and S. Kamin, Sublinear elliptic equations in \mathbb{R}^n , Manus. Math. 74 (1992), 87-106.
- [4] K.L. Chung and Z. Zhao, *From Brownian motion to Schrödinger's equation*, Springer Verlag (1995).
- [5] D. G. de Figueiredo, M. Girardi, M. Matzeu; Semilinear elliptic equations with dependence on the gradient via mountain pass techniques, Diff. and Integral Eqns. **17** (2004), 119-126.
- [6] M. Ghergu, V. Radulescu; On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl. **311** (2005) 635-646.
- [7] M. Ghergu, V. Radulescu; Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term, J. Math. Anal. Appl. **333** (2007) 265273.
- [8] A.C. Lazer and P.J Mckenna, *On a singular nonlinear elliptic boundary value problem*, Proc. Amer. Math. Soc. **111** (3), (1991), 721-730.
- [9] A. V. Lair, A. W. Wood; Large solutions of semilinear elliptic equations with nonlinear gradient terms, Int. J. Math. Sci., **22** (1999), 869-883.
- [10] H. Mâagli and M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of \mathbb{R}^n , Positivity. **9** (2005), 667-686.
- [11] Z. Zhang; Nonexistence of positive classical solutions of a singular nonlinear Dirichlet problem with a convection term, Nonlinear Analysis 8 (1996) 957-961.

King Saud University college of Science Mathematics Department P.O.Box 2455 Riyadh 11451 Kingdom of Saudi Arabia E-mail: abachar@ksu.edu.sa

King Abdulaziz University, College of Sciences and Arts, RabighCampus, Department of Mathematics, P.O.Box 344, Rabigh 21911, Kingdom of Saudi Arabia. E-mail: habib.maagli@fst.rnu.tn