
Fast vector arithmetic over F3

K. Coolsaet

Abstract

We show how binary machine instructions can be used to implement fast
vector operations over the finite field F3. Apart from the standard opera-
tions of addition, subtraction and dot product, we also consider combined
addition and subtraction, weight, Hamming distance, and iteration over all
vectors of a given length.

Tests show that our implementation can be as much as 10 times faster
than the standard method of using modular arithmetic on arrays of bytes.
For computing the Hamming distance even a factor of 33 can sometimes be
reached, provided a recent CPU is used.

1 Introduction

It is common knowledge that the fastest way to work with vectors over the field
F2 of two elements is to represent such vectors as bit vectors and use binary CPU
instructions to process them, in particular ‘exlusive or’ for addition, and ‘and’ for
multiplication. The inherent bit parallellism of a 64-bit CPU allows vectors of F

64
2

to be processed as fast as single integers.
It is less well known that a similar technique can be used to parallellize vector

operations over the field F3 of three elements, representing every element of the
field as a pair of bits and emulating the field operations of F3 as combinations of
standard binary machine instructions.

In [3] Kawahara et al. use such a representation to perform fast vector addition
and subtraction needing six binary operations for each ternary operation. They
also show that fewer operations do not suffice.

Received by the editors June 2012.
Communicated by J. Doyen.
2000 Mathematics Subject Classification : 65Y04, 12E30, 12-04.
Key words and phrases : Fast vector arithmetic, GF(3), 64-bit operations, Hamming distance,

dot product.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 329–344

330 K. Coolsaet

In this paper we shall additionally present fast binary methods for computing
the dot product of two vectors and determining the Hamming distance between
two vectors. We also show that if we need both the sum and the difference of
the same pair of vectors, then this can be done considerably faster than adding
and subtracting them separately. (This is for instance useful when generating all
linear combinations of a given set of vectors.) We also describe a fast method
for iterating through all vectors of a given length. All of these techniques should
prove very effective for computer applications in ternary codes and finite geome-
tries.

We implemented several benchmark programs to estimate how fast our oper-
ations are in comparison to the standard way of representing vectors as arrays of
bytes with modular arithmetic to add, subtract or multiply them. We ran these
tests on various types of CPU and also compared several variants of binary rep-
resentations. One slightly unexpected result was that an implementation of addi-
tion and subtraction using seven operations ran at exactly the same speed as the
implementation of Kawahara et al., which uses only six. The number of steps in
which operations can be performed in parallel seems to be a better predictor for
the actual execution time than simply the number of operations.

In summary, for vectors of length 64, addition, subtraction and dot product
can be done up to 10 times faster using our methods instead of the standard im-
plementations. For computing the Hamming distance we even managed to im-
prove the running time by a factor of 33 (provided the CPU is sufficiently recent).

In Section 2 we present and prove the formulas that form the basis of our
implementation (cf. Theorem 1). In Section 3.1 we describe how vector addition,
subtraction and a combination of those can be done by representing a vector of
F

n
3 , n ≤ 64, as two 64-bit words. Weight and Hamming distance are treated in

Section 3.2, the dot product in Section 3.3 and iteration over all elements of F
n
3 in

Section 3.4. In Section 3.5 we describe an alternative representation which uses
three 64-bit words for each vector, and one which needs only a single 64-bit word,
provided n ≤ 32. The results of our benchmarks are presented in Section 4 and
in Section 5 we end with some final remarks.

2 Basic operations

Although in this text we will be working at the same time with elements of both
F2 and F3, it will always be clear from context which is which and therefore
we use the same standard mathematical notations for addition, subtraction and
multiplication, irrespective of the field in which we are working.

Recall that binary addition is the same as binary ‘exclusive or’ and multipli-
cation is the same as binary ‘and’. We shall use the notation ‘|’ for binary ‘or’ and
‘¬’ for binary ‘not’. In terms of field operations we have x | y = xy + x + y and
¬x = x + 1. The following properties are easily derived :

x | y = x | (x + y) = y | (x + y), x | (y + z) = (x | y) + (x | z) + x, (1)

for all x, y, z ∈ F2.

Fast vector arithmetic over F3 331

For d ∈ F3 we define d0, d1, d2 ∈ F2 according to the following table :

d d0 d1 d2

0 0 1 1
1 1 0 1
2 1 1 0

(2)

Note that d0 + d1 + d2 = 0 and that in all cases d0 | d1 = d1 | d2 = d2 | d0 = 1,
or equivalently d2 = d0 + d1 = d0d1 + 1, d0 = d1 + d2 = d1d2 + 1, d1 = d2 + d0 =
d2d0 + 1. The permutation d 7→ d + 1 in F3 translates to d0 7→ d1 7→ d2 7→ d0 in
F2. The involution d↔ −d corresponds to the interchange d1 ↔ d2.

In Section 3 we shall discuss several representations of (vectors of) ternary
digits. In most of the cases we shall represent one digit d by a pair of bits (d1, d2),
although also a 3-bit representation (d0, d1, d2) shall be considered.

The following theorem serves as the basis for the rest of this paper.

Theorem 1. Let v, w ∈ F3. Then

n = −v ⇔

{

n1 = v2

n2 = v1
(3)

s = v + w ⇔































s1 = (v0 + w1) | (v1 + w0) = (v0 + w1) | (v2 + w2)
= (v2 + w2) | ((v1 + w1) + v2)
= ((v1 + w1) | (v2 + w2)) + v2w2

s2 = (v0 + w2) | (v2 + w0) = (v0 + w2) | (v1 + w1)
= (v1 + w1) | ((v2 + w2) + v1)
= ((v1 + w1) | (v2 + w2)) + v1w1

(4)

d = v− w ⇔































d1 = (v0 + w2) | (v1 + w0) = (v0 + w2) | (v2 + w1)
= (v2 + w1) | ((v1 + w2) + v2)
= ((v1 + w2) | (v2 + w1)) + v2w1

d2 = (v0 + w1) | (v2 + w0) = (v0 + w1) | (v1 + w2)
= (v1 + w2) | ((v2 + w1) + v1)
= ((v1 + w2) | (v2 + w1)) + v1w2

(5)

p = vw ⇔























p1 = v1w2 | v2w1 = (v1 | w1)(v2 | w2)
p2 = v1w1 | v2w2 = (v1 | w2)(v2 | w1)
p0 = v0w0

¬p2 = v0w0(v1 + w1) = v0w0(v2 + w2)
= (v1 + w1)(v2 + w2) = (v1 | w2) + (v2 | w1)

(6)

Proof. The result for the negation n is a trivial consequence of the definition (2).
The results for the difference d follow from those of the sum s by substituting −w
for w (i.e., interchanging w1 ↔ w2).

Now consider s1. Using the first of the identities (1) twice, we find

(v0 + w1) | (v1 + w0) = (v0 + w1) | (v1 + w0 + v0 + w1)

= (v0 + w1) | (v2 + w2)

= (v0 + w1 + v2 + w2) | (v2 + w2)

= (v1 + w1 + w2) | (v2 + w2).

332 K. Coolsaet

Again by (1) we obtain

((v1 + w1) + w2) | (v2 + w2) = ((v1 + w1) | (v2 + w2)) + (w2 | (v2 + w2))

+(v2 + w2)

= ((v1 + w1) | (v2 + w2)) + (v2 | w2) + (v2 + w2)

= ((v1 + w1) | (v2 + w2)) + v2w2.

This proves that the three formulas for s1 in (4) are indeed equivalent. The same
holds for s2, which can be obtained from s1 by interchanging v1 ↔ v2 and
w1 ↔ w2.

Note that the formulas for s1 and s2 are invariant under the transformations
v 7→ v + 1, w 7→ w − 1, i.e., v0 7→ v1 7→ v2 7→ v0, w0 7→ w2 7→ w1 7→ w0. It is
therefore sufficient to prove the validity of these formulas in the special case v =
w. And indeed, in that case the first formula in (4) reduces to s1 = v0 + v1 = v2

and similarly s2 = v0 + v2 = v1. Therefore s = −v = 2v, as expected.
This leaves (6). We have vw = 0 if and only if v = 0 or w = 0 if and only if

v0 = 0 and w0 = 0 if and only if v0w0 = 0. This proves the value for p0. Similarly,
vw = 1 if and only if v = w = 1 or v = w = 2, i.e., if and only if v1 = w1 = 0
or v2 = w2 = 0. And this is equivalent to (¬v1)(¬w1) | (¬v2)(¬w2) = 1, or by
De Morgan’s laws, (v1 | w1)(v2 | w1) = 0, yielding the second formula for p1. By
distributivity of ‘or’ over ‘and’ we also find

v1w2 | v2w1 = (v1 | v2)(v1 | w1)(w2 | v2)(w2 | w1) = (v1 | w1)(v2 | w2),

which proves the equivalence of the first and second expression for p1. The ex-
pressions for p2 can be proved in a similar way.

Again by De Morgan’s laws, we find

¬p2 = ¬((v1w1) | (v2w2)) = (v1w1 + 1)(v2w2 + 1) = (v1 + w1)(v2 + w2).

Also

(v1 | w2) + (v2 | w1) = v1w2 + v1 + w2 + v2w1 + v2 + w1

= v1w2 + v2w1 + (v1 + v2) + (w1 + w2)

= v1w2 + v2w1 + v1v2 + w1w2 = (v1 + w1)(v2 + w2).

Finally

v0w0(v2 + w2) = (v0v2)w0 + (w0w2)v0 = (v1 + 1)w0 + (w1 + 1)v0

= (v1 + 1)(w1 + w2) + (w1 + 1)(v1 + v2)

= v1w2 + w1 + w2 + w1v2 + v1 + v2,

which is (v1 + w1)(v2 + w2) as before.

(An alternative proof of this theorem consists of trying all 9 possible combi-
nations of v, w and checking each result. This can be automated and provides a
good test for any implementation of these operations.)

Fast vector arithmetic over F3 333

3 Vector arithmetic

Consider an n-tuple V = (v(1), . . . , v(n)) ∈ F
n
3 , i.e., a vector of length n with

elements in F3. We shall write Vi for the bit vector Vi
def
= (v

(1)
i , . . . , v

(n)
i) ∈ F

n
2 .

If V, W are vectors of the same length, then we write V + W, V −W, VW for
the elementwise sum, difference and product of V and W (both in F

n
2 and F

n
3).

We also write Vi | Wj for the elementwise binary ‘or’ of two vectors Vi, Wj ∈ F
n
2 .

The elementwise multiplication VW should not be confused with the dot product

V ·W
def
= V(1)W(1) + · · ·+ V(n)W(n) ∈ F3, equal to the sum of the elements of the

vector VW. We denote the weight of V by ‖V‖, i.e., the number of elements of V
that are different from zero. The Hamming distance ‖V −W‖ counts the number

of positions i for which V(i) and W(i) differ.
We have used Theorem 1 in three different implementations of vector arith-

metic over F3 which we discuss below (including some additional variants). We
present fast methods for computing V + W, V −W, V ·W, ‖V‖ and ‖V −W‖
largely in terms of the binary vector operations ViWj, Vi + Wj and Vi | Wj which,
when n ≤ 64, correspond to single CPU instructions on standard 64-bit micropro-
cessors. For the dot product, weight and the Hamming distance we also use 64-bit
remainder, multiplication and shifts and a special ‘population count’ instruction,
if available.

In what follows we will always assume that n ≤ 64. Vectors of larger dimen-
sion can still be handled by partitioning them into blocks of size ≤ 64.

3.1 Two words for each vector

The most direct way to apply Theorem 1 is to store a vector V in two separate ma-
chine words that correspond directly to V1 and V2. Negation, addition, subtrac-
tion and elementwise multiplication can then be implemented as straight trans-
lations of the formulas of the theorem.

For addition (and similarly, subtraction) we may use the second and fifth line
of (4) to obtain an implementation in as few as six operations :

T1 ← V1 + W1 T2 ← V2 + W2

U1 ← T1 + V2 U2 ← T2 + V1

S1 ← T2 | U1 S2 ← T1 | U2

(7)

(S contains the result, T and U are auxiliary variables.)
This is the same implementation discussed in [3], where it is also proved that

at least six operations are needed. However, on modern CPUs the number of op-
erations is not always the best measure of speed. We have also tested the follow-
ing implementation, based on the third and sixth line of (4), which needs seven
operations :

T1 ← V1 + W1 T2 ← V2 + W2 U1 ← V1W1 U2 ← V2V2

U∗ ← T1 | T2

S1 ← U∗ + U2 S2 ← U∗ + U1

(8)

334 K. Coolsaet

It turns out that our benchmark tests (cf. Section 4) show no significant difference
in speed on modern CPUs between the 6- and 7-op versions of addition and sub-
traction. (For the somewhat less recent AMD Opteron 2212, the 7-op version is
slower by a factor of ≈ 1.05.) The reason for this is probably that the CPU man-
ages to execute several operations in parallel, and needs only three parallel steps
in both cases.

Where both V + W and V −W are needed at the same time, it is possible to
shave off another 2 operations. There are various ways to accomplish this. For
example, based on the first and fourth lines of (4–5), we may write

V0 ← V1 + V2 W0 ← W1 + W2

T1 ← V0 + W1 T2 ← V0 + W2 U1 ← W0 + V1 U2 ← W0 + V2

S1 ← T1 | U1 S2 ← T2 | U2 D1 ← T2 | U1 D2 ← T1 | U2

(9)
yielding 10 (instead of 12) operations in 3 parallel steps. Because we use the same
number of parallel steps, one might even expect that (9) and (7) take the same
execution time, and indeed on recent CPUs this is almost the case, cf. Section 4.

3.2 Weight and Hamming distance

Theorem 2. Let v, w ∈ F3. Then

v 6= w ⇐⇒ (v1 + w1) | (v2 + w2) = 1,

v 6= 0 ⇐⇒ v1 + v2 = 1.

Proof. We have v1 + w1 = 1 if and only if v1 6= w1, and v2 + w2 = 1 if and only
if v2 6= w2. Because v 6= w if and only if v1 6= w1 or v2 6= w2, the first part of the
theorem follows. The second part follows from the fact that v is zero precisely
when v0 is zero.

This theorem can be used to compute both the Hamming distance ‖V −W‖
between two vectors, or the weight ‖V‖ of a vector. These problems are now
reduced to determining the weight of the binary vectors (V1 + W1) | (V2 + W2)
and V1 + V2.

For older computers there are lots of well-known tricks to compute the weight
of a binary vector ‖β‖. The following method (taylored to 64 bits) seems to be the
fastest at this time of writing [1]. We give a version in the programming language
C :

t = beta - ((beta >> 1) & 0x5555555555555555L);

t = (t & 0x3333333333333333L) + ((t >> 2) & 0x3333333333333333L);

t = ((t + (t >> 4)) & 0x0f0f0f0f0f0f0f0fL;

weight = (t * 0x0101010101010101L) >> 56;

(10)
Fortunately, recent CPUs (e.g., the Nehalem-based Intel Xeon processors) have

a ‘population count’ machine instruction that computes ‖β‖ directly and is much
faster than (10).

Fast vector arithmetic over F3 335

3.3 The dot product

An implementation of the elementwise multiplication VW in 6 operations can be
obtained directly from (6). This operation does not occur very often in practice
and the only reason it is treated here is because we can use it to compute the dot
product V ·W, which is the sum of all entries of VW, computed modulo 3.

With P = VW, the dot product satisfies

V ·W = ‖P2‖ − ‖P1‖ (mod 3), (11)

for indeed, every ternary digit 0 in P will now contribute 1− 1 to the result, every
1 contributes 1− 0 and every 2 contributes 0− 1.

If your CPU supports the ‘population count’ instruction, formula (11) is al-
most the fastest implementation of the dot product, although it is even better to
implement it as ‖P2‖+ 2‖P1‖ (mod 3) because then you avoid taking remainders
of negative numbers. We can improve this further by using the following identity
instead :

V ·W = ‖P0‖+ ‖¬P2‖ (mod 3). (12)

Note that P0 and ¬P2 can be computed together in only five operations.
For older processors we again have to resort to tricks. We first establish a fast

method of computing ‖β‖ modulo 3, faster than first computing ‖β‖ using (10)
and then reducing the result modulo 3. (β ∈ F

n
2 .)

Write β0, β1, . . . for the subsequent bits of β considered as elements of Z (low-
est significant bit first). We want to compute ‖β‖ mod 3. Consider the positive
integer [[β]] that has β as its binary representation, i.e.,

[[β]]
def
= β0 + β12 + β222 + β323 + β424 + β525 + · · · =

n−1

∑
i=0

βi2
i

(with additions and multiplications in Z). Transform [[β]] to a new number [[γ]]
by shifting the bits one position towards the lower significant end and zeroing
the bits on odd positions, i.e.,

γ = (β1, 0, β3, 0, β5, 0, . . .), [[γ]] = β1 + β322 + β524 + · · · .

Subtracting [[γ]] from [[β]] then yields

[[β]]− [[γ]] = (β0 + β1) + (β2 + β3)2
2 + (β4 + β5)2

4 + · · ·

Finally, because 22k = 4k = 1 (mod 3), we have

[[β]] − [[γ]] =
b

∑
i=1

βi = ‖β‖ (mod 3),

the required result.
In notation of the programming language C this translates to

(beta - ((beta >> 1) & 0x5555555555555555L)) % 3 (13)

336 K. Coolsaet

which needs only 4 operations. Note the similarity to the first line of (10). By
means of this ‘weight modulo 3’ operation, formula (12) translates to

V ·W = (‖P1‖ mod 3 + ‖¬P2‖ mod 3) mod 3. (14)

The additional remainder operation is needed because we want results to be ei-
ther 0, 1 or 2. This is unfortunate because now we need three modulo operations
in total, and these are slow in comparison to the other machine operations.

We can avoid this problem by postponing taking the remainder until the very
last moment. This leads to the following C expression to compute the dot product

((p0 - ((p0 >> 1) & 0x5555555555555555L)) +

(notp2 - ((notp2 >> 1) & 0x5555555555555555L))) % 3
(15)

Sadly, because the addition in this expression could lead to an overflow, this
method only works when the length of the vectors is strictly smaller than 64.

3.4 Iteration

Sometimes it is necessary to iterate through all possible vectors of a given length
n. In the case of F

n
2 this is straightforward : we simply iterate through all integers

0, 1, . . . , 2n − 1 in their bit representation. Something similar but slightly more
complicated, works for F

n
3 .

For β ∈ F
n
2 , β 6= (0, . . . , 0), define pred β to be the unique element of F

n
2 that

satisfies
[[pred β]] = [[β]] − 1 (subtraction in Z).

Computing pred β translates to a simple 64-bit integer subtraction by 1.
For V ∈ F

n
3 , V 6= (2, . . . , 2), define succ V to be the unique element of F

n
3 that

satisfies

W = succ V ⇐⇒

{

W1 = (pred V2) | ¬V1

W2 = V1
(16)

It takes only three machine operations to compute succ V from V. Note that this

operation is well defined : W
(i)
1 and W

(i)
2 cannot be zero at the same time for any

i, and hence (W1, W2) is always a valid binary representation of some ternary
vector.

Theorem 3. Consider the sequence S of vectors of F
n
3 defined by S1

def
= (0, . . . , 0),

Si+1
def
= succSi, for all i, i = 1, . . . , 3n − 1. Then

• S contains every element of F
n
3 exactly once,

• S3n = (2, . . . , 2) and hence S is well defined.

Proof. Let us first rephrase the ‘succ’ operation directly in terms of F3. Because
V 6= (2, . . . , 2) we may always find d ≤ n such that V can be written as

V = (2, . . . , 2, V(d), V(d+1), . . . , V(n)) with V(d) 6= 2. (17)

Fast vector arithmetic over F3 337

We claim that

succ V = (0, . . . , 0, V(d) + 1,−V(d+1), . . . ,−V(n)). (18)

Indeed, if V is of the form (17), then V2 is of the form

V2 = (0, . . . , 0, 1, V
(d+1)
2 , . . . , V

(n)
2),

and then
pred V2 = (1, . . . , 1, 0, V

(d+1)
2 , . . . , V

(n)
2)

and

(pred V2) | ¬V1 = (1, . . . , 1,¬V
(d)
1 , V

(d+1)
2 | ¬V

(d+1)
1 , . . . , V

(n)
2 | ¬V

(n)
1).

Now, in general for v ∈ F3, we have v2 | ¬v1 = v2 | (v1 + 1) = v2(v1 + 1) + v2 +
v1 + 1 = v2, hence

(pred V2) | ¬V1 = (1, . . . , 1,¬V
(d)
1 , V

(d+1)
2 , . . . , V

(n)
2).

Also, if V(d+1) = 0 then (¬V
(d)
1 , V

(d)
1) = (0, 1) which represents 1 ∈ F3, and if

V(d+1) = 1 then (¬V
(d)
1 , V

(d)
1) = (1, 0) which represents 2. This proves (18).

Now, consider V, W ∈ F
n
3 such that V(1) = W(1), V(2) = W(2), . . . , V(k) = W(k)

for some k ≤ n, i.e., such that V and W have the same k-prefix. We claim that also

succ V and succ W must have the same k-prefix. Indeed, if (V(1), . . . , V(k)) 6=
(2, . . . , 2) then (18) applies to both V and W for the same value of d < k, and then

the required property is immediate. If on the other hand V(1) = · · · = V(k) =

W(1) = · · · = W(k) = 2, the k-prefix of both succ V and succ W will be equal to
(0, . . . , 0). (In that case we apply (18) for possibly different values of d, but both
for V and W we have d ≥ k.)

It follows from this that the sequence of k-suffixes of S must be periodical. We
will prove by induction on k that the period length of this repetition is 3k and that
the k-prefix of S3k has all entries equal to 2.

The first few terms of S are easily computed to be the following :

(0, 0, . . . , 0), (1, 0, . . . , 0), (2, 0, . . . , 0), (0, 1, 0, . . . , 0),

so the 1-prefixes have a period length of 3 and S3 has the required form. This
proves the base case k = 1 of our induction.

Now assume the properties hold for a given prefix length k. We claim that
during one fixed period of k-prefixes, the k + 1-th entries of subsequent vectors

repeatedly change sign (i.e, (succ V)(k+1) = −V(k+1)). Indeed, for every vector
except the last one of a period, we may apply (18) with a value of d that is at most
k.

As a consequence, the first 3k elements V of S will have V(k+1) = 0. Element
S3k has k + 1-prefix equal to (2, . . . , 2, 0) and hence, by (18), element S3k+1 has
k + 1-prefix equal to (0, . . . , 0, 1). In the second period, k + 1-th entries alternate
between 1 and −1 = 2, and because the length of a period is odd, we find that
S2·3k must have k + 1-prefix equal to (2, . . . , 2, 1). Similarly, it follows that the

338 K. Coolsaet

k + 1-prefix of S2·3k+1 is (0, . . . , 0, 2) and that of S3k+1 is (2, . . . , 2, 2). This proves
that the first 3 periods of k-prefixes all yield different k + 1-prefixes, and hence
the period length for k + 1-prefixes must be three times that of the k-prefixes (for
it cannot be larger).

Finally, it follows that the period of n-prefixes is 3n, and hence that the ele-
ments of S are all different.

The sequence S has a somewhat unnatural ordering. For example, the 9 ele-
ments of the sequence for n = 2 are

(0, 0), (1, 0), (2, 0), (0, 1), (1, 2), (2, 1), (0, 2), (1, 1), (2, 2).

3.5 Other representations

A second way of representing a vector V ∈ F
n
3 in computer memory is to store

three machine words V0, V1, V2 instead of just two. The advantage of this repre-
sentation is that we now need only 5 operations to compute VW :

P0 ← V0W0 T1 ← V1 | W1 T2 ← V2 | W2

P1 ← T1T2

P2 ← P0 + P1

(19)

and only 3 to compute P0 and ¬P2 in preparation for the dot product (cf. Section
3.3).

Addition (and subtraction) need 7 operations : compute S1, S2 as before and
then finish with S0 ← S1 + S2. Combined addition and subtraction can be done
in 10 operations : drop the first two statements of (9) and add S0 ← S1 + S2,
D0 ← D1 + D2 at the end.

If n ≤ 32 you can represent a vector V ∈ F
n
3 in a single 64-bit word : store

V1 in one half word and V2 in the other (we shall denote the resulting word by
V1 : V2). In some cases it is now possible to combine two 32-bit operations into a
single 64-bit operation. For example, the product P = VW can now be computed
as follows :

T1 : T2 ← (V1 : V2) | (W1 : W2) U1 : U2 ← (V1 : V2)(W1 : W2)
P1 : P2 ← (T1 : U1) | (T2 : U2)

(20)

This looks like a 3-op implementation, but note that we need to split and recom-
bine two 64-bit words on the way, something which admittedly can be done fast.

Addition (and similarly, subtraction) also needs few operations. The follow-
ing implementation is derived directly from (7) :

T1 : T2 ← (V1 : V2) + (W1 : W2)
U1 : U2 ← (T1 : T2) + (V2 : V1)
S1 : S2 ← (T2 : T1) | (U1 : U2),

(21)

good for 3 standard operations and two half word ‘swaps’ (X1 : X2 → X2 : X1)
each of which can be encoded as a single machine instruction.

Fast vector arithmetic over F3 339

4 Benchmarks

We have implemented and measured the speed of the operations discussed in the
previous sections in various settings. We used the following test programs :

1. To test vector addition and subtraction we computed the echelon forms of
200000 square n× n matrices.

2. To test combined addition and subtraction, we computed all 6561 elements
of the vector space generated by 8 vectors of length n (and did this 5000
times).

3. We determined the Hamming distance between every pair of vectors in a
set of 10000 vectors of length n.

4. Likewise, we computed the dot product of every such pair.

We did not measure the speed of iteration (Section 3.4) because it is mostly irrel-
evant : it is not the iteration itself that will determine the final running time of a
program, but the action that is performed at every iteration.

We ran the tests above for consecutive values of n. The running time of each
test was compared to that of a reference implementation in which vectors are
represented as arrays of bytes equal to either 0, 1 or 2, and modulo 3 arithmetic
was used for all operations. We did our best to use reasonably efficient code
also for the reference implementations. For example, the dot product was first
computed over Z and the remainder was only carried out at the end. Not only
does this reduce the operation count, but it also allows the processor to make
better use of its SIMD (i.e., vector processing) capabilities.

The test programs were written in C and compiled with an optimizing com-
piler (Gnu GCC). The source code of our test programs is available from
http://caagt.ugent.be/fast/.

Spot checks on the generated assembly code convinced us that the compiler
managed to use single machine instructions also in those cases where they did not
have a direct C equivalent. For example, ‘(v<<32)|(v>>32)’ was indeed trans-
lated to a single ‘rotate right by 32’ instruction. It turned out to be important to
use a recent version of the compiler : with the newer versions the standard im-
plementations made better use of the SIMD instructions of the CPU, making the
overall speed gain of our new methods a little less pronounced.

We compiled and ran the tests on 6 different types of 64-bit CPU :

Type Release date
AMD Opteron 2212 15/08/2006
Intel Xeon X5355 14/11/2006
Intel Core2 E8500 20/01/2008
Intel Core2 Q9550 25/03/2008
Intel Xeon X5570 30/03/2009
Intel Xeon X6560 16/03/2010

In general, the older the processor, the larger the speed gain of our new methods.
This sounds a bit counterintuitive, but the reason for this is that our reference

340 K. Coolsaet

3 words, 7 ops
2 words, 7 ops
2 words, 6 ops

Length n of vectors

S
p

ee
d

g
ai

n

6456484032241680

10

9

8

7

6

5

4

3

2

1

Figure 1: Addition and subtraction of vectors

implementation runs slower on older machines, because the SIMD support is not
so good. For the results listed in the following pages we used the timings of the
most recent processor (the X6560).

We have implemented and compared 5 different representations of vectors of
F

n
3 :

1. The representation of Section 3.1 where we use two 64-bit words for each
vector.

2. The same representation but using two 32-bit words when n ≤ 32. On
recent CPUs this makes no significant difference in speed, although using
only half the memory might be of advantage in some applications.

3. A representation that uses three 64-bit words for each vector (cf. Section
3.5).

4. A representation that packs two vectors V1, V2 ∈ F
n
2 (with n ≤ 32) into a

single 64-bit word V1 :V2 (cf. Section 3.5).

5. A variant of this, which stores both V1 : V2 and V2 : V1 to avoid ‘half word
swap’ operations. It turns out that this variant always performs worse than
the previous one, and we shall not discuss it further.

Let us now turn to the results. In the graphs we plot the ‘speed gain’ of differ-
ent methods against the lengths n of the vectors considered. Speed gain is defined
as the ratio between the running time of the reference implementation and that
of the new implementation.

In Figure 1 we display the results for addition and subtraction, measured by
computing the echelon form of a square matrix. We show the results for the six
and seven operations version in the two word representation, cf. (7) and (8), and

Fast vector arithmetic over F3 341

separate
combined

Length n of vectors

S
p

ee
d

g
ai

n

6456484032241680

25

20

15

10

5

0

Figure 2: Combined vs. separate addition and subtraction of vectors

also the seven operation version in the three word representation of Section 3.5. It
turns out that there is hardly any speed difference between the three implemen-
tations.

Figures 2 and 3 display the results of the subspace generation benchmark.
The first figure shows that combining addition and subtraction by means of (9) is
more than 1.7 faster than executing both operations separately. (This is at least so
for the most recent CPUs. For older types the factor is closer to 1.2, reflecting the
12/10 ratio in number of operations.)

This benchmark is the only one in which there is a significant difference be-
tween the 1-, 2- and 3-word implementations (cf. Figure 3). However, because the
same phenomenon appears when the addition and subtraction are not combined,
this is probably a side effect of the generation algorithm itself rather than of the
specific implementation of the ternary operations. It does however clearly illus-
trate that using more memory may significantly degrade performance, as more
data needs to be moved around and the chance of cache misses becomes higher.

The most spectacular of our results is the Hamming distance benchmark where
speed gains of up to 33 are reached, at least on modern CPUs that have a ‘popu-
lation count’ instruction (cf. Section 3.2). But even on older computers a factor of
10 can still be obtained. (See Figure 4.)

Our last benchmark is used to test the dot product. In Figure 5 we compare
three versions. The first uses the ‘population count’ instruction, the second is
based on formula (15) and the third and slowest one uses formula (14) which
requires three remainders to be taken. As mentioned before, the second method
can only be used for n < 64, hence on an old computer, with n = 64 only the last
version is available. The strange nonlinearity of the graphs is not a peculiarity of

342 K. Coolsaet

1 word
2 words
3 words

Length n of vectors

S
p

ee
d

g
ai

n

6456484032241680

25

20

15

10

5

0

Figure 3: Combined addition and subtraction of vectors

without popcount
with popcount

Length n of vectors

S
p

ee
d

g
ai

n

6456484032241680

35

30

25

20

15

10

5

0

Figure 4: Computing the Hamming distance with and without ‘population count’
instruction

Fast vector arithmetic over F3 343

3 remainders
1 remainder

with popcount

Length n of vectors

S
p

ee
d

g
ai

n

6456484032241680

12

10

8

6

4

2

0

Figure 5: The dot product in three versions

our implementation but is the effect of a good optimizing compiler and a recent
CPU on the reference program. Apparently on our test CPU SIMD-instructions
allow the standard dot product to be computed 16 elements at a time.

As was mentioned at the start of Section 3.5, one of the advantages of the
three word representation is a faster multiplication. Figure 6 shows that the dot
product can indeed be computed slightly faster, by a factor of ≈ 1.09.

5 Final remarks

Our methods yield the best results for vectors of length exactly 64, but in practice
n will often be smaller. One way to handle a vector V ∈ F

n
3 of shorter length

is to extend it silently with zeroes. This means that the corresponding bit vec-
tors V1, V2 (and V0) should be extended to 64-bit words by adding ones, which
is a bit counterintuitive and easily leads to mistakes. Note however that none of
the formulas in Theorem 1 use a binary ‘not’. As a consequence, applying these
formulas to the (invalid) pairs (v1, v2) = (0, 0) and (w1, w2) = (0, 0) will always
yield the result (0, 0). In other words, if you extend the bit vectors with zeroes
instead of ones you will not really run into trouble. Also weight and Hamming
distance remain correct. The only exception is the iteration of Section 3.4.

The question naturally arises whether techniques similar to those of this paper
would also be useful for vector arithmetic over other small algebraic structures,
like F4, F5 or Z/4Z. Because any Boolean function can be implemented in terms
of binary operations, in principle there is no reason why this would be impos-
sible. Only experiments will tell whether the resulting implementations will be
sufficiently fast.

In the case of F4 Bouyukliev and Bakoev have already done some prelimi-
nary work by implementing addition and subtraction and multiplication with a

344 K. Coolsaet

3 words
2 words

Length n of vectors

S
p

ee
d

g
ai

n

6456484032241680

12

11

10

9

8

7

6

5

4

3

2

1

Figure 6: The dot product in 2 and 3 word representations

scalar [2]. It would be useful to extend this work with dot products, weights and
Hamming distances as we did for F3, and with fast implementations of V + αW
and V + α2W, where α, α2 are the elements of F4 different from 0 and 1. These last
two operations could then be used for computing the echelon form of a matrix.
(Bouyukliev and Bakoev also considered F3, but their implementation is slower
than ours.)

References

[1] S. E. Anderson, Counting bits set, in parallel, Bit Twiddling Hacks, URL http:

//graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel

(2011)

[2] I. Bouyukliev, V. Bakoev, Efficient computing of some vector operations over
GF(3) and GF(4), Serdica J. Computing 2(2) (2008), 101–108

[3] Y. Kawahara, K. Aoki, T. Takagi, Faster Implementation of ηT Pairing over
GF(3m) Using Minimum Number of Logical Instructions for GF(3)-Addition, Pair-
ing 2008, Lecture Notes in Computer Science 5209 (2008), 282–296, Springer-
Verlag Berlin Heidelberg

Department of Applied Mathematics and Computer Science,
Ghent University,
Krijgslaan 281–S9, B–9000 Gent, Belgium
Kris.Coolsaet@UGent.be

