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1. Let V be an algebraic variety defined over Z, the ring of rational integers.
The study of the structure of the set V(Z) of the integral points of such a variety
is one of the major goals in number theory and arithmetic geometry. One may
ask, in particular, whether V(Z) is an empty or a finite set. It is an easy and
well-known corollary of the celebrated theorem of Matiyasevich [11] that, in a
given formal system, neither statement can be proved or disproved for infinitely
many varieties V (cf. [11] - [13], [4, pp. 327-328], [5]). For instance, there is a
hypersurface V over Z such that neither the assertion

V(Z) = ∅, (1)

nor its negation is provable in, say, the Zermelo-Fraenkel set theory (=:ZF).
Given a recursively enumerable subset S of the set N of the positive rational

integers, Matiyasevich’s construction allows, in principle, to write down a poly-
nomial PS(t,~x), ~x := (x1, . . . , xn(S)), with integral rational coefficients such that,

for a ∈ N, the Diophantine equation PS(a,~x) = 0 is soluble in Z
n(S) if and only if

a ∈ S. The set T of the (ZF-)provable mathematical theorems is recursively enu-
merable. Therefore, given a suitable numbering N of the set of the well-defined
mathematical assertions, one can construct a polynomial F(t,~x)(:= PN (T)(t,~x))

such that the Diophantine equation F(a,~x) = 0 is soluble if and only if a ∈ N (T).
In this sense, the arithmetic of the affine hypersurface, defined by the equation
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F(t,~x) = 0, is ”exactly as difficult as the whole of mathematics” [10, p. 2]; indeed,
according to Gauß, ”number theory is the queen of mathematics”.

In this note, we shall outline an explicit construction of a polynomial encoding
provability in pure mathematics as formalized in the Gödel-Bernays axiomatic
set theory; the minute details of that construction will be found in our work [2]
(cf. also [1]). As a by-product, one obtains a true mathematical statement that can
not be proved in the Zermelo-Fraenkel set theory and for its proof requires new
”axioms, which go beyond the usual axioms for mathematics”, cf. [6, p. 804].
Our arithmetic statement (1) seems to be simpler and by far more natural than
the combinatorial statements presented in the work of H.M. Friedman [6] cited
above.

Notation and conventions. As usual, Z stands for the ring of rational integers
and N := {n | n ∈ Z, n ≥ 1} . A finite sequence of symbols is denoted by ~x and
L(~x) stands for its length (we write, for instance, ~x := (y1, . . . , yn) and L(~x) = n).
The polynomial

p(x1, x2) :=
(x1 + x2 − 2)(x1 + x2 − 1)

2
+ x2

defines a bijection

p : N
2 → N, p : ~a 7→ p(~a) for~a ∈ N

2.

2. Let P be the predicate calculus with a single binary predicate letter (and no
function letters or individual constants). By Kalmár’s theorem [9] (cf. also [14,
p. 223]), analysis of provability in any pure predicate calculus can be reduced to
studying provability in P . Moreover, the Gödel-Bernays set theory, to be denoted
by S, is known to be finitely axiomatisable in P [7], [14, Ch.4]. In our work [2],
we describe a polynomial encoding provability in P and thereby in S. In what
follows, we sketch briefly the construction of that polynomial.

The predicate calculus P is a first order theory. The alphabet of its language
consists of the set

X := {ti | i ∈ N}

of the individual variables, the binary predicate letter ε, the logical connectives:
{¬, ⊃} (”negation” and ”implication”), the universal quantifier ∀, and the paren-
theses {(, )}. The set F of the formulae of P is defined inductively: an expression
of the form (x ε y), with {x, y} ⊆ X , is a formula; if A and B are formulae and
x ∈ X , then ¬ A, (A ⊃ B), and ∀x A are formulae.

Remark. The symbols ” ⊆ ” and ” ∈ ” have the usual meaning and should not
be confused with the letters ” ⊃ ”, ”ε” of the language of P . For instance, the
expression {x, y} ⊆ X means, of course, that x = ti and y = tj for some i and j
in N.

A bijective map N : F → N is defined inductively:

N (ti ε tj) = 4p(i, j)− 3

for {i, j} ⊆ N and
N (¬ A) = 4N (A)− 2,
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N (∀ti A) = 4p(i,N (A)) − 1,

N (A ⊃ B) = 4p(N (A),N (B))

for {A, B} ⊆ F and i ∈ N.
There are five groups of axioms in P (cf. [14, pp. 69-70]):

A1 := {A ⊃ (B ⊃ A) | {A, B} ⊆ F};

A2 := {(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) | {A, B, C} ⊆ F};

A3 := {(¬ B ⊃ ¬ A) ⊃ ((¬ B ⊃ A) ⊃ B) | {A, B} ⊆ F};

A4 := {∀x (A ⊃ B) ⊃ (A ⊃ ∀x B) | {A, B} ⊆ F, x ∈ X \ [A] f },

where [A] f stands for the set of the free variables of A;

A5 := {(∀x A) ⊃ A[x|y] | A ∈ F, {x, y} ⊆ X ,

the variable y is free for x in A},

where A[x|y] denotes the formula obtained from A when each of the free occur-
rences of the variable x in A is replaced by y. The set T of the theorems of P is
defined inductively:

(i) ∪5
j=1Aj ⊆ T;

(ii) if {A, (A ⊃ B)} ⊆ T, then B ∈ T (”modus ponens”);

(iii) if A ∈ T and x ∈ X , then ∀x A ∈ T (”generalisation”).
To give a Diophantine description of the predicate ”A is an axiom of P”, we

construct a polynomial gi(u,~x) for 1 ≤ i ≤ 5 such that gi(u,~x) ∈ Z[u,~x] and

N (Ai) = {u | u ∈ N, (∃~b ∈ N
L(~x))gi(u,~b) = 0}, 1 ≤ i ≤ 5.

It can be easily seen [2] that we may let

g1(u,~x) := u − 4p(x1, 4p(x2, x1))

with ~x := (x1, x2),

g2(u,~x) := u − 4p(4p(x1, 4p(x2, x3)), 4p(4p(x1 , x2), 4p(x1, x3)))

with ~x := (x1, x2, x3), and

g3(u,~x) := u − 4p(4p(4x2 − 2, 4x1 − 2), 4p(4p(4x2 − 2, x1), x2))

with ~x := (x1, x2). In order to construct the polynomials g4(u,~x) and g5(u,~y), one
employs techniques of Diophantine coding developed in the works on Hilbert’s
tenth problem (cf. [3], [13], and references therein). This construction is the tech-
nical heart of our works [1] and [2]. The detailed description of those polynomials
is beyond the scope of this note; let us mention, however, that

g4(u,~x) ∈ Z[u,~x] with L(~x) = 8878
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and
g5(u,~y) ∈ Z[u,~y] with L(~y) = 17873.

Let
G1(~u; x) := x(u3 − 4p(u2, u1))

with ~u := (u1, u2, u3) and let

G2(~u; x) := u1 − 4p(x, u2) + 1

with ~u := (u1, u2). Let

ui := N (Ai), Ai ∈ F, 1 ≤ i ≤ 3.

It can be easily proved [2] that the formula A1 follows from the formulae A2 and
A3 by the rule ”modus ponens” (respectively from the formula A2 by the rule
”generalisation”) if and only if (∃ b ∈ N)G1(~u; b) = 0 (respectively (∃ b ∈
N)G2(~u; b) = 0). Applying techniques of Diophantine coding again, we con-
struct a polynomial f (t,~x) such that f (t,~x) ∈ Z[t,~x] and

N (T) = {a | a ∈ N, (∃~b ∈ Z
4n) f (a,~b) = 0}

with L(~x) = 4n, n := 3639528 [2, Corollary 3]. The polynomial f (t,~x) is explicitly
expressible in terms of the polynomials G1, G2, g1, g2, g3, g4, and g5 (see [2]).

3. Let us say a few words about ”Diophantine coding”, the term coined in the
works on Hilbert’s tenth problem (see [13, Chapter 5], for example) and alluded
to in the previous section. A ”Diophantine code” of an enumerable subset S of
the set N of natural numbers is a polynomial PS(t,~x) such that

PS(t,~x) ∈ Z[t,~x], ~x := (x1, . . . , xn(S)),

and
S = {a | a ∈ N, (∃~b ∈ Z

n(S))PS(a,~b) = 0}.

The techniques, used to construct Diophantine codes, may be illustrated by the
following examples. The Lagrange four squares theorem leads to the representa-
tion

N := {1 +
4

∑
k=1

x2
k | ~x ∈ Z

4, ~x := (x1, x2, x3, x4)},

allowing us to replace a Diophantine equation in N by an equivalent one in Z;
on the other hand, a Diophantine equation in Z can be replaced by an equivalent
Diophantine equation in N simply by expressing an integer as a difference of two
natural numbers, cf. [13, §1.3]. As another example, let us consider the set P of
the prime numbers. Let p ∈ N; by definition, p ∈ P if and only if

p > 1 & (∀x ∈ N, x ≤ p)(∀y ∈ N, y ≤ p) p = xy ⇒ (x − 1)(y − 1) = 0. (2)

Let

h(~u) := (u1 − 1 − u4)
2 + (u1 − u2u3 − u5)

2(u2 − 1)2(u3 − 1)2, ~u := (u1, . . . , u5);
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formula (2) is easily seen be equivalent to the following one:

(∀x ∈ N, x ≤ p)(∀y ∈ N, y ≤ p)(∃ ~z ∈ N
2)h(p, x, y, z1, z2) = 0, (3)

with ~z := (z1, z2). The Diophantine code PP(t,~x) of the set P of the prime num-
bers can be constructed from formula (3) by repeated application of the bounded
quantifier theorem [3, §5], [4, §4], one of the main tools used in Diophantine cod-
ing. Another important tool is the sequence number theorem [3, p. 237], al-
lowing, for instance, to produce a polynomial Pg(t1, t2,~x) with integral rational
coefficients, which encodes the graph of the function

g : N → N, g : y 7→
y

∏
k=1

(1 + k2), y ∈ N,

so that
(∃~b ∈ Z

L(~b))Pg(z, g(y),~b) = 0 ⇔ z = g(y)

for {z, y} ⊆ N, cf. [3, p. 257]. The other tools of Diophantine coding are bor-
rowed from elementary number theory.

4. Let T0 stand for the set of the theorems of the Gödel-Bernays axiomatic set
theory S and let A be the conjunction of the proper (non-logical) axioms of S

in the language of P [14], [2]. By definition, B ∈ T0 if and only if the formula
(A ⊃ B) belongs to T, the set of the theorems of P . If the theory S is consistent,
that is if T0 6= F, then the formula (t1 ε t1) is not in T0. Let

m := N (A ⊃ (t1 ε t1)),

let F(~x) := f (m,~x), and let V be the hypersurface defined by the equation F(~x) =
0, then

(∃~b ∈ Z
4n)F(~b) = 0 ⇔ T0 = F.

Therefore if the Gödel-Bernays axiomatic set theory S is consistent, then the state-
ment V(Z) = ∅ is true but can not be proved in S.

5. The polynomials f (t,~x) and F(~x) are rather complicated. Although one
does not expect a polynomial, encoding provability in pure mathematics, be too
simple, it is not known how complicated it must be. Let P(z,~y) be an universal
polynomial (the reader may consult references [8], [13, Ch. 4], and the literature
cited in those works for different constructions of an universal polynomial) and
let M be the numbering of the ring of polynomials with integral rational coeffi-
cients used in the construction of the polynomial P(z,~y). The Diophantine equa-
tion f (t,~x) = 0 (respectively F(~x) = 0) is soluble in Z if and only if the equation
P(M( f ),~y) = 0 (respectively P(M(F),~y) = 0) is. It is clear, however, that the
integers M( f ) and M(F) are at least as ”complicated” as the polynomials f (t,~x)
and F(~x).

Is it possible to construct a polynomial encoding provability in P and/or in
S, which can be written down in a few lines ?

6. It should be observed that we have only used the techniques developed
in the course of the proof of Matiyasevich’s theorem, but not the theorem itself.
Since no algorithm can possibly decide provability in the Gödel-Bernays set the-
ory, Matiyasevich’s theorem follows from our results.
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