# Property (aw) and perturbations

M. H.M. Rashid

#### Abstract

A bounded linear operator  $T \in L(X)$  acting on a Banach space satisfies property (aw), a variant of Weyl's theorem, if the complement in the spectrum  $\sigma(T)$  of the Weyl spectrum  $\sigma_w(T)$  is the set of all isolated points of the approximate-point spectrum which are eigenvalues of finite multiplicity. In this article we consider the preservation of property (aw) under a finite rank perturbation commuting with T, whenever T is polaroid, or T has analytical core  $K(T - \lambda_0 I) = \{0\}$  for some  $\lambda_0 \in \mathbb{C}$ . The preservation of property (aw)is also studied under commuting nilpotent or under injective quasi-nilpotent perturbations or under Riesz perturbations. The theory is exemplified in the case of some special classes of operators.

### 1 Introduction

Throughout this paper, X denotes an infinite-dimensional complex Banach space, L(X) the algebra of all bounded linear operators on X. For an operator  $T \in L(X)$  we shall denote by  $\alpha(T)$  the dimension of the *kernel* ker(T), and by  $\beta(T)$  the codimension of the *range* T(X). Let

 $\Phi_+(\mathbb{X}) := \{ T \in \mathbf{L}(\mathbb{X}) : \alpha(T) < \infty \text{ and } T(\mathbb{X}) \text{ is closed} \}$ 

be the class of all upper semi-Fredholm operators, and let

$$\Phi_{-}(\mathbb{X}) := \{ T \in \mathbf{L}(\mathbb{X}) : \beta(T) < \infty \}$$

Received by the editors September 2011.

Communicated by F. Bastin.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 1–18

<sup>2010</sup> Mathematics Subject Classification : 47A13, 47A53.

*Key words and phrases* : Weyl's theorem, Weyl spectrum, Polaroid operators, Property (w), Property (aw).

be the class of all *lower semi-Fredholm* operators. The class of all *semi-Fredholm* operators is defined by  $\Phi_{\pm}(X) := \Phi_{+}(X) \cup \Phi_{-}(X)$ , while the class of all *Fredholm* operators is defined by  $\Phi(X) := \Phi_{+}(X) \cap \Phi_{-}(X)$ . If  $T \in \Phi_{\pm}(X)$ , the *index* of *T* is defined by

$$ind(T) := \alpha(T) - \beta(T).$$

Recall that a bounded operator *T* is said *bounded below* if it injective and has closed range. Evidently, if *T* is bounded below then  $T \in \Phi_+(X)$  and  $ind(T) \leq 0$ . Define

$$W_{+}(\mathbb{X}) := \{T \in \Phi_{+}(\mathbb{X}) : ind(T) \leq 0\},\$$

and

$$W_{-}(\mathbb{X}) := \{T \in \Phi_{-}(\mathbb{X}) : ind(T) \ge 0\}.$$

The set of *Weyl* operators is defined by

$$W(X) := W_+(X) \cap W_-(X) = \{T \in \Phi(X) : ind(T) = 0\}.$$

The classes of operators defined above generate the following spectra. Denote by

$$\sigma_a(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not bounded below} \}$$

the approximate point spectrum, and by

$$\sigma_s(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not surjective}\}$$

the surjectivity spectrum of  $T \in L(X)$ . The Weyl spectrum is defined by

$$\sigma_w(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin W(\mathbb{X})\},\$$

the Weyl essential approximate point spectrum is defined by

$$\sigma_{uw}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin W_+(\mathbb{X})\},\$$

while the Weyl essential surjectivity spectrum is defined by

$$\sigma_{lw}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin W_{-}(\mathbb{X})\},\$$

Obviously,  $\sigma_w(T) = \sigma_{uw}(T) \cup \sigma_{lw}(T)$  and from basic Fredholm theory we have

$$\sigma_{uw}(T) = \sigma_{ws}(T^*) \qquad \sigma_{ws}(T) = \sigma_{uw}(T^*).$$

Note that  $\sigma_{uw}(T)$  is the intersection of all approximate point spectra  $\sigma_a(T + K)$  of compact perturbations K of T, while  $\sigma_{lw}(T)$  is the intersection of all surjectivity spectra  $\sigma_s(T + K)$  of compact perturbations K of T, see, for instance, [1, Theorem 3.65].

Recall that the *ascent*, a(T), of an operator T is the smallest non-negative integer p such that  $\ker(T^p) = \ker(T^{p+1})$ . If such integer does not exist we put  $a(T) = \infty$ . Analogously, the *descent*, d(T), of an operator T is the smallest non-negative integer q such that  $T^q(\mathbb{X}) = T^{q+1}(\mathbb{X})$ , and if such integer does not exist we put  $d(T) = \infty$ . It is well known that if a(T) and d(T) are both finite then a(T) = d(T) [16, Proposition 1.49]. Moreover,  $0 < a(T - \lambda I) = d(T - \lambda I) < \infty$ 

precisely when  $\lambda$  is a pole of the resolvent of T, see Dowson [16, Theorem 1.54]. The class of all *upper semi-Browder* operators is defined by

$$B_+(X) := \{T \in \Phi_+(X) : a(T) < \infty\},\$$

while the class of all *lower semi-Browder* operators is defined by

$$B_{-}(\mathbb{X}) := \{T \in \Phi_{+}(\mathbb{X}) : d(T) < \infty\}.$$

The class of all *Browder* operators is defined by

$$B(\mathbb{X}) := B_+(\mathbb{X}) \cap B_-(\mathbb{X}) = \{T \in \Phi(\mathbb{X}) : a(T), d(T) < \infty\}.$$

We have

$$B(\mathbb{X}) \subseteq W(\mathbb{X}), \qquad B_+(\mathbb{X}) \subseteq W_+(\mathbb{X}), \qquad B_-(\mathbb{X}) \subseteq W_-(\mathbb{X}),$$

see [1, Theorem 3.4]. The *Browder spectrum* of  $T \in L(X)$  is defined by

$$\sigma_b(T) := \{\lambda \in \mathbb{C} : T - \lambda I \notin B(\mathbb{X})\},\$$

the upper Browder spectrum is defined by

$$\sigma_{ub}(T) := \{\lambda \in \mathbb{C} : T - \lambda I \notin B_+(\mathbb{X})\},\$$

and analogously the *lower Browder spectrum* is defined by

$$\sigma_{lb}(T) := \left\{ \lambda \in \mathbb{C} : T - \lambda I \notin B_{-}(\mathbb{X}) \right\}.$$

Clearly,  $\sigma_b(T) = \sigma_{ub}(T) \cup \sigma_{lb}(T)$  and  $\sigma_w(T) \subseteq \sigma_b(T)$ .

The *single valued extension property* plays an important role in local spectral theory, see the recent monograph of Laursen and Neumann [23] and Aiena [1]. In this article we shall consider the following local version of this property, which has been studied in recent papers, [4, 22] and previously by Finch [18].

Let  $Hol(\sigma(T))$  be the space of all functions that analytic in an open neighborhoods of  $\sigma(T)$ . Following [18] we say that  $T \in L(\mathbb{X})$  has the single-valued extension property (SVEP) at point  $\lambda \in \mathbb{C}$  if for every open neighborhood  $U_{\lambda}$  of  $\lambda$ , the only analytic function  $f : U_{\lambda} \longrightarrow \mathcal{H}$  which satisfies the equation  $(T - \mu)f(\mu) = 0$  is the constant function  $f \equiv 0$ . It is well-known that  $T \in L(\mathbb{X})$  has SVEP at every point of the resolvent  $\rho(T) := \mathbb{C} \setminus \sigma(T)$ . Moreover, from the identity Theorem for analytic function it easily follows that  $T \in L(\mathbb{X})$  has SVEP at every point of the boundary  $\partial \sigma(T)$  of the spectrum. In particular, T has SVEP at every isolated point of  $\sigma(T)$ . In [22, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

The basic role of SVEP arises in local spectral theory since all decomposable operators enjoy this property. Recall  $T \in L(X)$  has the *decomposition property* ( $\delta$ ) if  $X = \mathcal{X}_T(\overline{U}) + \mathcal{X}_T(\overline{V})$  for every open cover  $\{U, V\}$  of C. Decomposable operators may be defined in several ways for instance as the union of the property ( $\beta$ ) and the property ( $\delta$ ), see [23, Theorem 2.5.19] for relevant definitions. Note that the property ( $\beta$ ) implies that *T* has SVEP, while the property ( $\delta$ ) implies SVEP

for  $T^*$ , see [23, Theorem 2.5.19]. Every *generalized scalar* operator on a Banach space is decomposable, see [23] for relevant definitions and results. In particular, every spectral operators of finite type is decomposable [14, Theorem 3.6]. Also every operator  $T \in L(\mathbb{X})$  with totally disconnected spectrum is decomposable [23, Proposition 1.4.5].

The quasinilpotent part  $H_0(T - \lambda I)$  and the analytic core  $K(T - \lambda I)$  of  $T - \lambda I$  are defined by

$$H_0(T - \lambda I) := \{ x \in \mathbb{X} : \lim_{n \to \infty} \| (T - \lambda I)^n x \|^{\frac{1}{n}} = 0 \}.$$

and

 $K(T - \lambda I) = \{x \in \mathbb{X} : \text{there exists a sequence } \{x_n\} \subset \mathbb{X} \text{ and } \delta > 0$ for which  $x = x_0, (T - \lambda I)x_{n+1} = x_n \text{ and } ||x_n|| \le \delta^n ||x|| \text{ for all } n = 1, 2, \dots \}.$ 

We note that  $H_0(T - \lambda I)$  and  $K(T - \lambda I)$  are generally non-closed hyper-invariant subspaces of  $T - \lambda I$  such that  $(T - \lambda I)^{-p}(0) \subseteq H_0(T - \lambda I)$  for all  $p = 0, 1, \cdots$  and  $(T - \lambda I)K(T - \lambda I) = K(T - \lambda I)$ . Recall that if  $\lambda \in iso(\sigma(T))$ , then  $H_0(T - \lambda I) = \chi_T(\{\lambda\})$ , where  $\chi_T(\{\lambda\})$  is the global spectral subspace consisting of all  $x \in \mathcal{H}$  for which there exists an analytic function  $f : \mathbb{C} \setminus \{\lambda\} \longrightarrow \mathbb{X}$  that satisfies  $(T - \mu)f(\mu) = x$  for all  $\mu \in \mathbb{C} \setminus \{\lambda\}$ , see, Duggal [17].

**Theorem 1.1.** [3, Theorem 1.3] If  $T \in \Phi_{\pm}(X)$  the following statements are equivalent:

- (*i*) T has SVEP at  $\lambda_0$ ;
- (*ii*)  $a(T \lambda_0 I) < \infty$ ;
- (iii)  $\sigma_a(T)$  does not cluster at  $\lambda_0$ ;
- (iv)  $H_0(T \lambda_0 I)$  is finite dimensional.

By duality we have

**Theorem 1.2.** *If*  $T \in \Phi_{\pm}(X)$  *the following statements are equivalent:* 

- (*i*)  $T^*$  has SVEP at  $\lambda_0$ ;
- (ii)  $d(T \lambda_0 I) < \infty$ ;
- (iii)  $\sigma_s(T)$  does not cluster at  $\lambda_0$ .

**Theorem 1.3.** [4, Theorem 1.3] Suppose that  $T - \lambda I \in \Phi_{\pm}(\mathbb{X})$ . If T has SVEP at  $\lambda$  then  $ind(T - \lambda I) \leq 0$ , while if  $T^*$  has SVEP at  $\lambda$  then  $ind(T - \lambda I) \geq 0$ .

## **2 Property** (aw) and **SVEP**

Let write *isoK* for the set of all isolated points of  $K \subseteq \mathbb{C}$ . For a bounded operator  $T \in \mathbf{L}(\mathbb{X})$  set

$$\pi_0(T) := \sigma(T) \setminus \sigma_b(T) = \{\lambda \in \sigma(T) : T - \lambda I \in B(\mathbb{X})\}.$$

Note that every  $\lambda \in \pi_0(T)$  is a pole of the resolvent and hence an isolated point of  $\sigma(T)$ , see [21, Proposition 50.2]. Moreover,  $\pi_0(T) = \pi_0(T^*)$ . Define

 $E_0(T) := \left\{ \lambda \in iso\sigma(T) : 0 < \alpha(T - \lambda I) < \infty \right\}.$ 

Obviously,

$$\pi_0(T) \subseteq E_0(T)$$
 for every  $T \in \mathbf{L}(\mathbb{X})$ .

For a bounded operator  $T \in L(X)$  let us define

$$E_0^a(T) := \left\{ \lambda \in iso\sigma_a(T) : 0 < \alpha(T - \lambda I) < \infty \right\},\,$$

and

$$\pi_0^a(T) := \sigma_a(T) \setminus \sigma_{ub}(T) = \{\lambda \in \sigma_a(T) : T - \lambda I \in B_+(\mathbb{X})\}.$$

**Lemma 2.1.** [4] For every  $T \in L(X)$  we have

- (a)  $\pi_0(T) \subseteq \pi_0^a(T) \subseteq E_0^a(T)$  and
- (b)  $E_0(T) \subseteq E_0^a(T)$ .

Following Harte and W.Y. Lee [19], we shall say that *T* satisfies *Browder's theorem* if

$$\sigma_w(T) = \sigma_b(T),$$

while,  $T \in \mathbf{L}(\mathbb{X})$  is said to satisfy *a*-Browder's theorem if

$$\sigma_{uw}(T) = \sigma_{ub}(T).$$

Browder's theorem and a-Browder's theorem may be characterized by localized SVEP in the following way:

**Lemma 2.2.** [5] If  $T \in L(X)$  the following equivalences hold:

- (*i*) *T* satisfies Browder's theorem  $\Leftrightarrow$  *T* has SVEP at every  $\lambda \notin \sigma_w(T)$ ;
- (*ii*) *T* satisfies a-Browder's theorem  $\Leftrightarrow$  *T* has SVEP at every  $\lambda \notin \sigma_{uw}(T)$ . Moreover, the following statements hold:
- (iii) If T has SVEP at every  $\lambda \notin \sigma_{lw}(T)$  then a-Browder's theorem holds for  $T^*$ .
- (iv) If  $T^*$  has SVEP at every  $\lambda \notin \sigma_{uw}(T)$  then a-Browder's theorem holds for T.

Obviously,

*a*-Browder's theorem holds for  $T \Rightarrow$  Browder's theorem holds for T and the converse is not true.

*Remark* 2.3. The opposite implications of (iii) and (iv) in Theorem 2.2 in general do not hold. In [2] it is given an example of unilateral weighted left shift on  $\ell^q(\mathbb{N})$  which shows that these implications cannot be reversed.

By Lemma 2.2 we also have

*T* or *T*<sup>\*</sup> has SVEP  $\Rightarrow$  *a*-Browder's theorem holds for both *T*, *T*<sup>\*</sup>.

Following Coburn [13], we say that Weyl's theorem holds for  $T \in L(X)$  if

 $\Delta(T) := \sigma(T) \setminus \sigma_w(T) = E_0(T).$ 

An approximate point version of Weyl's theorem is *a*-Weyl's theorem: according Rakovević [30] an operator  $T \in \mathbf{L}(\mathbb{X})$  is said to satisfy *a*-Weyl's theorem if

$$\Delta_a(T) := \sigma_a(T) \setminus \sigma_{uw}(T) = E_0^a(T).$$

Since  $T - \lambda I \in W_+(\mathbb{X})$  implies that  $(T - \lambda I)(\mathbb{X})$  is closed, we can write

$$\Delta_a(T) = \{\lambda \in \mathbb{C} : T - \lambda I \in W_+(\mathbb{X}), 0 < \alpha(T - \lambda I)\}.$$

It should be noted that the set  $\Delta_a(T)$  may be empty. This is, for instance, the case of a right shift on  $\ell^2(\mathbb{N})$ , see [3]. Furthermore,

*a*-Weyl's theorem holds for  $T \Rightarrow$  Weyl's theorem holds for T,

while the converse in general does not hold.

**Definition 2.4.** A bounded operator  $T \in L(X)$  is said to satisfy property (*w*) if

$$\Delta_a(T) = \sigma_a(T) \setminus \sigma_{uw}(T) = E_0(T).$$

**Definition 2.5.** A bounded operator  $T \in L(X)$  is said to satisfy property (*aw*) if

$$\Delta(T) = \sigma(T) \setminus \sigma_w(T) = E_0^a(T).$$

Following [11], we say that  $T \in L(\mathbb{X})$  satisfies property (*ab*) if  $\Delta(T) = \pi_0^a(T)$ . It is shown [11] that an operator  $T \in L(\mathbb{X})$  satisfies property (*aw*) satisfying property (*ab*) but the converse is not true in general.

**Lemma 2.6.** Let  $T \in L(X)$ . Then

- (*i*) *T* satisfies property (*ab*) if and only if *T* satisfies Browder's theorem and  $\pi_0(T) = \pi_0^a(T)$ , see [11, Corollary 2.6].
- (ii) T satisfies property (aw) if and only if T satisfies property (ab) and  $E_0^a(T) = \pi_0^a(T)$ , see [11, Theorem 3.6].

**Theorem 2.7.** Let  $T \in L(X)$ . If T satisfies property (*aw*) then T satisfies Weyl's theorem.

*Proof.* If *T* satisfies property (*aw*) then *T* satisfies Browder's theorem and  $\pi_0(T) = E_0^a(T)$ . Hence  $\Delta(T) = \pi_0(T) = E_0^a(T)$ . As  $\pi_0(T) \subseteq \pi_0^a(T) \subseteq E_0^a(T)$  is always verified. Therefore,  $\Delta(T) = E_0(T)$ .

The converse of of Theorem 2.7 is not true in general as shown by the following example.

**Example 2.8.** Let  $R \in \ell^2(\mathbb{N})$  be the unilateral right shift and

$$U(x_1, x_2, \cdots) := (0, x_2, x_3, \cdots) \text{ for all } (x_n) \in \ell^2(\mathbb{N}).$$

If  $T := R \oplus U$  then  $\sigma(T) = \sigma_w(T) = \mathbf{D}(0,1)$ , where  $\mathbf{D}(0,1)$  is the unit disc of  $\mathbb{C}$ . So  $iso\sigma(T) = E_0(T) = \emptyset$ . Moreover,  $\sigma_a(T) = \mathbf{C}(0,1) \cup \{0\}$ , where  $\mathbf{C}(0,1)$  is the unit circle of  $\mathbb{C}$ ,  $\sigma_{uw}(T) = \mathbf{D}(0,1)$ , so T does not satisfy property (aw), since  $\Delta(T) = \emptyset \neq E_0^a(T) = \{0\}$ . On the other hand, T satisfies *a*-Weyl's theorem, since  $\Delta_a(T) = E_0^a(T)$  and hence satisfies Weyl's theorem.

**Proposition 2.9.** Let  $T \in L(X)$ . Then property (*aw*) holds for T if and only if T satisfies Weyl's theorem and  $\pi_0(T) = E_0^a(T)$ .

*Proof.* If *T* satisfies property (aw) then it follows from Theorem 2.7 that *T* satisfies Weyl's theorem and from Lemma 2.6 that  $\pi_0(T) = \pi_0^a(T) = E_0^a(T)$ . For the converse, assume that *T* satisfies Weyl's theorem and  $\pi_0(T) = E_0^a(T)$ . Then *T* satisfies Browder's theorem and  $\pi_0(T) = E_0(T)$ . Hence  $\Delta(T) = E_0^a(T)$ . That is, *T* satisfies property (aw).

Define

$$\Lambda(T) := \left\{ \lambda \in \Delta_a(T) : ind(T - \lambda I) < 0 \right\}.$$
(2.1)

Clearly

$$\Delta_a(T) = \Delta(T) \cup \Lambda(T) \text{ and } \Lambda(T) \cap \Delta(T) = \emptyset.$$
 (2.2)

**Proposition 2.10.** Suppose that  $T \in L(X)$  is decomposable. Then T satisfies property *(aw)* if and only if T satisfies Weyl's theorem.

*Proof.* If *T* is decomposable then both *T* and *T*<sup>\*</sup> have SVEP. This, by Theorem 1.3 entails that  $T - \lambda I$  has index zero for every  $\lambda \in \Delta_a(T) = \Delta(T)$ , and hence  $\Lambda(T) = \emptyset$ . Property (*aw*) implies Weyl's theorem for every operator  $T \in L(\mathbb{X})$ . For the converse, if *T* satisfies Weyl's theorem then  $\Delta(T) = E_0(T)$  and since  $T^*$  has SVEP then  $E_0(T) = E_0^a(T)$ , hence the result.

As a consequence of Proposition 2.10, we have that for a bounded operator  $T \in \mathbf{L}(\mathbb{X})$  having totally disconnected spectrum then property (*aw*) and Weyl's theorem are equivalent.

A bounded operator  $T \in L(X)$  is said to have property H(p) if for all  $\lambda \in \mathbb{C}$  there exists a  $p := p(\lambda)$  such that:

$$H_0(T - \lambda I) = \ker(T - \lambda I)^p.$$
(2.3)

Let f(T) be defined by means of the classical functional calculus. In [27] it has been proved that if  $T \in L(\mathbb{X})$  has property H(p) then f(T) and  $f(T^*)$  satisfy Weyl's theorem.

**Proposition 2.11.** *If*  $T \in L(X)$  *is generalized scalar then property* (*aw*) *holds for both* T *and*  $T^*$ *. In particular, property* (*aw*) *holds for every spectral operator of finite type.* 

*Proof.* Every generalized scalar operator *T* is decomposable and hence also the dual  $T^*$  is decomposable, see [23, Theorem 2.5.3]. Moreover, every generalized scalar operator has property H(p) [27, Example 3], so Weyl's theorem holds for both *T* and  $T^*$ . By Proposition 2.10 it then follows that both *T* and  $T^*$  satisfy property (*aw*). The second statement is clear: every spectral operators of finite type is generalized scalar.

The following example show that property (aw) and property (w) are independent.

**Example 2.12.** Let *T* be the hyponormal operator *T* given by the direct sum of the 1-dimensional zero operator and the unilateral right shift *R* on  $\ell^2(\mathbb{N})$ . Then  $\sigma(T) = \mathbf{D}(0,1)$ ,  $\mathbf{D}(0,1)$  the closed unit disc in  $\mathbb{C}$ . Moreover, 0 is an isolated point of  $\sigma_a(T) = \mathbf{C}(0,1) \cup \{0\}$ ,  $\mathbf{C}(0,1)$  the unit circle of  $\mathbb{C}$ , and  $0 \in E_0^a(T)$  while  $0 \notin \pi_0^a(T) = \emptyset$ , since  $a(T) = a(R) = \infty$ . Hence, by Theorem 2.4 of [4], *T* does not satisfy *a*-Weyl's theorem. Now  $\pi_0(T) = E_0(T) = \emptyset$ , since  $\sigma(T)$  has no isolated points,  $\pi^a(T) = E_0(T)$ . Since every hyponormal operator has SVEP we also know that *a*-Browder's theorem holds for *T*, so from Theorem 2.7 of [4] we see that property (*w*) holds for *T*. On the other hand,  $\sigma_w(T) = \mathbf{D}(0,1)$ , then  $0 \in E_0^a(T) \neq \Delta(T) = \emptyset$ . Therefore, *T* does not satisfy property (*aw*). Note that  $\Delta(T) = E_0(T) = \emptyset$ . That is, *T* satisfies Weyl's theorem.

The next result shows that property (w) and property (aw) are equivalent in presence of SVEP.

**Theorem 2.13.** Let  $T \in L(X)$ . Then the following equivalences holds:

- *(i) If T*<sup>\*</sup> *has SVEP, the property (aw) holds for T if and only if the property (w) holds for T*.
- *(ii) If T has SVEP, the property* (*aw*) *holds for T*<sup>\*</sup> *if and only if the property* (*w*) *holds for T*<sup>\*</sup>.

*Proof.* (i) The SVEP of  $T^*$  implies that  $\sigma_a(T) = \sigma(T)$ , see [1, Corollary 2.5],  $\sigma_{uw}(T) = \sigma_w(T) = \sigma_b(T)$ , see [8, Theorem 2.6] so  $E_0^a(T) = E_0(T)$ , and hence  $\Delta_a(T) = \Delta(T)$ . Therefore, the property (*aw*) holds for *T* if and only if the property (*w*) holds for *T*.

(ii) If *T* has SVEP then  $\sigma(T^*) = \sigma(T) = \sigma_s(T) = \sigma_a(T^*)$ , see [1, Corollary 2.5],  $\sigma_{uw}(T^*) = \sigma_w(T) = \sigma_b(T)$ , see [8, Theorem 2.6] and hence  $E_0(T^*) = E_0^a(T^*)$ . Therefore,  $\Delta(T^*) = \Delta_a(T^*)$ . Therefore, the property (*aw*) holds for *T*<sup>\*</sup> if and only if the property (*w*) holds for *T*<sup>\*</sup>.

Example 2.8 shows that *a*-Weyl's theorem does not imply property (aw). But in presence of SVEP *a*-Weyl's theorem, Weyl's theorem and property (aw) are equivalent as shown by the following result.

#### **Theorem 2.14.** Let $T \in L(X)$ . Then the following equivalences holds:

- *(i) If T*<sup>\*</sup> *has SVEP, the property (aw) holds for T if and only if Weyl's theorem holds for T , and this is the case if and only if a-Weyl's theorem holds for T*.
- *(ii) If T has SVEP, the property* (*aw*) *holds for T*<sup>\*</sup> *if and only if Weyl's theorem holds for T*<sup>\*</sup>*, and this is the case if and only if a-Weyl's theorem holds for T*<sup>\*</sup>*.*

*Proof.* (i) The SVEP of  $T^*$  implies that  $\sigma_a(T) = \sigma(T)$ , see [1, Corollary 2.5],  $\sigma_{uw}(T) = \sigma_w(T) = \sigma_b(T)$ , see [8, Theorem 2.6] so  $E_0^a(T) = E_0(T)$ , and hence  $\Delta_a(T) = \Delta(T)$ . Furthermore, by [1, Corollary 3.53] we also have  $\sigma_{ub}(T) = \sigma_w(T)$ from which it follows that  $E_0^a(T) = \sigma_a(T) \setminus \sigma_{ub}(T) = \pi_0^a(T)$ . Since the SVEP for  $T^*$  implies *a*-Browder's theorem for *T* we then conclude, by part (ii) of Theorem 2.4 of [4], that *a*-Weyl's theorem hold s for *T*. Hence the equivalence follows. (ii) If *T* has SVEP then  $\sigma(T^*) = \sigma(T) = \sigma_s(T) = \sigma_a(T^*)$ , see [1, Corollary 2.5],  $\sigma_{uw}(T^*) = \sigma_w(T) = \sigma_b(T)$ , see [8, Theorem 2.6] and hence  $E_0(T^*) = E_0^a(T^*)$ .

Therefore,  $\Delta(T^*) = \Delta_a(T^*)$ . Moreover, by [1, Corollary 3.53] we also have

$$\sigma_w(T^*) = \sigma_w(T) = \sigma_{lb}(T) = \sigma_{ub}(T^*),$$

from which it easily follows that  $\pi_0^a(T^*) = E_0^a(T^*)$ . The SVEP for *T* implies that  $T^*$  satisfies *a*-Browder's theorem, so by part (ii) of Theorem 2.4 of [4], *a*-Weyl's theorem for  $T^*$ . Hence the equivalence follows.

**Corollary 2.15.** *If T is generalized scalar then property* (*aw*) *holds for both* f(T) *and*  $f(T^*)$  *for every*  $f \in Hol(\sigma(T))$ .

*Proof.* Since *T* has property H(p) then Weyl's theorem holds for f(T) and  $f(T^*)$ , see [27, Corollary 3.6]. Moreover, *T* and *T*<sup>\*</sup> being decomposable, both *T* and *T*<sup>\*</sup> have SVEP, hence also f(T) and  $f(T^*) = f(T)^*$  have SVEP by Theorem 2.40 of [1]. By Theorem 2.14 it then follows that property (aw) holds for both f(T) and  $f(T^*)$ .

**Remark** 2.16. Corollary 2.15 applies to a large number of the classes of operators defined in Hilbert spaces. In [27] Oudghiri observed that every sub-scalar operator T (i.e., T is similar to a restriction of a generalized scalar operator to one of its closed invariant subspaces) has property H(p). Consequently, property H(p) is satisfied by p-hyponormal operators and log-hyponormal operators [24, Corollary 2], w-hyponormal operators [25], M-hyponormal operators [23, Proposition 2.4.9], and totally paranormal operators [7]. Also totally \*-paranormal operators have property H(1) [20].

An operator  $T \in \mathbf{L}(\mathbb{X})$  is said to be polaroid if every isolated point of  $\sigma(T)$  is a pole of the resolvent operator  $(T - \lambda I)^{-1}$ , or equivalently  $a(T - \lambda I) = d(T - \lambda I) < \infty$ , see [21, Proposition 50.2]. An operator  $T \in \mathbf{L}(\mathbb{X})$  is said to be *a*-polaroid if every isolated point of  $\sigma_a(T)$  is a pole of the resolvent operator  $(T - \lambda I)^{-1}$ , or equivalently  $a(T - \lambda I) = d(T - \lambda I) < \infty$ , see [21, Proposition 50.2]. Clearly,

$$T a$$
-polaroid  $\Rightarrow T$  polaroid. (2.4)

and the opposite implication is not generally true.

**Theorem 2.17.** Suppose that T is a-polaroid. Then property (w) holds for T if and only if T satisfies property (aw).

*Proof.* Note first that if *T* is *a*-polaroid then  $\pi_0(T) = E_0^a(T)$ . In fact, if  $\lambda \in E_0^a(T)$  then  $\lambda$  is isolated in  $iso\sigma_a(T)$  and hence  $a(T - \lambda I) = d(T - \lambda I) < \infty$ . Moreover,  $\alpha(T - \lambda I) < \infty$ , so by Theorem 3.4 of [1] it follows that  $\beta(T - \lambda I)$  is also finite, thus  $\lambda \in \pi_0(T)$ . This shows that  $E_0^a(T) \subseteq \pi_0(T)$ , and consequently by Lemma 2.1 we have  $\pi_0(T) = E_0^a(T)$ . Now, if *T* satisfies property (*w*) theorem then  $\Delta_a(T) = E_0(T)$ , and since Weyl's theorem holds for *T* we also have by Theorem 2.4 of [4] that  $\pi_0(T) = E_0(T)$ . Hence  $\Delta(T) = E_0^a(T)$ . Therefore, property (*aw*) holds for *T*. Conversely, if *T* satisfies property (*aw*) then  $\Delta(T) = E_0^a(T)$ . Since by Theorem 2.7 *T* satisfies Weyl's theorem we also have, by Theorem 2.4 of [4],  $E_0(T) = \pi_0(T) = E_0^a(T)$ . If  $\lambda \in \Delta_a(T)$ , as *T* satisfies property (*aw*) then  $\lambda \in E_0(T)$ . Since  $\Delta(T) \subseteq \Delta_a(T)$  it then follows if  $\lambda \in E_0(T) = \Delta(T)$  then  $\lambda \in \Delta_a(T)$ . So  $\Delta_a(T) = E_0(T)$ . Therefore, *T* satisfies property (*w*).

Recall that a bounded operator  $T \in L(\mathbb{X})$  is said to be isoloid (respectively, *a*-isoloid) if every isolated point of  $\sigma(T)$  (respectively, every isolated point of  $\sigma_a(T)$ ) is an eigenvalue of T. Every *a*-isoloid operator is isoloid. This is easily seen: if T is *a*-isoloid and  $\lambda \in iso\sigma(T)$  then  $\lambda \in \sigma_a(T)$  or  $\lambda \notin \sigma_a(T)$ . In the first case  $T - \lambda I$  is bounded below, in particular upper semi-Fredholm. The SVEP of both T and  $T^*$  at  $\lambda$  then implies that  $a(T - \lambda I) = d(T - \lambda I) < \infty$ , so  $\lambda$  is a pole. Obviously, also in the second case  $\lambda$  is a pole, since by assumption T is *a*-isoloid.

**Theorem 2.18.** Suppose that T is a-polaroid and that  $T^*$  has SVEP. Then f(T) satisfies property (*aw*) for all  $f \in Hol(\sigma(T))$ .

*Proof.* If *T* is *a*-polaroid then *T* is *a*-isoloid (i.e., every isolated point of  $\sigma_a(T)$  is an eigenvalue of *T*). The SVEP for *T*<sup>\*</sup> ensures that the spectral mapping theorem holds for  $\sigma_{uw}(T)$ , i.e., if  $f \in Hol(\sigma(T))$  then  $f(\sigma_{uw}(T)) = \sigma_{uw}(f(T))$ , [1, Theorem 3.66]. By Theorem 5.4 of [15] then f(T) satisfies *a*-Weyl's theorem, and since  $f(T^*) = f(T)^*$  has SVEP from Theorem 2.14 we conclude that property (*aw*) holds for f(T).

**Theorem 2.19.** Suppose that  $T \in L(X)$ . Then the following statements hold:

- (*i*) If T is polaroid and T has SVEP then property (aw) holds for  $T^*$ .
- (ii) If T is polaroid and  $T^*$  has SVEP then property (aw) holds for T.

*Proof.* (i) By Theorem 2.14 it suffices to show that Weyl's theorem holds for  $T^*$ . The SVEP ensures that Browder's theorem holds for  $T^*$ . We prove that  $\pi_0(T^*) = E_0(T^*)$ . Let  $\lambda \in E_0(T^*)$  Then  $\lambda \in iso\sigma(T^*) = iso\sigma(T)$  and the polaroid assumption implies that  $\lambda$  is a pole of the resolvent, or equivalently  $a(T - \lambda I) = d(T - \lambda I) < \infty$ . If *P* denotes the spectral projection associated with  $\{\lambda\}$  we have  $(T - \lambda I)^p(\mathbb{X}) = \ker(P)$  [1, Theorem 3.74], so  $(T - \lambda I)^p(\mathbb{X})$  is closed, and hence also  $(T^* - \lambda I)^p(\mathbb{X}^*)$  is closed. Since  $\lambda \in E_0(T^*)$  then  $\alpha(T^* - \lambda I^*) < \infty$  and this implies  $(T^* - \lambda I)^p(\mathbb{X}^*) < \infty$ , from which we conclude that  $(T^* - \lambda I^*)^p \in \Phi_+(\mathbb{X}^*)$ , hence  $T^* - \lambda I^* \in \Phi_+(\mathbb{X}^*)$ , and consequently  $T - \lambda I \in \Phi_-(\mathbb{X})$ . Therefore  $\beta(T - \lambda I) < \infty$  and since  $a(T - \lambda I) = d(T - \lambda I) < \infty$  by Theorem 3.4 of [1]

we then conclude that  $\alpha(T - \lambda I) < \infty$ . Hence  $\lambda \in \pi_0(T) = \pi_0(T^*)$ . This proves that  $E_0(T^*) \subseteq \pi_0(T^*)$ , and since by Lemma 2.1 the opposite inclusion is satisfied by every operator we may conclude that  $E_0(T^*) = \pi_0(T^*)$ . By Theorem 2.4 of [4] then  $T^*$  satisfies Weyl's theorem.

(ii) The SVEP for  $T^*$  implies that Browder's theorem holds for T. Again by Theorem 2.14 it suffices to show that T satisfies Weyl's theorem, and hence by Lemma 2.1 and Theorem 2.4 of [4] we need only to prove that  $E_0(T) = \pi_0(T)$ . Let  $\lambda \in E_0(T)$ . Then  $\lambda \in iso\sigma(T)$  and since T is polaroid then  $a(T - \lambda I) = d(T - \lambda I) < \infty$ . Since  $\alpha(T - \lambda I) < \infty$  we then have  $\beta(T - \lambda I) < \infty$  and hence  $\lambda \in \pi_0(T)$ . Hence  $E_0(T) \subseteq \pi_0(T)$  and by Lemma 2.14 we then conclude that  $E_0(T) = \pi_0(T)$ .

**Remark** 2.20. Part (i) of Theorem 2.19 shows that the dual  $T^*$  of a multiplier  $T \in M(A)$  of a commutative semi-simple Banach algebra A has property (aw), since every multiplier  $T \in M(A)$  of a commutative semi-simple Banach algebra satisfies Weyl's theorem and is polaroid, see [1, Theorem 4.36].

**Theorem 2.21.** Let  $T \in L(\mathbb{X})$  be such that there exists  $\lambda_0 \in \mathbb{C}$  such that  $K(T - \lambda_0 I) = \{0\}$  and  $\ker(T - \lambda_0 I) = \{0\}$ . Then property (aw) holds for f(T) for all  $f \in Hol(\sigma(T))$ .

*Proof.* We know from [9, Lemma 2.4] that  $\sigma_p(T) = \emptyset$ , so *T* has SVEP. We show that also  $\sigma_p(f(T)) = \emptyset$ . Let  $\mu \in \sigma(f(T))$  and write  $f(\lambda) - \mu = p(\lambda)g(\lambda)$ , where *g* is analytic on an open neighborhood *U* containing  $\sigma(T)$  and without zeros in  $\sigma(T)$ , *p* a polynomial of the form

$$p(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_n)^{m_n}$$
,

with distinct roots  $\lambda_1, \lambda_2, \cdots, \lambda_n$  lying in  $\sigma(T)$ . Then

$$f(T) - \mu I = (T - \lambda_1 I)^{m_1} (T - \lambda_2 I)^{m_2} \cdots (T - \lambda_n I)^{m_n} g(T)$$

Since g(T) is invertible,  $\sigma_p(T) = \emptyset$  implies that ker $(f(T) - \mu I) = \{0\}$  for all  $\mu \in \mathbb{C}$ , so  $\sigma_p(f(T)) = \emptyset$ . Since *T* has SVEP then f(T) has SVEP, see Theorem 2.40 of [1], so that *a*-Browder's theorem holds for f(T) and hence Browder's theorem holds for f(T). To prove that property (aw) holds for f(T), by Lemma 2.6 it then suffices to prove that

$$E_0^a(f(T)) = \pi_0(f(T)).$$

Obviously, the condition  $\sigma_p(f(T)) = \emptyset$  entails that  $E_0(f(T)) = E_0^a(f(T)) = \emptyset$ . On the other hand, the inclusion  $\pi_0(f(T)) \subseteq E_0^a(f(T))$  holds for every operator  $T \in \mathbf{L}(\mathbb{X})$ , so also  $\pi_0(f(T))$  is empty. By Lemma 2.6 it then follows that f(T) satisfies property (*aw*).

# **3** Property (*aw*) under perturbations

In this section we shall give some conditions for which property (aw) is preserved under commuting finite-rank or quasinilpotent perturbations.

As property (w), property (aw) is not preserved under finite rank perturbations (also commuting finite rank perturbations). **Example 3.1.** Let  $T := Q \oplus I$  defined on  $\mathbb{X} \oplus \mathbb{X}$ , where Q is an injective quasinilpotent operator. It is easily seen that T satisfies a-Weyl's theorem. Define  $K := 0 \oplus (-P)$ , where P is a finite rank projection. Then TK = KT, and since  $T^*$  has a finite spectrum then  $T^*$  has SVEP, hence  $T^* + K^*$  has SVEP, by Lemma 2.8 of [6]. Therefore  $\sigma(T + K) = \sigma_a(T + K)$ , by Corollary 2.45 of [1]. On the other hand it is easy to see that  $0 \in \sigma(T + K) \cap \sigma_w(T + K)$ , so  $0 \notin \sigma(T + K) \setminus \sigma_w(T + K)$ , while  $0 \in E_0(T + K) = E_0^a(T + K)$ , thus T + K does not verify property (aw).

**Theorem 3.2.** Suppose that  $T \in L(X)$  is polaroid and K is a finite rank operator commuting with T.

- (i) If  $T^*$  has SVEP then f(T) + K satisfies property (aw) for all  $f \in Hol(\sigma(T))$ .
- (ii) If T has SVEP then  $f(T^*) + K^*$  satisfies property (aw) for all  $f \in Hol(\sigma(T))$ .

*Proof.* (i) By [1, Corollary 2.45] we have  $\sigma_a(T) = \sigma(T)$ , so *T* is *a*-polaroid and hence *a*-isoloid. By Theorem 2.18 it then follows that f(T) has property (aw) for all  $f \in Hol(\sigma(T))$ . Now, by [1, Theorem 2.40]  $f(T^*) = f(T)^*$  has SVEP, so that, by Theorem 2.14 *a*-Weyl's theorem holds for f(T). Since f(T) and *K* commutes, by Theorem 3.2 of [6] we then obtain that f(T) + K satisfies *a*-Weyl's theorem. By Lemma 2.8 of [5]  $f(T)^* + K^* = (f(T) + K)^*$  has SVEP. This implies that property (aw) and *a*-Weyl's theorem for f(T) + K are equivalent, again by Theorem 2.14, so the proof is complete.

(ii) The argument is analogous to that of part (i). Just observe that  $\sigma_a(T^*) = \sigma(T^*)$  by [1, Corollary 2.45], so that  $T^*$  is *a*-polaroid, hence *a*-isoloid. Moreover, by Theorem 2.18 it then follows that  $f(T^*)$  has property (aw) for all  $f \in Hol(\sigma(T))$ . By Theorem 2.40 of [1] f(T) has SVEP, so that, so, by Theorem 2.14 *a*-Weyl's theorem holds for  $f(T^*)$ . Since  $f(T^*)$  and  $K^*$  commutes, by Theorem 3.2 of [6] we then obtain that  $f(T^*) + K^*$  satisfies *a*-Weyl's theorem. Again by Lemma 2.8 of [5] f(T) + K has SVEP, so that (aw) and *a*-Weyl's theorem for  $f(T^*) + K^*$  are equivalent, by Theorem 2.14.

The basic role of SVEP arises in local spectral theory since for all decomposable operators both T and  $T^*$  have SVEP. Every generalized scalar operator on a Banach space is decomposable (see [23] for relevant definitions and results). In particular, every spectral operators of finite type is decomposable.

**Corollary 3.3.** Suppose that  $T \in L(\mathbb{X})$  is generalized scalar and K is a finite rank operator commuting with T. Then property (aw) holds for both f(T) + K and  $f(T^*) + K^*$ . In particular, this is true for every spectral operator of finite type.

*Proof.* Both *T* and *T*<sup>\*</sup> have SVEP. Moreover, every generalized scalar operator *T* has property H(p) [27, Example 3], so *T* is polaroid. The second statement is clear: every spectral operators of finite type is generalized scalar.

The next results deal with quasi-nilpotent perturbations. We first recall two well-known results: if Q a quasi-nilpotent operator commuting with  $T \in L(X)$ , then

$$\sigma_a(T) = \sigma_a(T+Q)$$
 and  $\sigma_{uw}(T) = \sigma_{uw}(T+Q).$  (3.1)

Since  $\sigma(T + Q) = \sigma(T)$  and  $\sigma_b(T + Q) = \sigma_b(T)$  (for the last equality see [32]), we then have  $\pi_0(T + Q) = \pi_0(T)$ .

**Lemma 3.4.** Let  $T \in L(X)$ . If  $N \in L(X)$  is a nilpotent operator commuting with T, then  $E_0^a(T+N) = E_0^a(T)$ .

*Proof.* Let  $\lambda \in E_0^a(T)$  be arbitrary. There is no loss of generality if we assume that  $\lambda = 0$ . As N is nilpotent we know that  $\sigma_a(T + N) = \sigma_a(T)$ , thus  $0 \in iso\sigma_a(T + N)$ . Let  $m \in \mathbb{N}$  be such that  $N^m = 0$ . If  $x \in \ker(T)$ , then  $(T + N)^m(x) = \sum_{k=0}^m C_k^m T^k N^{m-k}(x) = 0$ . So  $\ker(T) \subset \ker(T + N)^m$ . As  $0 < \alpha(T) < \infty$ , it follows that  $0 < \alpha((T + N)^m) < \infty$  and this implies that  $0 < \alpha((T + N) < \infty$ . Hence  $0 \in E_0^a(T + N)$ . So  $E_0^a(T) \subseteq E_0^a(T + N)$ . By symmetry we have  $E_0^a(T) = E_0^a(T + N)$ .

It is easily seen that property (aw) is transmitted under commuting nilpotent perturbations N.

**Theorem 3.5.** If  $T \in L(X)$  satisfies property  $(aw), N \in L(X)$  is a nilpotent operator commuting with T then T + N satisfies property (aw).

*Proof.* If *T* satisfies property (*aw*) then *T* satisfies Browder's theorem, so by Lemma 2.6,  $E_0^a(T) = \pi_0(T)$ . Hence

$$E_0^a(T+N) = E_0^a(T) = \pi_0(T+N) = \pi_0(T).$$

Since  $\sigma(T + N) = \sigma(T)$  and  $\sigma_w(T + N) = \sigma_w(T)$ , we have

$$\sigma(T+N) \setminus \sigma_w(T+N) = \sigma(T) \setminus \sigma_w(T) = E_0^a(T) = E_0^a(T+N).$$

That is, T + N satisfies property (*aw*).

Generally, property (*aw*) is not transmitted from *T* to a quasi-nilpotent perturbation *T* + *Q*. In fact, if  $Q \in \ell^2(\mathbb{N})$  is defined by

$$Q(x_1, x_2, \cdots) = \left(\frac{x_2}{2}, \frac{x_3}{3}, \cdots\right) \text{ for all } (x_n) \in \ell^2(\mathbb{N}).$$

Then *Q* is quasi-nilpotent,  $\sigma(Q) = \sigma_w(Q) = \{0\}$  and

$$\{0\} = E_0^a(Q) \neq \sigma(Q) \setminus \sigma_w(Q)$$

Take T = 0. Clearly, *T* satisfies property (*aw*) but T + Q = Q fails this property. Note that *Q* is not injective.

**Theorem 3.6.** Suppose that for  $T \in L(\mathbb{X})$  there exists an injective quasi-nilpotent Q operator commuting with T. Then both T and T + Q satisfy property (*aw*), *a*-Weyl's and Weyl's theorem.

*Proof.* We show first *a*-Weyl's theorem holds for *T*. It is evident, by Lemma 3.9 of [9], that  $E_0^a(T)$  is empty. Suppose that  $\sigma_a(T) \setminus \sigma_{uw}(T)$  is not empty and let  $\lambda \in \Delta_a(T)$ . Since  $T - \lambda I \in W_+(\mathbb{X})$  then  $\alpha(T - \lambda I) < \infty$  and  $T - \lambda I$  has closed range. Since  $T - \lambda I$  commutes with *Q* it then follows, by Lemma 3.9 of [9], that  $T - \lambda I$  is injective, so  $\lambda \notin \sigma_a(T)$ , a contradiction. Therefore, also  $\sigma_a(T) \setminus \sigma_{uw}(T)$  is empty. Therefore, *a*-Weyl's theorem holds for *T*. To show that property (*aw*) holds for *T*. Observe that  $\Delta(T) \subseteq \Delta_a(T) = E_0^a(T) = \emptyset$ . Hence  $\Delta(T) = E_0^a(T) = E_0^a(T) = 0$ .

 $\emptyset$ . That is, property (*aw*) holds for *T*.

Analogously, *a*-Weyl's theorem also holds for T + Q, since the operator T + Q commutes with Q. Weyl's theorem is obvious: property (aw), as well as *a*-Weyl's theorem, entails Weyl's theorem. Property (aw), as well as *a*-Weyl's theorem and Weyl's theorem, for T + Q is clear, since also T + Q commutes with Q.

**Theorem 3.7.** Suppose that  $iso\sigma_a(T) = \emptyset$ . If T satisfies property (*aw*) and K is a finite rank operator commuting with T, then T + K satisfies property (*aw*).

*Proof.* Since *T* satisfies Browder's theorem then T + K satisfies Browder's theorem, see [10, Theorem 3.4]. From Lemma 2.6 of [6], we have  $iso\sigma_a(T + K) = \emptyset$ . Hence  $E_0^a(T + K) = \pi_0(T + K)$ . Therefore, it follows from Lemma 2.6 that property (aw) holds for T + K.

From [12], we recall that an operator  $R \in L(\mathbb{X})$  is said to be Riesz if  $R - \lambda I$  is Fredholm for every non-zero complex number  $\lambda$ , that is, Y(R) is quasi-nilpotent in  $\mathcal{C}(\mathbb{X})$  where  $\mathcal{C}(\mathbb{X}) := L(\mathbb{X})/K(\mathbb{X})$  is the Calkin algebra and Y is the canonical mapping of  $L(\mathbb{X})$  into  $\mathcal{C}(\mathbb{X})$ . Note that for such operator,  $\pi_0(R) = \sigma(R) \setminus \{0\}$ , and its restriction to one of its closed subspace is also a Riesz operator, see [12]. The proof of the following result may be found in [32].

**Lemma 3.8.** Let  $T \in L(X)$  and R be a Riesz operator commuting with T. Then

- (i)  $T \in B_+(\mathbb{X}) \Leftrightarrow T + R \in B_+(\mathbb{X})$ .
- (ii)  $T \in B_{-}(\mathbb{X}) \Leftrightarrow T + R \in B_{-}(\mathbb{X}).$
- (iii)  $T \in B(\mathbb{X}) \Leftrightarrow T + R \in B(\mathbb{X})$ .

**Lemma 3.9.** [28, Lemma 2.2] Let  $T \in L(X)$  and R be a Riesz operator such that TR = RT.

- (i) If T is Fredholm then so is T + R and ind(T + R) = ind(T).
- (ii) If T is Weyl then so is T + R. In particular  $\sigma_w(T + R) = \sigma_w(T)$ .
- (iii) If T satisfies Browder's theorem then so does T + R.

For a bounded operator *T* on X, we use  $E_{0f}^{a}(T)$  to denote the set of isolated points  $\lambda$  of  $\sigma_{a}(T)$  such that ker $(T - \lambda I)$  is finite-dimensional. Evidently,

$$\pi_0^a(T) \subseteq E_0^a(T) \subseteq E_{0f}^a(T).$$

**Lemma 3.10.** Let T be a bounded operator on X. If R is a Riesz operator that commutes with T, then

$$E_0^a(T+R) \cap \sigma_a(T) \subseteq iso\sigma_a(T).$$

Proof. Clearly,

$$E_0^a(T+R) \cap \sigma_a(T) \subseteq E_{0f}^a(T+R) \cap \sigma_a(T).$$

and by Proposition 2.4 of [29] the last set contained in  $iso\sigma_a(T)$ .

For a bounded operator *T* on  $\mathbb{X}$ , we denote by  $E_{0f}(T)$  the set of isolated points  $\lambda$  of  $\sigma(T)$  such that ker $(T - \lambda I)$  is finite-dimensional. Evidently, $E_0(T) \subseteq E_{0f}(T)$ .

**Lemma 3.11.** Let T be a bounded operator on X. If R is a Riesz operator that commutes with T, then

$$E_0(T+R) \cap \sigma(T) \subseteq iso\sigma(T).$$

Proof. Clearly,

$$\mathsf{E}_0(T+R) \cap \sigma(T) \subseteq \mathsf{E}_{0f}(T+R) \cap \sigma(T).$$

and by Lemma 2.3 of [28] the last set contained in  $iso\sigma(T)$ .

Recall that  $T \in \mathbf{L}(\mathbb{X})$  is called finite *a*-isoloid (resp., finite isoloid) operator if  $iso\sigma_a(T) \subseteq \sigma_p(T)$  (resp.,  $iso\sigma(T) \subseteq \sigma_p(T)$ ). Clearly, finite *a*-isoloid implies *a*-isoloid and finite isoloid, but the converse is not true in general.

**Lemma 3.12.** Suppose that  $T \in L(\mathbb{X})$  be finite-isoloid satisfies property (*aw*) and *R* is a Riesz operator commuting with *T*. Then  $\pi_0^a(T+R) \subseteq E_0(T+R)$ .

*Proof.* Let  $\lambda \in \pi_0^a(T + R)$  be arbitrary given. Then  $\lambda \in iso\sigma_a(T + R)$  and  $T + R - \lambda I \in B_+(\mathbb{X})$ , so  $\alpha(T + R - \lambda I) < \infty$ . Since  $T + R - \lambda I$  has closed range, the condition  $\lambda \in \sigma_a(T + R)$  entails that  $\alpha(T + R - \lambda I) > 0$ . Therefore, in order to show that  $\lambda \in E_0(T + R)$ , we need only to prove that  $\lambda$  is an isolated point of  $\sigma(T + R)$ .

Now, by assumption *T* satisfies property (*aw*) so, by Lemma 2.6,  $\pi_0^a(T) = E_0(T) = E_0^a(T)$ . Moreover, *T* satisfies Weyl's theorem and hence, by Theorem 2.7 of [28], *T* + *R* satisfies Weyl's theorem. So

$$\pi_0(T+R) = E_0(T+R) = \sigma(T+R) \setminus \sigma_b(T+R).$$

Therefore,  $T + R - \lambda I$  is Browder, so

$$0 < a(T + R - \lambda I) = d(T + R - \lambda I) < \infty$$

and hence  $\lambda$  is a pole of the resolvent of T + R. Consequently,  $\lambda$  an isolated point of  $\sigma(T + R)$ , as desired.

**Theorem 3.13.** Let  $T \in \mathbf{L}(\mathbb{X})$  be an isoloid operator satisfying property (*aw*). If *F* is an operator that commutes with *T* and for which there exists a positive integer *n* such that  $F^n$  is finite rank, then T + F satisfies property (*aw*).

*Proof.* First observe that *F* is a Riesz operator. Since Weyl's theorem holds for T + F, by Theorem 2.4 of [28], then  $E_0(T + F) = \pi_0(T + F)$ . As *T* satisfies property (*aw*) then it follows from Lemma 3.12 that  $\pi_0^a(T + F) \subseteq E_0(T + F)$ . Hence

$$\pi_0^a(T+F) = E_0(T+R) = \Delta(T+F) = \pi_0(T+F) = \pi_0(T) = E_0^a(T) = \Delta(T).$$

To prove property (aw) holds for T + F, it suffices to show that  $E_0(T + F) = E_0^a(T + F)$ . To show this, let  $\lambda \in E_0^a(T + F)$ . If  $T - \lambda I$  is invertible, then  $T + F - \lambda I$  is Weyl, and hence  $\lambda \in E_0(T + R)$ . Suppose that  $\lambda \in \sigma(T)$ . Then it follows from Lemma 3.11 that  $\lambda \in iso\sigma(T)$ . Furthermore, since the operator  $(T + F - \lambda I)^n|_{\ker(T - \lambda I)} = F^n|_{\ker(T - \lambda I)}$  is both of finite-dimensional range and

kernel, we obtain easily that also ker $(T - \lambda I)$  is finite-dimensional, and therefore that  $\lambda \in E_0(T)$ , because *T* is *a*-isoloid. On the other hand, if *T* satisfies property (*aw*), then  $E_0^a(T) \cap \sigma_w(T) = \emptyset$ . Consequently,  $T - \lambda I$  is Weyl and hence so is  $T + F - \lambda I$ , which implies that  $\lambda \in E_0(T + F)$ . The other inclusion is trivial. Thus, property (*aw*) holds for T + F.

**Corollary 3.14.** Let  $T \in L(X)$  be an isoloid operator. If property (*aw*) holds for *T*, then it also holds for T + F for every finite rank operator *F* commuting with *T*.

**Theorem 3.15.** Let T be a finite-isoloid operator on X that satisfies property (aw). If R is a Riesz operator that commutes with T, then T + R satisfies property (aw).

*Proof.* Suppose that *T* satisfies property (*aw*). Then From Theorem 2.7, Theorem 2.7 of [28], and Lemma 3.12, we conclude that

$$\pi_0^a(T+R) = E_0(T+R) = \Delta(T+R) = \pi_0(T+R) = \pi_0(T) = \Delta(T) = E_0^a(T).$$

To prove property (aw) holds for T + R, it suffices to show that  $E_0(T + R) = E_0^a(T + R)$ . Let  $\lambda \in E_0^a(T + R)$ . If  $T - \lambda I$  is invertible, then  $T + R - \lambda I \in W(\mathbb{X})$  and hence  $\lambda \in E_0(T + R)$ . Suppose that  $\lambda \in \sigma(T)$ . It follows by Lemma 3.11 that  $\lambda$  is an isolated point of  $\sigma(T)$ , and because T is finite-isoloid, we see that  $\lambda \in E_0(T)$ . On the other hand, property (aw) holds for T implies that  $\sigma_w(T) \cap E_0^a(T) = \emptyset$ , therefore  $T - \lambda I$  is Weyl and hence so is  $T + R - \lambda I$ . Thus,  $\lambda \in E_0(T + R)$ . The other inclusion is trivial, therefore T + R satisfies property (aw).

**Corollary 3.16.** Let T be an finite-isoloid operator on X that satisfies property (aw). If K is a compact operator commuting with T, then property (aw) holds for T + K.

**Theorem 3.17.** Let T be an operator on X that satisfies property (aw) and such that  $\sigma_p(T) \cap iso\sigma_a(T) \subseteq E_0^a(T)$ . If Q is a quasi-nilpotent operator that commutes with T, then T + Q satisfies property (aw).

*Proof.* Since  $\sigma(T + Q) = \sigma(T)$  and also, by Lemma 2 of [26],  $\sigma_w(T + Q) = \sigma_w(T)$ , it suffices to show that  $E_0^a(T + Q) = E_0^a(T)$ . Let  $\lambda \in E_0^a(T) = \sigma(T) \setminus \sigma_w(T)$ . If  $T - \lambda I$  is invertible, then  $T - \lambda I \in W(X)$  and so  $T + R - \lambda I \in W(X)$ . Hence  $\lambda \in E_0(T + R) \subseteq E_0^a(T + Q)$ . Conversely, suppose  $\lambda \in E_0^a(T + Q)$ . Since Q is a quasi-nilpotent operator that commutes with T, we obtain that the restriction of  $T - \lambda I$  to the finite-dimensional subspace ker $(T + Q - \lambda I)$  is not invertible, and hence ker $(T - \lambda I)$  is non-trivial. Therefore,  $\lambda \in \sigma_p(T) \cap iso\sigma_a(T) \subseteq E_0^a(T)$ , which completes the proof.

### References

- [1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004.
- [2] P. Aiena, Classes of operators satisfying a-Weyls theorem, Studia Math. 169 (2005), 105-122.
- [3] P. Aiena, C. Carpintero, Weyl's theorem, *a*-Weyl's theorem and single-valued extension property, Extracta Math. **20** (2005) 25–41.
- [4] P. Aiena and P. Peña, Variations on Weyls theorem, J. Math. Anal. Appl. 324 (1)(2006), 566-579.
- [5] P. Aiena, M.T. Biondi, Property (*w*) and perturbations, J. Math. Anal. Appl. 336 (2007), 683-692.
- [6] P. Aiena, Property (w) and perturbations II, J. Math. Anal. Appl. **342** (2008) 830-837.
- [7] P. Aiena, F. Villafãne, Weyls theorem for some classes of operators, Integral Equations Operator Theory **53** (2005), 453–466.
- [8] P. Aiena , J. R. Guillen and P. Peña, Property (*w*) for perturbations of polaroid operators, Linear Alg. Appl. **428** (2008), 1791-1802.
- [9] P. Aiena, Maria T. Biondi, F. Villafañe, Property (w) and perturbations III, J. Math. Anal. Appl. **353** (2009), 205-214.
- [10] M. Berkani, J. Koliha, Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (1-2)(2003), 359–376.
- [11] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mathematica Bohemica, **62** (2) (2010), 145–154.
- [12] S.R. Caradus, W.E. Pfaffenberger, Y. Bertram, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974.
- [13] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J 13(1966), 285–288.
- [14] I. Colojoarča, C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- [15] D.S. Djordjević, Operators obeying a-Weyls theorem, Publ. Math. Debrecen 55 (3) (1999), 283-298.
- [16] H. R. Dowson, Spectral theory of linear operator, Academic press, London, 1978.
- [17] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyls theorem, J. Math. Anal. Appl. 340(2008), 366–373.

- [18] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58(1975), 61–69.
- [19] R. Harte, W.Y. Lee, Another note on Weyls theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.
- [20] Y.M. Han, A.-H. Kim, A note on \*-paranormal operators, Integral Equations Operator Theory **49** (2004), 435-444.
- [21] H. Heuser, Functional analysis, Marcel Dekker, New York, 1982.
- [22] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152(1992), 323– 336.
- [23] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford. Clarendon, 2000.
- [24] C. Lin, Y. Ruan, Z. Yan, p-hyponormal operators are subscalar, Proc. Amer. Math. Soc. 131 (9) (2003), 2753-2759.
- [25] C. Lin, Y. Ruan, Z. Yan, w-hyponormal operators are subscalar, Integral Equations Operator Theory **50** (2004), 165-168.
- [26] K.K. Oberai, On the Weyl spectrum II, Illinois J. Math. 21 (1977), 84–90.
- [27] M. Oudghiri, Weyls and Browders theorem for operators satisfying the SVEP, Studia Math. **163** (2004), 85-101.
- [28] M. Oudghiri, Weyls Theorem and perturbations, Integral Equations Operator Theory, 53 (2005), 535-545.
- [29] M. Oudghiri, a-Weyl's theorem and perturbations, Studia Math. **173** (2006), 193–201.
- [30] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. **10**(1986), 915–919.
- [31] V. Rakočević, On a class of operators, Math. Vesnik 37 (1985), 423-426.
- [32] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. **122**(1997), 131–137

Department of Mathematics& Statistics Faculty of Science P.O.Box(7) Mu'tah University Al-Karak-Jordan email:malik\_okasha@yahoo.com