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1 Introduction

The purpose of this short note is to gather a number of natural examples, be-
longing to various domains of analysis, where a result from fundamental functio-
nal analysis provides concrete inequalities in a unified manner. A familiar tech-
nique in this respect is to apply Baire category theorem via the uniform boun-
dedness principle. This note displays arguments of a different kind, where the
leading role is played by James’ fundamental characterization of weak compact-
ness [J], and Simons’ inequality [S] which proves it in the separable case (see [Pf1],
[Pf2] for recent and deep progress in the non-separable frame).

Let X be a Banach space, and let S be a norm-closed subspace of the dual
space X∗. We denote BS its closed unit ball. The space S is called separating if :
x∗(x) = 0 for all x∗ ∈ S implies that x = 0. It is called norming if the functio-
nal N(x) = sup{|x∗(x)|; x∗ ∈ BS} is an equivalent norm on X and it is called
1-norming if N is equal to the original norm on X.

Straightforward applications of the Hahn-Banach theorem show that S is se-
parating if and only if it is weak* dense in X∗, and that it is norming if and only
if the weak* closure of BS contains λBX∗ for some λ > 0, and finally that it is
1-norming if and only if λ = 1, in other words if and only if this weak* closure
is equal to BX∗ . Easy examples show that these three notions are distinct : for
instance, any hyperplane H = Ker(x∗∗) with x∗∗ ∈ X∗∗\X is norming, but it is
1-norming if and only if ‖x + x∗∗‖ > ‖x‖ for all x ∈ X. Also, take X = c0(N)
equipped with its natural norm, and write N as a disjoint union of infinite sets
⋃

j>0 Ij with 0 6∈ I0. Let S be the subspace of l1(N) consisting of all y = (yn) such
that for all k ∈ I0
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yk = (k−1) ∑
n∈Ik

yn.

It is easy to check that S is a separating subspace of l1 = c∗0 which is not nor-
ming (hint : consider the unit vector basis (ek) of c0 and pick k ∈ I0). A more
elaborate version of this example will be considered below (see the proof of Pro-
position 4).

We denote by NA(X) the subset of X∗ consisting of all linear forms which at-
tain their norm, in other words which attain their supremum on BX. It is natural
to connect attainment of bounds with compactness, and the connection materia-
lizes in James’s fundamental result [J]. But it is somewhat surprising that the dis-
tinction between separating and norming space S, which amounts to investigate
the existence of certain constants, is related with the inclusion of S in NA(X).
However, for separable spaces X it is so : separating subspaces of NA(X) are
actually isometric preduals of X and thus in particular they are 1-norming. Sepa-
rability is not a matter of convenience in this context : we will investigate what
goes on in the non-separable case, where in general this “norming for free” pro-
perty fails. We will also display several concrete examples where our unifying
approach explains the (sometimes unexpected) availability of a metric control :
special subspaces of L1, little Lipschitz spaces, weighted spaces of holomorphic
functions, spaces of compact operators.

These examples illustrate the versatility of the following principle, which
seems worth keeping in mind : norm-attainment provides isometric norming for
free.

Acknowledgements : This article is part of the proceedings of the joint mee-
ting of the Spanish and Belgian Mathematical Societies held in Liège in June 2012.
I am glad to thank the organizers, and in particular Professor Françoise Bastin,
for the working atmosphere and the splendid organization of this very pleasant
meeting.

2 Results

The following remarkable result goes back to Y. I. Petunin and A. N. Plichko
[PP]. Communication from and to Ukraine was somewhat uneasy at the time
(1974) and thus their theorem was rediscovered later on (see e.g. Theorem IV. 2 in
[G]). We will outline the proof for completeness.

Theorem 1 :Let X be a separable Banach space, and let S be a separating norm-
closed subspace of X∗, contained in NA(X). Then S is an isometric predual of X.

Proof : Let QS : X∗∗ → S∗ be the canonical quotient map of restriction to S.
Since S is separating, the restriction of QS to X is one-to-one. Since S is contained
in NA(X), the set QS(BX) = B is a boundary of BS∗ . That is, every s ∈ S attains
its norm at some s∗ ∈ B. Since X is separable, the boundary B is norm-separable
as well.
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It follows from Simons inequality [S] that if a bounded closed convex set C
has a separable boundary B, then C = conv(B) (see [G], Theorem III.3 where a
more general result is shown, or [G2]). With the above notation, it follows that

BS∗ = conv(QS(BX)) and thus BS∗ = QS(BX). But this implies immediately (see
the proof of the open mapping theorem) that X is isometric to S∗.

Remark 2 : The above proof actually shows the following : if X is separable
and S is any closed subspace of X∗, then S is contained in NA(X) if and ONLY IF
the unit ball of X is compact for the topology tp(S) of pointwise convergence on S.
The space S is separating if and only if the topology tp(S) is moreover Hausdorff.

Theorem 1 implies immediately the following “norming for free” statement.
It amounts to weaken tp(S)-compactness to tp(S)-closedness.

Corollary 3 :Let X be a separable Banach space. If a norm closed separating
subspace S of X∗ is contained in NA(X), then S is 1-norming.

It is natural to wonder whether assuming the separability of X is a simple
convenience or whether it really matters in Corollary 3. It turns out that Simons
inequality [S] is a substitute to Lebesgue’s dominated convergence theorem when
compactness and more generally topological regularity fails to hold, and it pro-
vides information on the behaviour of sequences as opposed to filters. We may
therefore expect that separability is needed. It is indeed so, as shown by the fol-
lowing new example.

Proposition 4 : Let X = l1([0, 1]) be the space of all atomic measures sup-
ported by [0, 1]. There exists a norm-closed separating subspace of X∗ which is
contained in NA(X) but which is not norming.

Proof : Pick α > 1 and let Mα = { f ∈ C([0, 1]); α f (0) =
∫ 1

0 f (t)dt}. We
consider Mα as a subspace of X∗ = l∞([0, 1]).

It is clear that Mα separates X : if not, it would be contained in a space ker(µ)
with µ a measure with countable support on [0, 1], but then this measure would
be proportional to (αδ0 − m) with m the Lebesgue measure, contradiction. Mo-
reover Mα is contained in NA(X) since any continuous function on [0, 1] attains
its bounds. Finally, Mα is not λ-norming with λ > (α)−1. Indeed, if ‖ f‖∞ 6 1

then |
∫ 1

0 f (t)dt| 6 1 and thus | f (0)| 6 (α)−1.

To conclude the proof, it suffices to consider X as the l1-sum of countably
many copies of itself, and the subspace S of its dual consisting of the c0- direct
sum of the spaces Mn, with n ∈ N. It is easy to check that S is separating, contai-
ned in NA(X) and not norming.

We now provide various examples where Theorem 1 and Corollary 3 can be
applied. Let us note in passing that the separating spaces to which they apply are
actually ideals (M-ideals and / or algebraic ideals) in their biduals.
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Example 5 : Let X be a subspace of L1 whose unit ball is closed for the topology
of convergence in measure. Such subspaces are called “nicely placed” (see [G3],
[HWW]). Following the notation of [GL], we denote by X♯ the subspace of X∗

consisting of the linear forms whose restriction to BX is continuous in measure. By
Komlos’ theorem, any bounded sequence in L1 has a subsequence whose Cesaro
averages converge in measure. It follows that X♯ is contained in NA(X) and thus
it is a predual of X as soon as it separates X. This result was shown in [GL] by
different methods, using the Hewitt-Yoshida projection from (L1)∗∗ onto L1.

Example 6 : Let M be a compact metric space, equipped with a distance d.
We choose a distinguished point 0 in M and we denote Lip0(M) the space of
all Lipschitz functions on M which vanish at 0, equipped with the Lipschitz
norm ‖ . ‖L subordinated to d. This Banach space is isometric to a dual space.
Its canonical predual is the norm closed linear span of the Dirac measures δ(x)
when x runs into M. It is usually denoted F (M) (see [GK]) and called the free
space over M. The subspace lip0(M) of LipO(M) is defined as follows (see [W]) :
if we let ∆ = {(x, x); x ∈ M}, then f ∈ lip0(M) if for all ε > 0, the set
{(x, y) ∈ M2\∆; | f (x)− f (y)| > εd(x, y)} is compact.

It is easily seen that if f ∈ lip0(M), there is x 6= y in M such that
| f (x) − f (y)| = d(x, y)‖ f‖L . In particular, f attains its norm on the linear form
(d(x, y))−1(δ(x) − δ(y)) ∈ F (M). Therefore we have lip0(M) ⊂ NA(F (M)).
Now Theorem 1 implies that lip0(M) is an isometric predual of F (M) as soon as
it separates it.

A case (which turns out to be the general case) when it happens is when
lip0(M) uniformly separates M : that is, when there is some a > 1 such that
for all (p, q) ∈ M2, there is f ∈ lip0(M) such that | f (p) − f (q)| = d(p, q) and
‖ f‖L 6 a. It follows that for any finite subset F ⊂ M and any f ∈ Lip0(M), there
is g ∈ lip0(M) which coincide with f on F and such that ‖g‖ 6 a‖ f‖. Indeed, we
may assume 0 ∈ F. For any (p, q) ∈ F2, there exists by uniform separation some
fpq ∈ lip0(M) such that fpq(p) = f (p), fpq(q) = f (q) and ‖ fpq‖L 6 a‖ f‖L . It is
clear that the function g = supp∈F infq 6=p fpq works. It easily follows that lip0(M)

separates (and actually norms with λ > a−1) the space F (M).
It follows now from Corollary 3 that if lip0(M) uniformly separates M for

some a > 1, then it uniformy separates it for every a > 1. This intriguing fact (see
[W], Cor. 3.3.5) is therefore a special case of the “norming for free” phenomenon
expressed by Corollary 3. Theorem 1 asserts that under uniform separation one
has lip0(M)∗∗ = Lip0(M).

Example 7 : Let U be a bounded open subset of Cn, and v be a strictly positive
continuous function on U. We define a weighted space of holomorphic functions
on U as follows :

Hv(U) = { f : U → C holomorphic : sup
U

|v f | < ∞}

The subspace Hv,0(U) consists of all f ∈ Hv(U) such that for any ε > 0,
there is a compact subset K ⊂ U such that | f (z)v(z)| < ε if z ∈ U\K. The
space Hv(U) equipped with its natural norm (the supremum norm of |v.|) is a
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dual space, since its unit ball is compact for the topology τK of compact conver-
gence on U. Its predual Gv(U) contains all Dirac measures and it follows that
Hv,0(U) ⊂ NA(Gv(U)). It was shown in [BS] that if the unit ball of Hv,0(U) is
τK-dense in the unit ball of Hv(U), then we have Hv,0(U)∗∗ = Hv(U). Theorem 1
(or Corollary 3) allows to weaken this condition : if the space Hv,0(U) separates
Gv(U) then Hv,0(U)∗∗ = Hv(U) (and conversely of course). It is not known whe-
ther this separation property holds in full generality (see [BR]).

Example 8 : Let X be a separable reflexive space, and let L(X) be the space
of bounded linear operators from X to itself equipped with the operator norm.
The space L(X) is a dual space, its (unique) isometric predual is the projective
tensor product X ⊗π X∗ and the weak* topology coincide on the unit ball with the
weak-operator topology. The subspace K(X) of compact operators is contained in
NA(X ⊗π X∗) since any compact operator on a reflexive space attains is norm.
Hence if K(X) separates X ⊗π X∗, it follows by Theorem 1 that K(X)∗ = X ⊗π X∗

and K(X)∗∗ = L(X). This latter equation holds if and only if X has the compact
approximation property (see [GS], Cor. 1.3). Since then the identity operator IdX

belongs to the weak* closure of the unit ball of K(X), it follows that X has the
metric compact approximation property.

A special case of the above is when X has the approximation property, since
this property means that the canonical map j : X ⊗π X∗ → X ⊗ε X∗ is one-to-one
(see [P], Theorem 0.3) and X ⊗ε X∗ is separated by rank one operators. Hence
Corollary 3 implies Grothendieck’s classical result that approximation property
implies metric approximation property for separable reflexive spaces.

Another application of Simons’ inequality to the approximation property for
non-reflexive spaces reads as follows : let X be a separable Banach space, and let
(Ln) be an approximating sequence of finite rank operators, that is, limn Ln(x) = x
for all x ∈ X. By the uniform boundedness principle, the space X has the bounded
approximation property. Assume the following condition :

(∗) for any sequence (λn)n>1 of positive numbers such that ∑n λn = 1, the
operator L = ∑n>1 λnLn attains its norm on X.

This condition (∗) implies via Simons inequality ([S]) applied to the boundary
B = SX ⊗ SX∗ that there is a sequence (Ck) of successive convex combinations of
(Ln) such that limk ‖Ck‖ = 1. In particular, the space X has the metric approxi-
mation property.

When X = Y∗ is isometric to a separable dual with the bounded approxima-
tion property, one can take a sequence Ln = R∗

n of conjugate operators. Norm-
attainment follows since then L(BX) is norm compact for any convex combina-
tion L of the Ln’s, and we recover the well-known fact that a separable dual with
the bounded approximation property has the metric approximation property ; in
fact, Grothendieck showed that assuming the approximation property is already
sufficient.

However nobody knows if every dual space with the approximation property
has the metric approximation property (see [C], Pb. 3.8). An important special
case of this problem is the open question : does the metric approximation pro-
perty holds for any equivalent norm ‖ . ‖ on l1(N) ? Condition (∗) could possibly
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help for this problem, although it seems difficult to check it without some com-
pactness. Note that the question is open only for norms which are not dual norms,
regardless of which isomorphic predual of l1(N) we pick.

We conclude this note with a much less ambitious problem, which amounts
to ask whether the example of Proposition 4 is minimal.

Problem 9 : Let X be a Banach space which does not contain an isomorphic
copy of l1([0, 1]). Let M be a separating separable subspace of X∗ contained in
NA(X). Does it follow that M is an isometric predual of X ?

Note that ([BG], Lemma 2.8) provides a positive answer under a mild regula-
rity assumption.
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