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Abstract

This paper is devoted to prove the existence of solutions of the nonlinear
Sturm-Liouville boundary value problem on time scales in Banach spaces.
We obtain the sufficient conditions for the existence of solutions in terms of
Kuratowski measure of noncompactness. Mönch’s fixed point theorem is
used to prove the main result. By the unification property of time scales,
our result is valid for Sturm-Liouville differential equations and difference
equations, but more interestingly by the extension property, it is also valid
for Sturm-Liouville q-difference equation.

1 Introduction

The measure of noncompactness, initiated by fundamental papers of Kuratowski
[28] and Darbo [17], developed by Banaś and Goebel [9] and many authors in
the literature, plays an important role in the theory of nonlinear analysis which
has been improved fast recently because of its extensive practical applications in
many fields such as engineering, economics, optimal control and optimization.
The measure of noncompactness has been successfully applied to the theory of
differential equations (see [3, 14, 31, 35] and references therein), difference equa-
tions [1, 21], integral equations [5] and differential inclusions, i.e., multi-valued
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functional differential equations [13, 22, 32].
After Hilger [24] initiated the concept of time scale and Aulbach and Hilger [25]
published the first article on time scales, the differential equations, difference
equations and quantum equations [26] (h-difference and q -difference equations
are based on h-calculus and q-calculus, respectively) were unified and extended
as the dynamic equations. The most important advantage of a time scale is that
it provides not only a unified approach to study the discrete intervals with uni-
form step size (the lattice hZ), continuous intervals and discrete intervals with
non-uniform (variable) step size (for instance q-numbers), but also, more inter-
estingly, it gives an opportunity to extend the approach to study the combination
of continuous and discrete intervals. Therefore, the concept of time scales can
build bridges between the continuous, discrete and q-discrete analysis.
Sturm Liouville equation has been extensively studied in both continuous and
discrete cases [7, 20, 29, 33, 36]. After the theory of time scale is created and it
has been shown to be applicable to any field with discrete or continuous models
(or combination of these), the study on Sturm-Liouville equation turned out to
be Sturm-Liouville dynamic equation for which the existence of the solutions has
been presented [8, 18, 19, 34].
However the theory of dynamic equations in Banach spaces on an arbitrary time
scale is still a new research area. In this article, we focus on this gap. By unifying
both the discrete and continuous cases, as well as extending to the q-discrete case,
we derive the existence of the solutions of the dynamic Sturm-Liouville problem
in Banach spaces. These kind of dynamic equations have the same advantages
as in a real-valued case and an increasing number of possible applications. For
the dynamic equations in Banach spaces, the first articles are written by Cichoń
et.al. [15, 16]. Authors prove the existence of the classical, Carathéodory and the
weak solutions of the first order Cauchy dynamic problem via measure of (weak)
noncompactness.
The more general form of Sturm-Liouville equation with mixed derivatives in fi-
nite interval is introduced by Atici and Guseinov [8]. Then Topal et.al [34] study
the existence of positive solutions for the the Sturm-Liouville boundary value
problem with real valued nonlinear term f . In this paper we prove the existence
of the solutions of boundary value problem

(p(t)x∆(t))∇ + f (t, x(t), x∆(t), x∇(t)) = 0, t ∈ [0, ∞), (1)

α1x(0)− β1 lim
t→0+

p(t)x∆(t) = 0,

α2 lim
t→∞

x(t) + β2 lim
t→∞

p(t)x∆(t) = 0,
(2)

in Banach spaces. For this purpose, we first express the boundary value problem
(1)-(2) as an integral equation by means of Green’s function. Then by imposing
some conditions on the nonlinear term f in terms of Kuratowski measure of non-
compactness, we obtain a fixed point of the operator associated to this integral
equation using Mönch’s fixed point theorem.
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2 Preliminaries

We refer to the books [10, 11] for the general theory of dynamic equations on
time scales. To understand the so-called dynamic equation, we present some
preliminary definitions and notations of time scale which are very common in
the literature [2, 10, 11, 24, 25, 27].
Let (E, || · ||) be a Banach space and T denote a time scale (nonempty closed
subset of real numbers R). Throughout this paper, by an interval [a, b] we mean
{t ∈ T : a ≤ t ≤ b}. In particular, the time scale half line is denoted by J =
[0, ∞) = {t ∈ T : 0 ≤ t < ∞}. Other types of intervals are assumed in a similar
manner. By a subinterval I of J, we mean the time scale subinterval.

Definition 2.1. The forward jump operator σ : T → T and the backward jump operator
ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}
respectively. We put inf ∅ = sup T (i.e. σ(M) = M if T has a maximum M) and
sup ∅ = inf T (i.e. ρ(m) = m if T has a minimum m).
The jump operators σ and ρ allow the classification of points in time scale in the following
way: t is called right dense, right scattered, left dense, left scattered, dense and isolated
if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) = t = σ(t) and ρ(t) < t < σ(t)
respectively.
Moreover T

k denotes Hilger’s above truncated set consisting of T except for a possible
left-scattered maximal point. Similarly, Tk denotes the below truncated set obtained from
T by deleting a possible right-scattered minimal point.

Next we define the so - called ∆(∇)-derivative and ∆(∇)-integral for Banach
valued functions similar as ∆(∇)-derivative and ∆(∇)-integral on time scales
[10, 11]. The basic properties of ∆(∇)-derivative and integral for Banach valued
functions are analogue to ∆(∇)-derivative and integral for the real case.

Definition 2.2. Let f : T → E. For t ∈ T
k, we define f ∆(t) by

f ∆(t) = lim
s→t

f (σ(t)) − f (s)

σ(t)− s
,

and for t ∈ Tk, and f∇(t) by

f ∆(t) = lim
s→t

f (ρ(t)) − f (s)

ρ(t)− s
.

For the most common time scales, the ∆ and the ∇ derivatives are stated be-
low:

(a) If T = R, f ∆ = f∇ = f ′,

(b) If T = Z, f ∆ = ∆ f , i.e., the usual forward difference operator and f∇ = ∇ f ,
i.e., the usual backward difference operator,

(c) If T = Kq = qZ ∪ {0} = {qk : k ∈ Z} ∪ {0}, where q 6= 1 is a fixed real

number, f ∆(t) = ∆q f (t) =
f (qt) − f (x)

(q − 1)t
and f∇(t) = ∇q f (t) =

f (x)− f (t/q)

t(1 − 1/q)
.
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Hence the theory time scale allows the unification and the extension of the differ-
ential and the difference equations.

Definition 2.3. We say that f : T → E is right dense continuous (rd- continuous) if f
is continuous at every right dense point t ∈ T and lim

s→t−
f (s) exists and is finite at every

left dense point t ∈ T.
Similarly, we say that f : T → E is left dense continuous (ld- continuous) if f is

continuous at every left dense point t ∈ T and lim
s→t+

f (s) exists and is finite at every

right dense point t ∈ T.

Definition 2.4. A function F : T → E is called a ∆-antiderivative of the function
f : T → E if F∆(t) = f (t) holds for all t ∈ T

k. Then the ∆-integral is defined by

∫ t

a
f (τ)∆τ = F(t) − F(a),

and similarly a function F : T → E is called a ∇-antiderivative of f : T → E if
F∇(t) = f (t) holds for all t ∈ Tk. Then the ∇-integral is defined by

∫ t

a
f (τ)∇τ = F(t) − F(a).

Remark 2.5. [10] (Existence of antiderivatives)

(i) Every rd-continuous function f has a ∆ antiderivative. In particular if t0 ∈ T

then F defined by

F(t) :=
∫ t

t0

f (τ)∆τ, t ∈ T

is an antiderivative of f .

(ii) Every ld-continuous function f has a ∇ antiderivative. In particular if t0 ∈ T

then F defined by

F(t) :=
∫ t

t0

f (τ)∇τ, t ∈ T

is a ∇ antiderivative of f .

Theorem 2.6. (The mean value theorem for ∇-integrals) If f : J → E is ∇- inte-
grable then

∫

I
f (t)∇t ∈ µ∇(I) · conv f (I),

where I is an arbitrary subinterval of J, µ∇(I) is the Lebesgue ∇-measure of I and
conv f (I) is the closure of the convex extension of f (I).

Proof. Let IRS be the set of right scattered points of I. By the properties of ∇-
integral on Banach spaces (∇-analogue Theorem 5.2 of [12]), we obtain

∫

I
f (t)∇t =

∫

I\IRS

f (t)dt + ∑
ti∈IRS

f (ti)µ∇(ti).
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Theorem 5.2 and Lemma 3.1 of [12] lead us to have
∫

I
f (t)∇t ∈ mes(I \ IRS) · conv f (I) + ∑

ti∈IRS

f (ti)µ∇(ti)

⊂ mes(I \ IRS) · conv f (I) + f (I) · ∑
ti∈IRS

µ∇(ti)

⊂ (mes(I \ IRS) + ∑
ti∈IRS

µ∇(ti)) · conv f (I)

= µ∇(I) · conv f (I).

Here mes(I) denotes the measure of the interval I.

Theorem 2.7. (Mean value theorem for ∆-integrals) If f : J → E is ∆- integrable
then

∫

I
f (t)∆t ∈ µ∆(I) · conv f (I),

where I is an arbitrary subinterval of J and µ∆(I) is the Lebesgue ∆-measure of I.

Proof. The proof is ∆-analogue of Theorem 2.6.

See [6, 23] for the detailed research about the theory of Lebesgue ∆(∇)- mea-
sure and Lebesgue ∆(∇)-integral. Authors developed the theory by using the
measure-theoretical approach of Hilger [25].

Our fundamental tool is the Kuratowski measure of noncompactness [9]. For
any bounded subset A of E, the Kuratowski measure of noncompactness of A,
denoted by α(A), is the infimum of all ε > 0 such that there exists a finite covering
of A by sets of diameter smaller than ε. For convenience we present the properties
of the measure of noncompactness α:

1. If A ⊂ B then α(A) ≤ α(B),

2. α(A) = α(Ā), where Ā denotes the closure of A,

3. α(A) = 0 if and only if A is relatively compact,

4. α(A ∪ B) = max {α(A), α(B)},

5. α(λA) = |λ|α(A) (λ ∈ R),

6. α(A + B) ≤ α(A) + α(B),

7. α(convA) = α(A), where conv(A) denotes the convex extension of A.

For the proof of the main result, we require the adaptation of Ambrosetti’s re-
sult [4] for the space C∆∇

1 (T, E), i.e, the space of Banach-valued functions defined
on a time scale T having continuous ∆ and ∇ derivatives.

Lemma 2.8. Assume that A ⊂ C∆∇
1 (T, E) is bounded. Also assume that A∆ and A∇

defined by {g∆ : g ∈ A} and {g∇ : g ∈ A} respectively, are bounded and equicontinu-
ous. Then the measure of noncompactness in C∆∇

1 (T, E) is given by

α(A) = max

{

sup
t∈T

α(A(t)), sup
t∈T

α(A∆(t)), sup
t∈T

α(A∇(t))

}

.
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Proof. First we show that

α(A) ≥ max

{

sup
t∈T

α(A(t)), sup
t∈T

α(A∆(t)), sup
t∈T

α(A∇(t))

}

.

Let d = α(A) and ǫ > 0. By definition of α(A) there exists sets T1, T2, . . . Tk ∈

C∆∇
1 (T, E) such that A ⊂

k
⋃

i=1

Ti and diam Ti < d + ε, ∀i = 1, 2, . . . , k.

For t0 ∈ T, observe that

A(t0) ⊂
k
⋃

i=1

Ti(t0), A∆(t0) ⊂
k
⋃

i=1

T∆
i (t0), A∇(t0) ⊂

k
⋃

i=1

T∇
i (t0)

and

diam Ti(t0) < d + ε, diam T∆
i (t0) < d + ε, diamT∇

i (t0) < d + ε.

Thus we have

α(A(t0)) < d + ε, α(A∆(t0)) < d + ε, α(A∇(t0)) < d + ε.

Since ε and t0 are arbitrary, we obtain

α(A) ≥ max

{

sup
t∈T

α(A(t)), sup
t∈T

α(A∆(t)), sup
t∈T

α(A∇(t))

}

. (3)

Next we show

α(A) ≤ max

{

sup
t∈T

α(A(t)), sup
t∈T

α(A∆(t)), sup
t∈T

α(A∇(t))

}

.

By the hypothesis, A∆ and A∇ are equicontinuous. By the continuity of A and
mean value theorems for ∆ and ∇ integrals (Theorems 2.6 and 2.7), we obtain the
equicontinuity of A. Since A, A∆ and A∇ are equicontinuous, for ε > 0 there exist
δ > 0 and the set of points t0, t1, . . . , tn ∈ T such that if t ∈ T and g ∈ A then
there exists ti ∈ T such that |t − ti| < δ implies

||g(t)− g(ti)|| ≤ ε, ||g∆(t)− g∆(ti)|| ≤ ε, ||g∇(t)− g∇(ti)|| ≤ ε.

Let d = α(
n
⋃

i=0

[A(ti)
⋃

A∆(ti)
⋃

A∇(ti)]). Then there exist sets A1, A2, . . . , Am such

that
n
⋃

i=0

[A(ti)
⋃

A∆(ti)
⋃

A∇(ti)] ⊂
m
⋃

i=1

Ai

and diam Ai < d + ε for i = 1, 2, . . . , m. Define

Bijkl := {g ∈ A : g(ti) ∈ Aj, g∆(ti) ∈ A∆
k , g∇(ti) ∈ A∇

l }
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for i = 1, 2, . . . , n and j, k, l = 1, 2, . . . , m. Note that A ⊂
⋃

i,j,k,l

Bijkl. If g, h ∈ Bijkl

and |t − ti| < δ, then we obtain the followings:

||g(t) − h(t)|| ≤ ||g(ti)− g(t)|| + ||h(ti)− h(t)|| + ||h(ti)− g(ti)||

≤ ε + ε + ε + d = d + 3ε, (4)

||g∆(t)− h∆(t)|| ≤ ||g∆(ti)− g∆(t)|| + ||h∆(ti)− h∆(t)|| + ||h∆(ti)− g∆(ti)||

≤ ε + ε + ε + d = d + 3ε, (5)

||g∇(t)− h∇(t)|| ≤ ||g∇(ti)− g∇(t)|| + ||h∇(ti)− h∇(t)|| + ||h∇(ti)− g∇(ti)||

≤ ε + ε + ε + d = d + 3ε. (6)

Therefore diam Bijkl < d + 3ε, which implies

α(A) ≤ d + 3ε = α(
n
⋃

i=0

[A(ti)
⋃

A∆(ti)
⋃

A∇(ti)] + 3ε

≤ max
1≤i≤n

{α(A(ti)), α(A∆(ti)), α(A∇(ti))}+ 3ε

≤ max
1≤i≤n

{sup
ti∈T

α(A(ti)), sup
ti∈T

α(A∆(ti)), sup
ti∈T

α(A∇(ti))}+ 3ε.

Since ε is arbitrary,

α(A) ≤ max

{

sup
t∈T

α(A(t)), sup
t∈T

α(A∆(t)), sup
t∈T

α(A∇(t))

}

. (7)

Inequalities (3) and (7) complete the proof.

In the proof of the main theorem, we apply the following fixed point theorem.

Theorem 2.9. (Mönch Fixed Point Theorem)[30] Let D be a closed convex subset of
E, and let F be a continuous map from D into itself. If for some x ∈ D the implication

V̄ = conv({x} ∪ F(V)) ⇒ Vis relatively compact

holds for every countable subset V of D, then F has a fixed point.

3 Main Results

Definition 3.1. A function x : T → E is said to be a solution of (1)-(2) provided
that x is ∆-differentiable on T

k, x∆ : T → E is ∇-differentiable on T
∗ = T

k ⋂
Tk,

x∆∇ : T
∗ → E is continuous and (1)-(2) hold for all t ∈ T

∗.

Let p, f , α1, α2, β1, β2 satisfy the following conditions:
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(C1) p : T → R is a ∇-differentiable function on Tk = [0, ∞)k, p∇ : Tk → R is

continuous, p(t) 6= 0, for all t ∈ T, and
∫ ∞

0

∆s

p(s)
< ∞,

(C3) f : T × E3 → E is a Banach valued function,

(C4) |α1|+ |β1| 6= 0, |α2|+ |β2| 6= 0.

To state the boundary value problem (1)-(2) as an equivalent integral equation,
we consider the homogenous equation

−(p(t)x∆(t))∇ = 0. (8)

Let u1(t) and u2(t) be the solutions of (8) the satisfying the boundary conditions

u1(0) = β1, lim
t→0+

u
[∆]
1 (t) = α1, (9)

lim
t→∞

u2(t) = β2, lim
t→∞

u
[∆]
2 (t) = −α2, (10)

respectively where x[∆](t) = p(t)x∆(t). Clearly

u1(t) = β1 + α1

∫ t

0

∆s

p(s)
and u2(t) = β2 + α2

∫ ∞

t

∆s

p(s)
.

Moreover u1(t) and u2(t) satisfy (2). Let us set

D = −Wt(u1, u2) = u
[∆]
1 (t)u2(t)− u1(t)u

[∆]
2 (t) (11)

Since the Wronskian of any two solution of (8) is independent of t, while t → ∞

in (11) we also get

D = α2 lim
t→∞

u1(t) + β2 lim
t→∞

u
[∆]
1 (t). (12)

Theorem 3.2. Under the condition D 6= 0 and
∫ ∞

0

∆s

p(s)
< ∞ the dynamic equation

(p(t)x∆(t))∇ + h(t) = 0, (13)

with the boundary conditions (2) has a unique solution

x(t) =
∫ ∞

0
G(t, s)h(s)∇s, (14)

where h : T → E is any ∇-integrable function and

G(t, s) =
1

D

{

u1(t)u2(s), 0 ≤ t < s < ∞,
u1(s)u2(t), 0 ≤ s < t < ∞.

(15)
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Proof. If D 6= 0 then the solutions u1(t) and u2(t) of (8) are linearly independent
and therefore the general solution of the equation (13) has of the form

x(t) = c1u1(t) + c2u2(t) +
1

D

∫ t

0
(u1(s)u2(t)− u1(t)u2(s))h(s)∇s. (16)

Now we try to chose the constants c1 and c2 so that the function defined by (16)
satisfies (13)-(2). From (16) we obtain the following:

x[∆](t) = c1u
[∆]
1 (t) + c2u

[∆]
2 (t) +

1

D

∫ t

0
(u1(s)u

[∆]
2 (t)− u

[∆]
1 (t)u2(s))h(s)∇s,

x(0) = c1u1(0) + c2u2(0) = c1β1 + c2u2(0),

x[∆](0) = c1u
[∆]
1 (0) + c2u

[∆]
2 (0) = c1α1 + c2u

[∆]
2 (0).

Using the first boundary condition of (2), we have

α1[c1β1 + c2u2(0)]− β1[c1α1 + c2u
[∆]
2 (0)] = c2[α1u2(0)− β1u

[∆]
2 (0)] = 0.

Since D 6= 0, we obtain c2 = 0. Therefore

x(t) = c1u1(t) +
1

D

∫ t

0
(u1(s)u2(t)− u1(t)u2(s))h(s)∇s,

x[∆](t) = c1u
[∆]
1 (t) +

1

D

∫ t

0
(u1(s)u

[∆]
2 (t)− u

[∆]
1 (t)u2(s))h(s)∇s.

Hence

lim
t→∞

x(t) = c1 lim
x→∞

u1(t) +
1

D

∫ ∞

0
(u1(s)β2 − lim

x→∞
u1(t)u2(s))h(s)∇s,

lim
t→∞

x[∆](t) = c1 lim
x→∞

u
[∆]
1 (t) +

1

D

∫ ∞

0
(−α2u1(s)− lim

x→∞
u
[∆]
1 (t)u2(s))h(s)∇s.

Using the second boundary condition of (2) and taking (12) into account, it can
be verified that

c1 =
1

D

∫ ∞

0
u2(s)h(s)∇s.

Replacing c1 and c2 in (16) we obtain that (14) is the solution of the boundary
value problem (13)-(2).

By the virtue of Theorem 3.2, finding a solution x(t) of boundary value prob-
lem (1)-(2) is equivalent to finding a continuous solution x(t) of the integral equa-
tion

x(t) =
∫ ∞

0
G(t, s) f (s, x(s), x∆(s), x∇(s))∇s. (17)

For the existence of the solution of the integral equation (17), we propose the
corresponding to integral operator:

F(x)(t) =
∫ ∞

0
G(t, s) f (s, x(s), x∆(s), x∇(s))∇s. (18)
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By our considerations presented above, it follows that the fixed points of the op-
erator F is the solution of (1)-(2). For x ∈ C∆∇

1 (T, E), we define the norm of x by
||x|| = sup{||x(t)|| : t ∈ T}.

To fulfill the conditions on the integral operator, we define the followings:

M1 =
1

D

(

β1 + α1

∫ ∞

0

∆s

p(s)

)

·

(

β2 + α2

∫ ∞

0

∆s

p(s)

)

, (19)

M0 = M1

∫ ∞

0
m(s)∇s, (20)

where m : [0, ∞) → R
+ is L −∇-integrable function,

M2 = sup
t∈T

∣

∣

∣

∣

1

p(t)

∣

∣

∣

∣

, M3 = sup
t∈T

∣

∣

∣

∣

1

p(ρ(t))

∣

∣

∣

∣

, (21)

Ḡ(t, τ) =
∫ ∞

0
|G(t, s)− G(τ, s)| · m(s)∇s, t, τ ∈ J (22)

B̃ =
{

x ∈ C(J, E) : ||x|| ≤ M0, ||x(t)− x(τ)|| ≤ Ḡ(t, τ),

||x∆(t)− x∆(τ)|| ≤

∣

∣

∣

∣

1

p(τ)
−

1

p(t)

∣

∣

∣

∣

∫ ∞

0
m(s)∇s +

∣

∣

∣

∣

1

p(τ)

∣

∣

∣

∣

∫ τ

t
m(s)∇s,

||x∇(t)− x∇(τ)|| ≤

∣

∣

∣

∣

1

p(ρ(τ))
−

1

p(ρ(t))

∣

∣

∣

∣

∫ ∞

0
m(s)∇s +

∣

∣

∣

∣

1

p(ρ(τ))

∣

∣

∣

∣

∫ τ

t
m(s)∇s

}

.

It is easy to verify that B̃ is a closed, bounded and convex subset of E.

Theorem 3.3. Let f be a bounded and continuous function. Assume that there exist
L-∇-integrable functions m, k : [0, ∞) → R

+ satisfying

|| f (t, x, x1, x2)|| ≤ m(t) for t ∈ J, x, x1, x2 ∈ E, (23)

α( f (I × A × B × C)) ≤ k(t)max{α(A), α(B), α(C)} (24)

and

0 < Mi

∫ ∞

0
k(s)∇s < 1 for i = 1, 2, 3 (25)

for I ⊂ J and for any bounded subsets A, B, C of E. Then the boundary value problem
(1)-(2) has a solution.

Proof. Let F be defined as in (18). In order to fulfill the conditions of Mönch fixed
point theorem (Theorem 2.9) we first show that the operator F maps B̃ into B̃.

||F(x)(t)|| = ||
∫ ∞

0
G(t, s) f (s, x(s), x∆(s), x∇(s))∇s||

≤
∫ ∞

0
|G(t, s)| · || f (s, x(s), x∆(s), x∇(s))||∇s.

As

G(t, s) ≤
1

D
u1(∞)u2(0) =

1

D

(

β1 + α1

∫ ∞

0

∆s

p(s)

)(

β2 + α2

∫ ∞

0

∆s

p(s)

)

= M1,
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we have

||F(x)(t)|| ≤
∫ ∞

0
M1|| f (s, x(s), x∆(s), x∇(s))||∇s ≤ M1

∫ ∞

0
m(s)∇s = M0.

Consequently we show that the image sets F(B̃), F∆(B̃), F∇(B̃) are equicontinu-
ous.

||F(x)(t) − F(x)(τ)|| ≤
∫ ∞

0
|G(t, s)− G(τ, s)| || f (s, x(s), x∆(s), x∇(s))||∇s

≤
∫ ∞

0
|G(t, s)− G(τ, s)|m(s)∇s = Ḡ(t, τ)

Since Ḡ(t, τ) → 0 as t → τ, F(B̃) is equicontinuous.
For the equicontinuity of F∆(B̃), we show that ||F(x)∆(t) − F(x)∆(τ)|| → 0 as
t → τ. Using the Green’s function (15), we obtain

F(x)∆(t) =

(

∫ ∞

0
G(t, s) f (s, x(s), x∆(s), x∇(s))∇s

)∆

=
1

D

∫ t

0

−α2

p(t)
u1(s) f (s, x(s), x∆(s), x∇(s))∇s

+
1

D

∫ ∞

t

α1

p(t)
u2(s) f (s, x(s), x∆(s), x∇(s))∇s.

Therefore ∀t, τ ∈ J, we have

||F(x)∆(t)− F(x)∆(τ)||

≤
1

D

∣

∣

∣

∣

1

p(τ)
−

1

p(t)

∣

∣

∣

∣

(

∫ t

0
α2||u1|| · || f ||∇s +

∫ ∞

t
α1||u2|| · || f ||∇s

)

+
1

D

∣

∣

∣

∣

1

p(τ)

∣

∣

∣

∣

∫ τ

t
(α2||u1||+ α1||u2||) || f ||∇s

≤

∣

∣

∣

∣

1

p(τ)
−

1

p(t)

∣

∣

∣

∣

∫ ∞

0
m(s)∇s +

∣

∣

∣

∣

1

p(τ)

∣

∣

∣

∣

∫ τ

t
m(s)∇s,

which leads ||F(x)∆(t)− F(x)∆(τ)|| → 0 as t → τ.
The equicontinuity of F∇(B̃) can be obtained in a similar way.
The continuity of F is the direct result of the continuity of f . Indeed, let xn → x

in B̃.

||F(xn)(t)− F(x)(t)|| = ||
∫ ∞

0
G(t, s)[ f (s, xn , x∆

n , x∇n )− f (s, x, x∆, x∇)]∇s||

≤
∫ ∞

0
|G(t, s)| · || f (s, xn, x∆

n , x∇n )− f (s, x, x∆, x∇)||∇s,

which implies the continuity of F.
The existence of a fixed point of operator F is guaranteed via Mönch fixed

point theorem. For this purpose, we let V be a countable subset of B̃ satisfying
the condition

V = conv({x} ∪ F(V)) for some x ∈ B̃
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and V(t) = {v(t) ∈ E : v ∈ V, t ∈ J}. Since V is equicontinuous then by Lemma
2.8 the function t 7→ v(t) = α(V(t)) is continuous on J. For any ε > 0 we separate
the time scale interval J = [0, K] ∪ [K, ∞) into two subintervals in such way that

∫ ∞

K
G(t, s) f (s, V(s), V∆(s), V∇(s))∇s < ε.

We split the subinterval [0, K] into m parts: 0 = t0 < t1 < · · · < tm = K and
denote Ti = [ti, ti+1], i = 0, 1, 2, . . . , m − 1. The mean value theorem for ∇-
integrals (Theorem 2.6) implies the following embedding:

∫ K

0
G(t, s) f (s, V, V∆ , V∇)∇s =

m−1

∑
i=0

∫ ti+1

ti

G(t, s) f (s, V, V∆ , V∇)∇s

⊂
m−1

∑
i=0

µ∇(Ti)conv
(

G(t, Ti) f (Ti , V(Ti), V∆(Ti), V∇(Ti))
)

.

The definition of operator F, properties of Kuratowski measure of noncompact-
ness, Lebesgue ∆-measure, Lemma 2.8 and the assumption (19), we lead

α(F(V)(t)) ≤
m−1

∑
i=0

µ∇(Ti)α
(

G(t, Ti) f (Ti , V(Ti), V∆(Ti), V∇(Ti))
)

∇s

≤
m−1

∑
i=0

µ∇(Ti) sup
s∈Ti

G(t, s)α
(

f (Ti, V(Ti), V∆(Ti), V∇(Ti))
)

∇s

≤ M1

m−1

∑
i=0

µ∇(Ti) sup
s∈Ti

k(s)max{α(V(Ti)), α(V∆(Ti)), α(V∇(Ti))}∇s

≤ M1α(V(t))
m−1

∑
i=0

µ∇(Ti)k(qi)∇s

for all t ∈ IK = [0, K] and for some qi ∈ Ti. Hence as

F(V)(t) =
∫ K

0
G(t, s) f (s, V, V∆, V∇)∇s +

∫ ∞

K
G(t, s) f (s, V, V∆, V∇)∇s,

we acquire α(F(V)(t)) ≤ M1α(V(IK))
∫ ∞

0
k(s)∇s + ε. Since ε is arbitrary

α(F(V)(t)) ≤ M1α(V(IK))
∫ ∞

0
k(s)∇s. (26)

Analogously by the use of (21)

α(F(V)∆(t))

= α

(

∫ K

0
G∆(t, s) f (s, V(s), V∆(s), V∇(s))∇s

)

≤
m−1

∑
i=0

µ∇(Ti)α
(

G∆(t, Ti) f (Ti , V(Ti), V∆(Ti), V∇(Ti))
)

∇s

≤ M2

m−1

∑
i=0

µ∇(Ti) sup
s∈Ti

k(s) · max{α(V(Ti)), α(V∆(Ti)), α(V∇(Ti))}∇s

≤ M2 · α(V(t))
m−1

∑
i=0

µ∇(Ti)k(qi)∇s
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for all t ∈ IK = [0, K] and for some qi ∈ Ti. Hence

α(F(V)∆(t)) ≤ M2α(V(IK))
∫ ∞

0
k(s)∇s. (27)

Moreover

α(F(V)∇(t)) ≤ M3α(V(IK))
∫ ∞

0
k(s)∇s (28)

can be obtained in a similar way. Therefore Lemma 2.8, equations (26), (27), (28)
and the condition (25) enable us to have

α(F(V)) ≤ max{M1α(V)
∫ ∞

0
k(s)∇s, M2α(V)

∫ ∞

0
k(s)∇s, M3α(V)

∫ ∞

0
k(s)∇s}

= max{M1

∫ ∞

0
k(s)∇s, M2

∫ ∞

0
k(s)∇s, M3

∫ ∞

0
k(s)∇s} · α(V)

< α(V). (29)

Since V = conv({x} ∪ F(V)), then α(V) ≤ α(F(V)). Therefore α(V) = 0, i.e., V
is relatively compact.
As a result all the assumption hypothesis of Mönch fixed point theorem are ful-
filled and we conclude the fact that F has a fixed point which is the solution of
problem (1)-(2).

References

[1] R. P. Agarval, D. O’Regan, Difference equations in abstract spaces, J. Austral.
Math. Soc. (Series A) 64 (1998), 277-284.

[2] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applica-
tions, Result Math. 35 (1999) 3-22.

[3] R. P. Agarwal, M. Benchohra, D. Seba, On the applications of Measure of non-
compactness to the existence of solutions for fractional difference equations, Result.
Math. 55 (2009), 221-230.

[4] A. Ambrosetti, Un teorema di esistenza por le equazioni differenziali negli spazi di
Banach, Rend. Sem. Univ. Padova 39 (1967), 349-361.
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