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Abstract

This paper considers the existence of solutions for two boundary value
problems of fractional p-Laplacian equation at resonance. Under certain non-
linear growth condition of the nonlinearity, two new existence results are ob-
tained by using the coincidence degree theory. As an application, an example
to illustrate our results is given.

1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
on an arbitrary order that can be noninteger. This subject, as old as the prob-
lem of ordinary differential calculus, can go back to the times when Leibniz and
Newton invented differential calculus. As is known to all, the problem for frac-
tional derivative was originally raised by Leibniz in a letter, dated September 30,
1695. Fractional differential equations appear naturally in a number of fields such
as physics, polymer rheology, regular variation in thermodynamics, biophysics,
blood flow phenomena, aerodynamics, electro-dynamics of complex medium,
viscoelasticity, Bode analysis of feedback amplifiers, capacitor theory, electrical
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circuits, electro-analytical chemistry, biology, control theory, fitting of experimen-
tal data, etc. [1-4]. For instance, Pereira et al. [5] considered the following frac-
tional Van der Pol equation

Dλx(t) + α(x2(t)− 1)x′(t) + x(t) = 0, 1 < λ < 2, (1.1)

where Dλ is the fractional derivative of order λ and α is a control parameter that
reflects the degree of nonlinearity of the system. Equation (1.1) is obtained by
substituting the capacitance by a fractance in the nonlinear RLC circuit model.

Recently, fractional differential equations have been of great interest due to
the intensive development of the theory of fractional calculus itself and its ap-
plications. For example, for fractional initial value problems, the existence and
multiplicity of solutions (or positive solutions) were discussed in [6-9]. On the
other hand, for fractional boundary value problems (FBVPs for short), Agarwal
et al. [10] considered a two-point boundary value problem at nonresonance, and
Bai [11] considered a m-point boundary value problem at resonance. For more
papers on FBVPs, see [12-18] and the references therein.

The turbulent flow in a porous medium is a fundamental mechanics problem.
For studying this type of problems, Leibenson [19] introduced the p-Laplacian
equation as follows

(φp(x
′(t)))′ = f (t, x(t), x′(t)), (1.2)

where φp(s) = |s|p−2s, p > 1. Obviously, φp is invertible and its inverse operator
is φq, where q > 1 is a constant such that 1/p + 1/q = 1.

In the past few decades, many important results relative to equation (1.2) with
certain boundary value conditions have been obtained. We refer the reader to
[20-26] and the references cited therein. However, to the best of our knowl-
edge, there are relatively few results on boundary value problems for fractional
p-Laplacian equations at resonance.

Motivated by the works mentioned previously, in this paper, we investigate
the existence of solutions for fractional p-Laplacian equation of the form

D
β
0+

φp(D
α
0+x(t)) = f (t, x(t), Dα

0+ x(t)), t ∈ [0, 1] (1.3)

subject to either boundary value conditions

x(0) = 0, Dα
0+x(0) = Dα

0+x(1) (1.4)

or

x(1) = 0, Dα
0+x(0) = Dα

0+x(1), (1.5)

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, Dα
0+ is a Caputo fractional derivative, and

f : [0, 1]× R
2 → R is continuous.

Note that, the nonlinear operator D
β
0+

φp(D
α
0+) reduces to the linear operator

D
β
0+

Dα
0+ when p = 2 and the additive index law

D
β
0+

Dα
0+u(t) = D

α+β
0+

u(t)
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holds under some reasonable constraints on the function u(t) [27]. Moreover,
FBVP (1.3)(1.4) (or FBVP (1.3)(1.5)) happens to be at resonance in the sense that
its associated linear homogeneous boundary value problem

{

D
β
0+

φp(Dα
0+

x(t)) = 0, t ∈ [0, 1],
x(0) = 0, Dα

0+
x(0) = Dα

0+
x(1) (or x(1) = 0, Dα

0+
x(0) = Dα

0+
x(1))

has a nontrivial solution x(t) = ctα (or x(t) = c(1 − tα)), where c ∈ R.
The rest of this paper is organized as follows. Section 2 contains some neces-

sary notations, definitions and lemmas. In Section 3 and Section 4, basing on the
coincidence degree theory of Mawhin [28], we establish two theorems on exis-
tence of solutions for FBVP (1.3)(1.4) (Theorem 3.1) and FBVP (1.3)(1.5) (Theorem
4.1) under nonlinear growth restriction of f . Finally, in Section 5, an example is
given to illustrate the main results. Our results are different from those of bibli-
ographies listed in the previous texts.

2 Preliminaries

For the convenience of the reader, we present here some necessary basic knowl-
edge and definitions about fractional calculus theory, which can be found, for
instance, in [2,4].

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0
of a function u : (0,+∞) → R is given by

Iα
0+u(t) =

1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds,

provided that the right side integral is pointwise defined on (0,+∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous
function u : (0,+∞) → R is given by

Dα
0+u(t) = In−α

0+
dnu(t)

dtn
=

1

Γ(n − α)

∫ t

0
(t − s)n−α−1u(n)(s)ds,

where n is the smallest integer greater than or equal to α, provided that the right
side integral is pointwise defined on (0,+∞).

Lemma 2.1 [1]. Let α > 0. Assume that u, Dα
0+

u ∈ L(0, 1). Then the following
equality holds

Iα
0+Dα

0+u(t) = u(t) + c0 + c1t + · · ·+ cn−1tn−1,

where ci ∈ R, i = 0, 1, · · · , n − 1, here n is the smallest integer greater than or
equal to α.
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Now, we briefly recall some notations and an abstract existence result, which
can be found in [28].

Let X, Y be real Banach spaces, L : domL ⊂ X → Y be a Fredholm operator
with index zero, and P : X → X, Q : Y → Y be projectors such that

ImP = KerL, KerQ = ImL, X = KerL ⊕ KerP, Y = ImL ⊕ ImQ.

It follows that

L|domL∩KerP
: domL ∩ KerP → ImL

is invertible. We denote the inverse by KP.
If Ω is an open bounded subset of X such that domL ∩ Ω 6= ∅, then the map

N : X → Y will be called L-compact on Ω if QN(Ω) is bounded and KP(I −Q)N :
Ω → X is compact.

Lemma 2.2 [28]. Let L : domL ⊂ X → Y be a Fredholm operator of index zero
and N : X → Y be L-compact on Ω. Assume that the following conditions are
satisfied

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ KerL) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(3) deg(QN|KerL, Ω ∩ KerL, 0) 6= 0, where Q : Y → Y is a projection such

that ImL = KerQ.
Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

In this paper, we take Y = C[0, 1] with the norm ‖y‖∞ = maxt∈[0,1] |y(t)|, and

X = {x|x, Dα
0+

x ∈ Y} with the norm ‖x‖X = max{‖x‖∞, ‖Dα
0+

x‖∞}. By means of
the linear functional analysis theory, we can prove that X is a Banach space.

3 Existence of Solutions for FBVP (1.3)(1.4)

In this section, a theorem on existence of solutions for FBVP (1.3)(1.4) will be
given.

Define the operator L : domL ⊂ X → Y by

Lx = D
β
0+

φp(D
α
0+x), (3.1)

where

domL = {x ∈ X|D
β
0+

φp(D
α
0+x) ∈ Y, x(0) = 0, Dα

0+x(0) = Dα
0+x(1)}.

Let N : X → Y be the Nemytskii operator

Nx(t) = f (t, x(t), Dα
0+ x(t)), ∀t ∈ [0, 1]. (3.2)

Then FBVP (1.3)(1.4) is equivalent to the operator equation

Lx = Nx, x ∈ domL.
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Now, we begin with some lemmas that are useful in what follows.

Lemma 3.1. Let L be defined by (3.1), then

KerL = {x ∈ X|x(t) = ctα, ∀t ∈ [0, 1], c ∈ R}, (3.3)

ImL =

{

y ∈ Y|
∫ 1

0
(1 − s)β−1y(s)ds = 0

}

. (3.4)

Proof. By Lemma 2.1, D
β
0+

φp(Dα
0+x(t)) = 0 has solution

x(t) = c0 + Iα
0+φq(c1) = c0 +

φq(c1)

Γ(α + 1)
tα, c0, c1 ∈ R.

Thus, from the boundary value condition x(0) = 0, one has that (3.3) holds.
If y ∈ ImL, then there exists a function x ∈ domL such that y(t) =

D
β
0+

φp(Dα
0+

x(t)). Basing on Lemma 2.1, we have

φp(D
α
0+x(t)) = I

β
0+

y(t) + c =
1

Γ(β)

∫ t

0
(t − s)β−1y(s)ds + c, c ∈ R.

By condition Dα
0+x(0) = Dα

0+x(1), one has

∫ 1

0
(1 − s)β−1y(s)ds = 0. (3.5)

Thus, we get (3.4).

On the other hand, suppose y ∈ Y and satisfies (3.5). Let x(t) = Iα
0+φq(I

β
0+

y(t)),

then x ∈ domL and Lx(t) = D
β
0+

φp(Dα
0+ Iα

0+φq(I
β
0+

y(t))) = y(t). So that, y ∈ ImL.
The proof is complete.

Lemma 3.2. Let L be defined by (3.1), then L is a Fredholm operator of index zero,
and the linear continuous projector operators P : X → X and Q : Y → Y can be
defined as

Px(t) =
Dα

0+x(0)

Γ(α + 1)
tα, ∀t ∈ [0, 1],

Qy(t) = A
∫ 1

0
(1 − s)β−1y(s)ds · tα, ∀t ∈ [0, 1],

where A =
(

∫ 1
0 (1 − s)β−1sαds

)−1
> 0 is a constant. Furthermore, the operator

KP : ImL → domL ∩ KerP can be written by

KPy(t) = Iα
0+φq(I

β
0+

y(t))

=
1

Γ(α)

∫ t

0
(t − s)α−1φq

(

1

Γ(β)

∫ s

0
(s − τ)β−1y(τ)dτ

)

ds.
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Proof. For any y ∈ Y, we have

Q2y(t) = Qy(t) · A
∫ 1

0
(1 − s)β−1sαds = Qy(t). (3.6)

Let y1 = y − Qy, then we get from (3.6) that

∫ 1

0
(1 − s)β−1y1(s)ds =

∫ 1

0
(1 − s)β−1y(s)ds −

∫ 1

0
(1 − s)β−1Qy(s)ds

=
1

Atα
Qy(t)−

1

Atα
Q2y(t) = 0,

which implies y1 ∈ ImL. Hence Y = ImL + ImQ. Since ImL ∩ ImQ = {0}, we
have Y = ImL ⊕ ImQ. Thus

dim KerL = dim ImQ = codim ImL = 1.

This means that L is a Fredholm operator of index zero.
From the definitions of P, KP, it is easy to see that the generalized inverse of L

is KP. In fact, for y ∈ ImL, we have

LKPy = D
β
0+

φp(D
α
0+ Iα

0+φq(I
β
0+

y)) = y. (3.7)

Moreover, for x ∈ domL ∩ KerP, we get x(0) = Dα
0+x(0) = Dα

0+x(1) = 0. By
Lemma 2.1, we obtain that

I
β
0+

Lx(t) = I
β
0+

D
β
0+

φp(D
α
0+x(t)) = φp(D

α
0+x(t)) + c0, c0 ∈ R,

which together with Dα
0+x(0) = 0 yields that

I
β
0+

Lx(t) = φp(D
α
0+x(t)).

Thus, we have

Iα
0+φq(I

β
0+

Lx(t)) = Iα
0+Dα

0+x(t) = x(t) + c1, c1 ∈ R,

which together with x(0) = 0 yields that

KPLx = x. (3.8)

Combining (3.7) with (3.8), we know that KP = (L|domL∩KerP
)−1. The proof is

complete.

Lemma 3.3. Assume Ω ⊂ X is an open bounded subset such that domL∩Ω 6= ∅,
then N is L-compact on Ω.

Proof. By the continuity of f , we can get that QN(Ω) and KP(I − Q)N(Ω) are

bounded. Moreover, there exists a constant T > 0 such that |I
β
0+
(I − Q)Nx| ≤

T, ∀x ∈ Ω, t ∈ [0, 1]. Thus, in view of the Arzelà-Ascoli theorem, we need only
prove that KP(I − Q)N(Ω) ⊂ X is equicontinuous.
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For 0 ≤ t1 < t2 ≤ 1, x ∈ Ω, we have

|KP(I − Q)Nx(t2)− KP(I − Q)Nx(t1)|

=
1

Γ(α)

∣

∣

∣

∣

∫ t2

0
(t2 − s)α−1φq(I

β
0+
(I − Q)Nx(s))ds

−
∫ t1

0
(t1 − s)α−1φq(I

β
0+
(I − Q)Nx(s))ds

∣

∣

∣

∣

≤
Tq−1

Γ(α)

{

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]ds +

∫ t2

t1

(t2 − s)α−1ds

}

=
Tq−1

Γ(α + 1)
[tα

1 − tα
2 + 2(t2 − t1)

α]

≤
Tq−1

Γ(α + 1)
[tα

2 − tα
1 + 2(t2 − t1)

α].

Since tα is uniformly continuous on [0, 1], we can obtain that KP(I − Q)N(Ω) ⊂ Y

is equicontinuous. Similar proof can show that I
β
0+
(I − Q)N(Ω) ⊂ Y is equicon-

tinuous. This, together with the uniformly continuity of φq(s) on [−T, T], yields

that Dα
0+KP(I − Q)N(Ω)(= φq(I

β
0+
(I − Q)N)(Ω)) ⊂ Y is also equicontinuous.

Thus, we get that KP(I − Q)N : Ω → X is compact. The proof is complete.

Theorem 3.1. Let f : [0, 1]× R
2 → R be continuous. Assume that

(H1) there exist nonnegative functions a, b, c ∈ Y such that

| f (t, u, v)| ≤ a(t) + b(t)|u|p−1 + c(t)|v|p−1 , ∀t ∈ [0, 1], (u, v) ∈ R
2;

(H2) there exists a constant B > 0 such that either

v f (t, u, v) > 0, ∀t ∈ [0, 1], u ∈ R, |v| > B (3.9)

or

v f (t, u, v) < 0, ∀t ∈ [0, 1], u ∈ R, |v| > B. (3.10)

Then FBVP (1.3)(1.4) has at least one solution, provided that

2

Γ(β + 1)

(

‖b‖∞

(Γ(α + 1))p−1
+ ‖c‖∞

)

< 1. (3.11)

Proof. Set

Ω1 = {x ∈ domL\KerL|Lx = λNx, λ ∈ (0, 1)}.

For x ∈ Ω1, we get Lx = λNx, x(0) = 0 and Nx ∈ ImL. From Lemma 2.1 and
x(0) = 0, one has

x(t) = Iα
0+Dα

0+x(t) =
1

Γ(α)

∫ t

0
(t − s)α−1Dα

0+x(s)ds.
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Thus, we have

|x(t)| ≤
1

Γ(α)

∫ t

0
(t − s)α−1|Dα

0+x(s)|ds

≤
1

Γ(α)
‖Dα

0+x‖∞ ·
1

α
tα

≤
1

Γ(α + 1)
‖Dα

0+x‖∞, ∀t ∈ [0, 1].

That is

‖x‖∞ ≤
1

Γ(α + 1)
‖Dα

0+x‖∞. (3.12)

By Nx ∈ ImL and (3.4), we have

∫ 1

0
(1 − s)β−1 f (s, x(s), Dα

0+ x(s))ds = 0.

Then, by the integral mean value theorem, there exists a constant ξ ∈ (0, 1) such
that f (ξ, x(ξ), Dα

0+
x(ξ)) = 0. So, from (H2), we get |Dα

0+
x(ξ)| ≤ B, which implies

that |φp(D
α
0+x(ξ))| ≤ Bp−1. By (H1) and (3.12), we have

|I
β
0+

Nx(t)|t=1|

=

∣

∣

∣

∣

1

Γ(β)

∫ 1

0
(1 − s)β−1 f (s, x(s), Dα

0+ x(s))ds

∣

∣

∣

∣

≤
1

Γ(β)

∫ 1

0
(1 − s)β−1(a(s) + b(s)|x(s)|p−1 + c(s)|Dα

0+ x(s)|p−1)ds

≤
1

Γ(β)
(‖a‖∞ + ‖b‖∞‖x‖

p−1
∞ + ‖c‖∞‖Dα

0+x‖
p−1
∞ ) ·

1

β

≤
1

Γ(β + 1)

[

‖a‖∞ +

(

‖b‖∞

(Γ(α + 1))p−1
+ ‖c‖∞

)

‖Dα
0+x‖

p−1
∞

]

. (3.13)

From Lx = λNx and Lemma 2.1, one has

φp(D
α
0+x(t)) = φp(D

α
0+x(ξ)) − λI

β
0+

Nx(t)|t=ξ + λI
β
0+

Nx(t).

Thus, from (3.13) and |φp(Dα
0+

x(ξ))| ≤ Bp−1, we have

|φp(D
α
0+x(t))|

≤ |φp(D
α
0+x(ξ))| + |I

β
0+

Nx(t)|t=ξ |+ |I
β
0+

Nx(t)|

≤ Bp−1 +
2

Γ(β + 1)

[

‖a‖∞ +

(

‖b‖∞

(Γ(α + 1))p−1
+ ‖c‖∞

)

‖Dα
0+x‖

p−1
∞

]

,

which, together with |φp(D
α
0+x(t))| = |Dα

0+x(t)|p−1, yields that

‖Dα
0+x‖

p−1
∞ ≤ Bp−1 +

2

Γ(β + 1)

·

[

‖a‖∞ +

(

‖b‖∞

(Γ(α + 1))p−1
+ ‖c‖∞

)

‖Dα
0+x‖

p−1
∞

]

. (3.14)
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In view of (3.11), from (3.14), we can see that there exists a constant M1 > 0 such
that

‖Dα
0+x‖∞ ≤ M1. (3.15)

Thus, from (3.12), we get

‖x‖∞ ≤
M1

Γ(α + 1)
:= M2. (3.16)

Combining (3.15) with (3.16), we have

‖x‖X = max{‖x‖∞, ‖Dα
0+x‖∞} ≤ max{M1, M2} := M.

Therefore, Ω1 is bounded.
Let

Ω2 = {x ∈ KerL|Nx ∈ ImL}.

For x ∈ Ω2, we have x(t) = ctα, c ∈ R and Nx ∈ ImL. Then we get

∫ 1

0
(1 − s)β−1 f (s, csα, cΓ(α + 1))ds = 0,

which together with (H2) implies that |cΓ(α + 1)| ≤ B. Thus, we have

‖x‖X ≤ max{
B

Γ(α + 1)
, B} := R.

Hence, Ω2 is bounded.
If (3.9) holds, set

Ω3 = {x ∈ KerL|λx + (1 − λ)QNx = 0, λ ∈ [0, 1]}.

For x ∈ Ω3, we have x(t) = ctα, c ∈ R and

λctα + (1 − λ)A
∫ 1

0
(1 − s)β−1 f (s, csα, cΓ(α + 1))ds · tα = 0, ∀t ∈ [0, 1].

That is

λc + (1 − λ)A
∫ 1

0
(1 − s)β−1 f (s, csα, cΓ(α + 1))ds = 0. (3.17)

If λ = 0, then |cΓ(α + 1)| ≤ B because of (3.9). If λ ∈ (0, 1], we can also obtain
|cΓ(α + 1)| ≤ B. Otherwise, if |cΓ(α + 1)| > B, in view of (3.9), one has

λc2
Γ(α + 1) + (1 − λ)A

∫ 1

0
(1 − s)β−1cΓ(α + 1) f (s, csα , cΓ(α + 1))ds > 0,

which contradicts to (3.17). Therefore, Ω3 is bounded.
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If (3.10) holds, then define the set

Ω
′
3 = {x ∈ KerL| − λx + (1 − λ)QNx = 0, λ ∈ [0, 1]}.

Similar to above argument, we can show that Ω
′
3 is also bounded.

In the following, we shall prove that all assumptions of Lemma 2.2 are satis-
fied.

Set

Ω = {x ∈ X|‖x‖X < max{M, R}+ 1}.

Obviously, Ω1 ∪ Ω2 ∪ Ω3 ⊂ Ω (or Ω1 ∪ Ω2 ∪ Ω
′
3 ⊂ Ω). It follows from Lemma

3.2 and Lemma 3.3 that L (defined by (3.1)) is a Fredholm operator of index zero
and N (defined by (3.2)) is L-compact on Ω. By above arguments, we get that the
following two conditions are satisfied

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ KerL) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω.

The condition (3) of Lemma 2.2 remains to be verified. To do that, let

H(x, λ) = ±λx + (1 − λ)QNx.

According to the above argument, we know

H(x, λ) 6= 0, ∀x ∈ ∂Ω ∩ KerL.

Thus, by the homotopy property of degree, we have

deg(QN|KerL, Ω ∩ KerL, 0) = deg(H(·, 0), Ω ∩ KerL, 0)

= deg(H(·, 1), Ω ∩ KerL, 0)

= deg(±I, Ω ∩ KerL, 0) 6= 0.

So that, the condition (3) of Lemma 2.2 is satisfied.
Consequently, by using Lemma 2.2, the operator equation Lx = Nx has at

least one solution in domL ∩ Ω. Namely, FBVP (1.3)(1.4) has at least one solution
in X. The proof is complete.

4 Existence of Solutions for FBVP (1.3)(1.5)

In this section, we will give a theorem on existence of solutions for FBVP (1.3)(1.5).
Define the operator L1 : domL1 ⊂ X → Y by

L1x = D
β
0+

φp(D
α
0+x), (4.1)

where

domL1 = {x ∈ X|D
β
0+

φp(D
α
0+x) ∈ Y, x(1) = 0, Dα

0+x(0) = Dα
0+x(1)}.

Then FBVP (1.3)(1.5) is equivalent to the operator equation

L1x = Nx, x ∈ domL1,
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where N : X → Y is the Nemytskii operator defined by (3.2).
Now, we begin with some lemmas that are useful in what follows.

Lemma 4.1. Let L1 be defined by (4.1), then

KerL1 = {x ∈ X|x(t) = c(1 − tα), ∀t ∈ [0, 1], c ∈ R},

ImL1 =

{

y ∈ Y|
∫ 1

0
(1 − s)β−1y(s)ds = 0

}

.

Lemma 4.2. Let L1 be defined by (4.1), then L1 is a Fredholm operator of index
zero, and the linear continuous projector operators P1 : X → X and Q1 : Y → Y
can be defined as

P1x(t) = −
Dα

0+x(0)

Γ(α + 1)
(1 − tα), ∀t ∈ [0, 1],

Q1y(t) = A1

∫ 1

0
(1 − s)β−1y(s)ds · (1 − tα), ∀t ∈ [0, 1],

where A1 =
(

∫ 1
0 (1 − s)β−1(1 − sα)ds

)−1
> 0 is a constant. Furthermore, the

operator KP1
: ImL1 → domL1 ∩ KerP1 can be written by

KP1
y(t) = Iα

0+φq(I
β
0+

y(t))− Iα
0+φq(I

β
0+

y(t))|t=1

=
1

Γ(α)

∫ t

0
(t − s)α−1φq

(

1

Γ(β)

∫ s

0
(s − τ)β−1y(τ)dτ

)

ds

−
1

Γ(α)

∫ 1

0
(1 − s)α−1φq

(

1

Γ(β)

∫ s

0
(s − τ)β−1y(τ)dτ

)

ds.

Lemma 4.3. Assume Ω ⊂ X is an open bounded subset such that domL1 ∩ Ω 6=
∅, then N is L1-compact on Ω.

The proof of Lemma 4.1-4.3 are similar to the proof of Lemma 3.1-3.3, so we
omit the details.

Theorem 4.1. Let f : [0, 1] × R
2 → R be continuous. Suppose (H1) and (H2)

hold, then FBVP (1.3)(1.5) has at least one solution, provided that

2

Γ(β + 1)

(

2p−1‖b‖∞

(Γ(α + 1))p−1
+ ‖c‖∞

)

< 1. (4.2)

Proof. Set

Ω11 = {x ∈ domL1\KerL1|L1x = λNx, λ ∈ (0, 1)}.

For x ∈ Ω11, we get L1x = λNx and x(1) = 0. From Lemma 2.1 and x(1) = 0,
one has

x(t) = Iα
0+Dα

0+x(t)− Iα
0+Dα

0+x(t)|t=1

=
1

Γ(α)

(

∫ t

0
(t − s)α−1Dα

0+x(s)ds −
∫ 1

0
(1 − s)α−1Dα

0+x(s)ds

)

.
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Thus, we get

‖x‖∞ ≤
2

Γ(α + 1)
‖Dα

0+x‖∞. (4.3)

By (H1) and (4.3), we have

|I
β
0+

Nx(t)|t=1| ≤
1

Γ(β + 1)

[

‖a‖∞ +

(

2p−1‖b‖∞

(Γ(α + 1))p−1
+ ‖c‖∞

)

‖Dα
0+x‖

p−1
∞

]

.

Then, similar to the proof of (3.14), we obtain that

‖Dα
0+x‖

p−1
∞ ≤ Bp−1 +

2

Γ(β + 1)

·

[

‖a‖∞ +

(

2p−1‖b‖∞

(Γ(α + 1))p−1
+ ‖c‖∞

)

‖Dα
0+x‖

p−1
∞

]

. (4.4)

In view of (4.2), from (4.4), we can see that there exists a constant M11 > 0 such
that

‖Dα
0+x‖∞ ≤ M11. (4.5)

Thus, from (4.3) and (4.5), we get

‖x‖X ≤ max{
2M11

Γ(α + 1)
, M11}.

Therefore, Ω11 is bounded.
The remainder of proof work are similar to the proof of Theorem 3.1, so we

omit the details. The proof is complete.

5 An example

In this section, we will give an example to illustrate our main results.

Example 5.1. Consider the following fractional p-Laplacian equation

D
3
4

0+
φ3

(

D
1
2

0+
x(t)

)

= −
72

5
+ te−x2(t) +

2

5

(

D
1
2

0+
x(t)

)2

, t ∈ [0, 1]. (5.1)

Corresponding to equation (1.3), we get that p = 3, α = 1/2, β = 3/4 and

f (t, u, v) = −
72

5
+ te−u2

+
2

5
v2.

Choose a(t) = 16, b(t) = 0, c(t) = 2/5, B = 6. By a simple calculation, we can
obtain that ‖b‖∞ = 0, ‖c‖∞ = 2/5 and

v f (t, u, v) = v

[

2

5
(v2 − 36) + te−u2

]

> 0 (or < 0), ∀t ∈ [0, 1], u ∈ R, |v| > 6,

2

Γ
(

3
4 + 1

)







0
(

Γ

(

1
2 + 1

))2
+

2

5






< 1.
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Obviously, equation (5.1) subject to boundary value conditions (1.4) (or (1.5)) sat-
isfies all assumptions of Theorem 3.1 (or Theorem 4.1). Hence, FBVP (5.1)(1.4) (or
FBVP (5.1)(1.5)) has at least one solution.
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