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Abstract

We present some new results on the relations between the rotation index
of bar billiards of two nested circles CR and Cr, of radii R and r and with
distance d between their centers, satisfying Poncelet’s porism property. The
rational indices correspond to closed Poncelet transverses, without or with
self-intersections. We derive an interesting series arising from the theory of
special functions. This relates the rotation number 1

3 , of a triangle of Pon-
celet transverses, to a double series involving R, r, and d. We also provide a
Steiner-type formula which gives a necessary condition for a bar billiard to
be a pentagon with self-intersections and rotation index 2

5 . Finally we show

that, close to a pair of circles having Poncelet’s porism property for index 1
3 ,

there exist always circle pairs having indices 1
4 they and 1

6 ; in the case 1
4 they

are even unique.

1 Introduction

A famous and much studied problem from the 19th century, Poncelet’s
closure theorem, has many facets and applications, see the excellent survey [3].
We want to present some new results on circular versions of it. So let us consider
two circles CR and Cr in the plane, and let the circle Cr of radius r lie inside the
second circle CR of radius R > r in such a way that the distance between their
centers is equal to d. From any point on CR, draw a tangent to Cr and extend it to
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CR in the opposite direction. From this new intersection point we draw another
tangent to Cr, etc. For all tangents, the resulting Poncelet transverse will be called
a bar billiard, since it models the well known traditional game (see, e.g., [20]).
Usually, players of this game score points by knocking balls into the holes while
avoiding toppling a skittle in the middle of the table. Here the role of the skittle is
played by the circle Cr, and it must be “toppled” by the tangent line. The general
behavior of such billiards is very interesting. In this paper we will concentrate
on the so-called Poncelet porism for this specific setting. Namely, we know that
such a bar billiard has the Poncelet porism property; that is, if there is a starting
point for which a Poncelet transverse is closed, then the transverse will also close
for any other starting point on the circle. One can find an extensive bibliography
on the Poncelet porism property in [3], and we point out also interesting papers
by B. Mirman (cf. [12] and [13]). For triangular Poncelet transverses, the closure
theorem of Poncelet has a long history also in Elementary Geometry; see [11, § 2.4],
[1, ch. 16], and [9]; further basic references are [2], [9], [14], [19], and [8]. The in-
terested reader should also consult the recent paper by Cima, Gasull and Manosa
[5].

Note that in our setting we allow self-intersections of the Poncelet transverses,
like also other authors do (see, e.g., [10] and [7]). It seems that the problem of
finding relations between the radii R and r and the distance d, similar to the in-
vestigations in [6], was only considered by Radić in [16] and [17]. But he did not
give any explicit formula, even in simplest cases, and it seems to be hard to do this
by using his method. Here we will formulate the problem and apply the method
used in [4] to give an explicit formula for a pentagon with self-intersections. Our
considerations give hope to derive some interesting and new series expressing
fractions of the form nπ

m , where n
m ∈]0, 1

2 [∪] 1
2 , 1].

It is well-known that such a bar billiard is a homeomorphism of a circle, and
everything is known about the dynamics of this homeomorphism (see, e.g., [18]).
In particular, we know that such a bar billiard is conjugated to either a ratio-
nal rotation or an irrational rotation. The rational cases correspond to Poncelet’s
porism, and any rational number, except for 1

2 , is related to a closed polygon, ei-
ther without or with self-intersections. In the present paper we produce a series
relating the rotation number 1

3 given by a triangle with a double series involving
R, r, and d. Similar formulas can be produced for all rational numbers from the
interval ]0, 1[, except for 1

2 , and seem to be new and interesting. The fractions 1
n

and n−1
n correspond to the polygons considered by Poncelet and his followers,

the other fractions
p
q , where p 6= 1, n − 1 and the numbers p and q are coprime,

come from suitable polygons with self-intersections. As an example, we find a
relation between R, r, d to characterize a pentagon with self-intersections having
corresponding rational rotation index equal to 2

5 . By using this formula, one could

produce a suitable series absolutely converging to 2
5 and being similar to the one

given for 1
3 (this is not presented in our paper). It seems to be possible to give

a relationship between R, r, and d for obtaining an irrational rotation index and,
then, to produce a similar series converging to this number.
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2 The homeomorphism of a circle

Let CR and Cr be two nested circles with centers (0, 0) and (d, 0) as well as
radii R and r, respectively, such that d > 0 and d + r < R. For the circle CR

we consider a positive natural parametrization given by z(t) = (R cos t, R sin t),
where t ∈ R. From any point (R cos t, R sin t) = Reit on CR, draw the first tangent
to Cr with respect to the parameter t and extend it to CR in the opposite direction

to obtain the point (R cos ϕ(t), R sin ϕ(t)) = Reiϕ(t), where

Reiϕ(t) = h(t)eit + g(t)ieit (2.1)

with

h(t) = − R

(d2 + R2 − 2dR cos t)
2

(

R2
(

3d2 − 2r2 + R2
)

+

+ d2
(

d2 − 2r2 + 3R2
)

cos 2t − 2dR
(

d2 − 2r2 + 2R2 + d2 cos 2t
)

cos t +

+ 4dr(R − d cos t)
√

d2 − r2 + R2 − 2dR cos t sin t
)

and

g(t) =
2R

(d2 + R2 − 2dR cos t)
2

(

rR2
√

d2 − r2 + R2 − 2dR cos t+

+ d
(

dr
√

d2 − r2 + R2 − 2dR cos t cos 2t−

− R
(

2d2 − 2r2 + R2 + d2 cos 2t
)

sin t+

+
(

−2rR
√

d2 − r2 + R2 − 2dR cos t + d
(

d2 − 2r2 + 3R2
)

sin t
)

cos t
))

.

Now we take Reiϕ(t) as starting point of the next tangent, which ends at Reiϕ(ϕ(t)),
and so on, as it is illustrated in Fig. 1. The above construction gives a homeo-

Reit

Reij  HtL

Reij  Hj  HtLL

Figure 1: Construction of a bar billiard
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morphism Φ of the circle CR which has a natural lift ϕ : R → R. The case of the
second possible tangent to the circle Cr will be discussed at the end of this section.

Having differentiated the equation (2.1), we get

ϕ′(t) =
(R2 − d2)

√
d2 − r2 + R2 − 2dR cos t + 2dr sin t

(d2 + R2 − 2dR cos t)
√

d2 − r2 + R2 − 2dR cos t
, (2.2)

with

cos ϕ(0) =
2r2 + 2dR − R2 − d2

(d − R)2
, (2.3)

sin ϕ(0) =
2r
√
−r2 + d2 − 2dR + R2

(d − R)2
(2.4)

for 0 ≤ ϕ(0) < π, since ϕ(0) cannot exceed π by geometric reasons. Hence

ϕ(t) =

t
∫

0

(

R2 − d2
)
√

d2 − r2 + R2 − 2dR cos τ + 2dr sin τ

(d2 + R2 − 2dR cos τ)
√

d2 − r2 + R2 − 2dR cos τ
dτ

+ arccos

(

2r2

(d − R)2
− 1

)

.

(2.5)

Thus, after some calculations we get

ϕ(t) = arccos

(

−1 +
2r2

(d − R)2

)

− 2 arctan

(√
d2 − r2 − 2dR + R2

r

)

+

+ 2 arctan

(√
d2 − r2 + R2 − 2dR cos t

r

)

+ 2 arctan

(

(d − R) cot t
2

d + R

)

+

+ 2π

⌊

t

2π

⌋

+ π sgn t (2.6)

with

ϕ(0) = arccos

(

2r2

(d − R)2
− 1

)

(2.7)

and ϕ(t + 2π) = ϕ(t) + 2π.
At this moment we can comment the existence of an invariant measure on CR

for the homeomorphism ϕ. Let us denote the intervals AB and CD as in Fig. 2.

Note that |AB| =
√

d2 − r2 + R2 − 2dR cos t and produce a 1-form ω(t) = f (t)dt
on CR, where

f (t) =
1

|AB| =
1√

d2 − r2 + R2 − 2dR cos t
. (2.8)

Then, simply, we have reproved a theorem given in [10] and [7].

Corollary 2.1. The measure ω for the bar billiard considered above is invariant in both
cases, namely with and without self-intersections.
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A

C

B

D

Figure 2: Construction of an invariant measure

Proof. We have to show that ϕ∗ω = ω, or that f (ϕ(t))ϕ′(t) = f (t) for t ∈ R.
We have that f (ϕ(t)) = 1

|CD| , and thus we have to show the equality

ϕ′(t) =
|CD|
|AB| . (2.9)

From the expression of |AB| and formula (2.1) we get

|CD| =
√

d2 − r2 + R2 − 2d(A(t) cos t − B(t) sin t).

Hence, using the formula (2.2) together with the above expressions for |AB| and
|CD|, we get after some calculations that the claimed formula follows.

Recall that the rotation index (see, for instance, [18]) of a homeomorphism ϕ
of the circle is given by a number

̺0(ϕ, t) =
1

2π
lim

n→∞

ϕn(t)− t

n
. (2.10)

It is well-known that the above limit exists and is not depending on t. Therefore
this limit is usually denoted by ̺0(ϕ). Since the index does not depend on t, we
have that if ϕn(t0) = t0 + 2π for some particular t0, then ϕn(t) = t + 2π for
all t ∈ R, and so we have the Poncelet porism in this setting. If ϕn(t) = t + 2π,
then we have an n-gon inscribed to CR, circumscribed about Cr and having no
self-intersections with

̺0(ϕ) =
1

n
. (2.11)

Note that if ϕn(t) = t + 2π, then the inverse homeomorphism ϕ−1(t) has the
index n−1

n since it corresponds to ϕn−1(t) and to the choice of the second tangent
to the smaller circle at the beginning of our construction. Moreover, it has the
same graph, but with opposite orientation with respect to the starting homeo-

morphism ϕ(t). In general, ̺0(ϕk) = k̺0(ϕ) = k
n for k = 1, 2, . . . , n − 1; then
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for the homeomorphism ϕ, with ϕn(t) = t + 2π, we have associated closed poly-
gons corresponding to the consecutive iterations ϕ2(t), ϕ3(t), . . . , ϕn−1(t). If the

reduced form of the index k
n is k0

n0
, then ϕk(t) determines a closed polygon without

self-intersections if the numerator k0 is either 1 or n0 − 1, and the remaining cases
give the n0-gons with self-intersections. If the index a

b is in reduced form and

a <
b
2 , then b−a

b is given by the second tangent to the circle Cr, and both resulting
polygons coincide but have opposite orientations. In general, if ϕn(t) = t + 2kπ

and the natural numbers n and k are relatively prime, then ̺0(ϕ) = k
n .

In Section 4 we find the relation between r, R, and d in order to have a pen-
tagon with self-intersections satisfying the Poncelet porism property and having
the rotation index 2

5 . It seems that up to now nobody investigated such polygons,
and also the analysis of relations similar to those given in [6], [3], and [4] would
be interesting.

3 A series related to a homeomorphism with rotation index 1
3

As it was proved in [10], the 1-form ω is a measure on CR for which a measure
of the circular arc from (R, 0) to Reit is given by the formula

γ =

2π
t
∫

0

ω(t)

2π
∫

0

ω(t)

. (3.1)

Thus, the measure of the whole circle CR is equal to 2π, and the rotation index of
the homeomorphism ϕ(t) described in Section 2 is given by

̺0(ϕ) =

ϕ(0)
∫

0

ω(t)

2π
∫

0

ω(t)

. (3.2)

In this section we consider the case ̺0(ϕ) = 1
3 as a typical one and model the

situation. An analogous study can be carried out for any other fraction
different to 1

2 , under the condition that one knows the relation between r, R, and
d which gives the suitable polygon. It is well-known (see, for example, [6] and
[21]) that, in order to have a closed cycle which is a triangle and which gives a
Poncelet porism for CR and Cr, we should choose r, R, and d suitably to satisfy
the following relation. It is called Steiner relation for a bicentric triangle:

R2 − 2Rr − d2 = 0. (3.3)

However, we begin with some general manipulations of the formula (3.2).
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Starting with its denominator, and after a few substitutions, we get

2π
∫

0

ω(t)dt =

2π
∫

0

dt√
d2 − r2 + R2 − 2dR cos t

=

4
√

(d + R − r)(d + R + r)

π
2
∫

0

dx
√

1 − k2 sin2 x
,

where

k2 =
4dR

(d + R − r)(d + R + r)
. (3.4)

Note that under our geometric assumptions d > 0, d + r < R, and 0 < r < R we
have that 0 < k2

< 1, and so the last formula is the complete elliptic integral of
first type.

Doing similarly for the numerator, we obtain

ϕ(0)
∫

0

ω(t)dt =

ϕ(0)
∫

0

dt√
d2 − r2 + R2 − 2dR cos t

=
2

√

(d + R − r)(d + R + r)
·

π
2
∫

0

dx
√

1 − k2 sin2 x
− 2
√

(d + R − r)(d + R + r)

π
2 −

ϕ(0)
2

∫

0

dx
√

1 − k2 sin2 x
.

Finally, we get

̺0(ϕ) =
1

2
− 1

2

π
2 −

ϕ(0)
2

∫

0

dx√
1−k2 sin2 x

π
2
∫

0

dx√
1−k2 sin2 x

, (3.5)

where ϕ(0) = arccos
(

2r2

(d−R)2 − 1
)

.

Now we are going to use some special functions and related series, to obtain
finally our formula. In this context we have

π
2
∫

0

dx
√

1 − k2 sin2 x
=

π

2
F

(

1

2
,

1

2
, 1, k2

)

=
π

2

∞

∑
n=0

(

(2n − 1)!!

(2n)!!

)2

k2n. (3.6)

In order to consider the second integral, we write ϕ0 = π
2 − ϕ(0)

2 and perform a
few natural substitutions, and so we get

ϕ0
∫

0

dx
√

1 − k2 sin2 x
=

sin ϕ0

2

1
∫

0

1
√

1 − k2 sin2 ϕ0t
· 1
√

1 − sin2 ϕ0t
· 1√

t
dt , (3.7)
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where one of the integrands can be written by means of series as follows:

1
√

1 − sin2 ϕ0t
=

∞

∑
k=0

(2n − 1)!!

(2n)!!
tk sin2k ϕ0. (3.8)

Hence

ϕ0
∫

0

dx
√

1 − k2 sin2 x
=

=
sin ϕ0

2

∞

∑
m=0

(2n − 1)!!

(2n)!!
sin2m ϕ0

1
∫

0

(1 − k2 sin2 ϕ0t)−
1
2 · t−

1
2+m · (1 − t)0dt =

=
sin ϕ0

2

∞

∑
m=0

(2m − 1)!!

(2m)!!
sin2m ϕ0B

(

1

2
+ m, 1

)

F

(

1

2
,

1

2
+ m,

3

2
+ m, k2 sin2 ϕ0

)

=

= sin ϕ0

∞

∑
m=0

(

(2m − 1)!!

(2m)!!
sin2m ϕ0 ·

∞

∑
n=0

(2n − 1)!!

(2n)!!(2m + 2n + 1)
k2n sin2n ϕ0

)

. (3.9)

Thus, we have proved

Theorem 3.1. For any bar billiard ϕ we have the following formula for the rotation index:

̺0(ϕ) =
1

2
−

sin ϕ0

∞

∑
m=0

(

(2m−1)!!
(2m)!!

sin2m ϕ0 ·
∞

∑
n=0

(2n−1)!!
(2n)!!(2m+2n+1)

k2n sin2n ϕ0

)

π
∞

∑
n=0

(

(2n−1)!!
(2n)!!

)2
k2n

,

(3.10)
where

ϕ0 =
π

2
−

arccos
(

2r2

(d−R)2 − 1
)

2
. (3.11)

Let us go back to the special case of the bicentric triangle, for which we have
the relation

r =
R2 − d2

2R
. (3.12)

This relation we substitute into formula (3.10), in order to obtain some interesting
formula for π

3 .
First we have

ϕ0 =
π

2
−

arccos
(

−1+2t+t2

2

)

2
. (3.13)

We substitute also t = d
R and get immediately

sin ϕ0 =
1

2
(1 + t). (3.14)

Similarly substituting formula (3.12) into (3.4), we get

k2 =
−16t

(−3 + t)(1 + t)3
. (3.15)
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Finally, using the above form in formula (3.10), we come to the result

1

3
=

1

2
−

1
2(1 + t)

∞

∑
m=0

(

(2m−1)!!
(2m)!!

·
(

1+t
2

)2m
·

∞

∑
n=0

(2n−1)!!
(2n)!!(2m+2n+1)

( 4t
(3−t)(1+t)

)n

)

π
∞

∑
n=0

(

(2n−1)!!
(2n)!!

)2
·
(

16t
(3−t)(1+t)3

)n
.

(3.16)
Thus, we are able to formulate one of the two main results of our paper.

Corollary 3.1. For any t ∈ (0, 1) we have

π

3
=

(1 + t)
∞

∑
m=0

(2m−1)!!
(2m)!!

·
(

1+t
2

)2m
·

∞

∑
n=0

(2n−1)!!
(2n)!!(2m+2n+1)

(

4t
(3−t)(1+t)

)n

∞

∑
n=0

(

(2n−1)!!
(2n)!!

)2
·
(

16t
(3−t)(1+t)3

)n
. (3.17)

Note that, similarly, we could obtain adequate formulae for any other closed
bicentric polygon. It would be interesting to give similar formulae for non-closed
Poncelet transverses.

4 Relations for Poncelet’s porism with self-intersections in a

special case

In this section we are going to show how to construct a pentagon with self-
intersections, yielding the rotation index equal to 2

5 and satisfying the Poncelet
porism property. A method and the formulae below are taken from [4] and can
be extended to any desired bicentric polygon with self-intersections.

Α HtL
ΛHtLieit

zHtL

wHtL

zHΨ HtLL

Figure 3: Construction of λ(t) and α(t).

We begin with the parametrization of both the circles CR and Cr. Now the
center of the smaller circle is at (0, 0), and the larger one has its center at (d, 0),
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where again d > 0 and d + r < R. Let the circle Cr be parametrized by the
equation z(t) = reit, while the larger circle is parametrized by w(t) = reit +
λ(t)ieit , where t ∈ R. Thus

λ(t) =
√

R2 − (d cos t − r)2 − d sin t. (4.1)

Then, using the notation from Figure 3, we get

tan
α(t)

2
=

λ(t)

r
. (4.2)

Then the counterpart of the homeomorphism ϕ(t) in this framework is deter-
mined by

ψ(t) = t + α(t). (4.3)

Let ψ0(t) = t, ψn(t) = ψ(ψn−1(t)) for n ∈ N. From formula (4.2) we get

eiα(t) =
r2 − λ2(t)

r2 + λ2(t)
+ i

2λ(t)r

r2 + λ2(t)
, (4.4)

and hence

eiψ(t) =

(

r + iλ(t)

|r + iλ(t)|

)2

eit. (4.5)

If for any n ∈ N ∪ {0} we write

µn(t) =
r + iλ(ψn(t))

|r + iλ(ψn(t))| , (4.6)

then we get

eiψn(t) = (µ0(t)µ1(t) . . . µn−1(t))
2eit. (4.7)

Of course, the polygon corresponding to ψ(t) satisfies the Poncelet porism

property iff for some fraction in reduced form k
n , where k, n ∈ N, n ≥ 3, k < n,

we have
ψn(t) = t + 2kπ.

It follows (cf. Theorem 2.1 in [4]) that if the resulting polygon either without or
with self-intersection is closed, then

(µ0(t)µ1(t) . . . µn−1(t))
2 = 1 , (4.8)

and hence we have
Im(µ0(t)µ1(t) . . . µn−1(t)) = 0. (4.9)

In what follows, we derive a formula relating the radii R and r and the dis-
tance d in the considered pair of nested circles, with a pentagonal bar billiard
having self-intersections for which ̺0(ψ) =

2
5 .

Let λn = λ(ψn(0)). Then, using the notations from Figure 4, we get

|BC| = λ0, |DE| = λ1, |FG| = λ2, |HI| = λ3, |JA| = λ4.
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C

A

B

D

E

F

G

H

I

J

Figure 4: Notations to be used in the proof of the formula relating R, r, and d

Again from this figure and simple geometric observations we obtain that λ0 = λ3

and λ1 = λ2. Moreover, we get

λ1 = λ2 =
√

R2 − (d + r)2, (4.10)

λ4 =
√

(R − d)2 − r2, (4.11)

λ0 = λ3 =
(d + R)

√

(R − d)2 − r2

R − d
. (4.12)

From formula (4.9) we have

0 = Im(µ0(0)µ1(0)µ2(0)µ3(0)µ4(0)) , (4.13)

and hence the imaginary part of the expression

(

r + i
√

R2 − (d + r)2

)2(

r + i
√

(R − d)2 − r2

)

(

r + i
(d + R)

√

(R − d)2 − r2

R − d

)2

(4.14)
is equal to 0, giving the required formula

2d4r2
√

R2 − (d + r)2 − 8d3r2R
√

R2 − (d + r)2 + 4d2r2R2
√

R2 − (d + r)2

+ 8r4R2
√

R2 − (d + r)2 + 8dr2R3
√

R2 − (d + r)2 − 6r2R4
√

R2 − (d + r)2

− d6
√

(R − d)2 − r2 − 2d5r
√

(R − d)2 − r2 − 2d4r2
√

(R − d)2 − r2

+ 3d4R2
√

(R − d)2 − r2 + 4d3rR2
√

(R − d)2 − r2 + 8d2r2R2
√

(R − d)2 − r2

+ 8dr3R2
√

(R − d)2 − r2 + 8r4R2
√

(R − d)2 − r2 − 3d2R4
√

(R − d)2 − r2

− 2drR4
√

(R − d)2 − r2 − 6r2R4
√

(R − d)2 − r2 + R6
√

(R − d)2 − r2 = 0.

(4.15)
Thus, this is a kind of Steiner formula giving the relation between the radii R

and r and the offset d, which is a necessary condition for a pentagonal bar billiard
with self-intersections for which ̺0(ψ) =

2
5 .



298 W. Cieślak – H. Martini – W. Mozgawa

5 From the index 1
3 to the indices 1

4 and 1
6

In this final section we are going to show that, “close” to a pair of circles
having Poncelet’s porism property for index 1

3 , there exist pairs of circles having

indices 1
4 and 1

6 , in the first case even unique ones. This is conjectured to be true
for arbitrary indices; see the final conjecture.

We consider a circular annulus CrCR formed by two circles Cr and CR. The
circles Cr, CR are given by the equations

x2 + y2 = r2, (x − d)2 + y2 = R2, (5.1)

respectively, where
0 < d < R − r. (5.2)

Recall a suitable form of Poncelet’s closure theorem (see [3]) used in the forth-
coming considerations:

If there exists one circuminscribed (i.e., simultaneously inscribed in the outer circle
and circumscribed about the inner circle) n-gon in a circular annulus, then any point of
the outer circle is the vertex of some circuminscribed n-gon.

If Poncelet’s closure property holds for n = 3 (that is, if the rotation index of
the associated homeomorphism is equal to 1

3 in the annulus CrCR), then condi-
tion (3.3) is satisfied. For our purpose it is convenient to denote this condition
by Pct(CrCR, 3). Similarly, the conditions Pct(CrCR, 4) and Pct(CrCR, 6) have the
forms

(R2 − d2)2 = 2r2(R2 + d2), (5.3)

and
3(R2 − d2)4 = 4r2(R2 + d2)(R2 − d2)2 + 16r4d2R2, (5.4)

respectively (cf. [3]).
It is easy to see that for each fixed λ ∈ [0, 1] the circle Cλ given by the equation

(x − λd)2 + y2 = [(1 − λ)r + λR]2 (5.5)

lies in the annulus CrCR, and that C0 = Cr, C1 = CR.
In this framework we prove two theorems which show how to pass from the

rotation index 1
3 to 1

4 and from 1
3 to 1

6 in a natural way.

Theorem 5.1. If the condition Pct(CrCR, 3) is satisfied, then there exists a unique
λ ∈]0, 1[ such that the condition Pct(CrCλ, 4) is satisfied.

Proof. Taking the pattern from formula (5.5), we substitute d and R in (5.3) by the
offset λd and the radius (1 − λ)r + λR, respectively. We get then

[

(

(1 − λ)r + λR
)2 − λ2d2

]2
= 2r2

[

(

(1 − λ)r + λR
)2

+ λ2d2
]

.

Using (3.3), we obtain

rλ4 + 4(R − r)λ3 + 4rλ2 − r = 0. (5.6)

The left-hand side of (5.6) is a polynomial that we denote by w(λ). Thus we have
that w(0) = −r, w(1) = 4R, and w′(λ) > 0 for λ > 0. Hence there exists exactly
one λ ∈]0, 1[ such that w(λ) = 0.
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Theorem 5.2. If the condition Pct(CrCR, 3) is satisfied, then there exists a value
λ ∈]0, 1[ such that the condition Pct(CrCλ, 6) is satisfied.

Proof. As before, we substitute d and R in (5.4) by the offset λd and the radius
(1 − λ)r + λR, respectively, and next we use (3.3). Simple calculations lead us to
the following equation:

3
[

(1 − λ)2r + 2λR
]4

− 4
[

(1 − λ)2r2 + 2λrR − 4λrR + 2λ2R2
] [

(1 − λ)2r + 2λR
]2

−16λ2
(

R2 − 2rR
)

[(1 − λ)r + λR]2 = 0.

If we denote by f (λ) the polynomial on the left-hand side of the above
equation, then we get f (0) = −r4 and f (1) = 64rR3. Thus, Darboux’s theo-
rem (in this framework also studied in [14]) implies the existence of a λ ∈]0, 1[
such that f (λ) = 0.

Theorems 5.1 and 5.2 suggest the following
Conjecture. If the condition Pct(CrCR, k) is satisfied, then there exists a value

λ ∈]0, 1[ such that the condition Pct(CrCλ, n) is satisfied for any n > k.
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[17] Radić, M.: Certain relations concerning bicentric polygons and 2-parametric
presentation of Fuss’ relations, Math. Pannon. 20 (2009), 219-248.

[18] Robinson, C.: Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,
Studies in Advanced Mathematics, Boca Raton, CRC Press, 1999.

[19] Schwartz, R.: The Poncelet grid, Adv. Geom. 7 (2007), 157-175.

[20] Tabachnikov, S.: Geometry and Billiards, Amer. Math. Soc., Providence, RI,
2005.

[21] Weisstein, E. W.: Poncelet’s Porism, From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/PonceletsPorism.html

Department of Applied Mathematics, Technical University Lublin
ul. Nadbystrzycka 40, 20-618 Lublin, Poland,
email: izacieslak@wp.pl

Faculty of Mathematics, University of Technology Chemnitz,
09107 Chemnitz, Germany,
email: martini@mathematik.tu-chemnitz.de

Institute of Mathematics, Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland,
email: mozgawa@poczta.umcs.lublin.pl


