Property (aw) and perturbations

M. H.M. Rashid

Abstract

A bounded linear operator $T \in \mathbf{L}(\mathbb{X})$ acting on a Banach space satisfies property (aw), a variant of Weyl's theorem, if the complement in the spectrum $\sigma(T)$ of the Weyl spectrum $\sigma_{w}(T)$ is the set of all isolated points of the approximate-point spectrum which are eigenvalues of finite multiplicity. In this article we consider the preservation of property (aw) under a finite rank perturbation commuting with T, whenever T is polaroid, or T has analytical core $K\left(T-\lambda_{0} I\right)=\{0\}$ for some $\lambda_{0} \in \mathbb{C}$. The preservation of property (aw) is also studied under commuting nilpotent or under injective quasi-nilpotent perturbations or under Riesz perturbations. The theory is exemplified in the case of some special classes of operators.

1 Introduction

Throughout this paper, \mathbb{X} denotes an infinite-dimensional complex Banach space, $\mathbf{L}(\mathbb{X})$ the algebra of all bounded linear operators on \mathbb{X}. For an operator $T \in \mathbf{L}(\mathbb{X})$ we shall denote by $\alpha(T)$ the dimension of the kernel $\operatorname{ker}(T)$, and by $\beta(T)$ the codimension of the range $T(\mathbb{X})$. Let

$$
\Phi_{+}(\mathbb{X}):=\{T \in \mathbf{L}(\mathbb{X}): \alpha(T)<\infty \quad \text { and } T(\mathbb{X}) \text { is closed }\}
$$

be the class of all upper semi-Fredholm operators, and let

$$
\Phi_{-}(\mathbb{X}):=\{T \in \mathbf{L}(\mathbb{X}): \beta(T)<\infty\}
$$

Received by the editors September 2011.
Communicated by F. Bastin.
2010 Mathematics Subject Classification : 47A13, 47A53.
Key words and phrases : Weyl's theorem, Weyl spectrum, Polaroid operators, Property (w), Property (aw).
be the class of all lower semi-Fredholm operators. The class of all semi-Fredholm operators is defined by $\Phi_{ \pm}(\mathbb{X}):=\Phi_{+}(\mathbb{X}) \cup \Phi_{-}(\mathbb{X})$, while the class of all Fredholm operators is defined by $\Phi(\mathbb{X})):=\Phi_{+}(\mathbb{X}) \cap \Phi_{-}(\mathbb{X})$. If $T \in \Phi_{ \pm}(\mathbb{X})$, the index of T is defined by

$$
\operatorname{ind}(T):=\alpha(T)-\beta(T)
$$

Recall that a bounded operator T is said bounded below if it injective and has closed range. Evidently, if T is bounded below then $T \in \Phi_{+}(\mathbb{X})$ and $\operatorname{ind}(T) \leq 0$. Define

$$
W_{+}(\mathbb{X}):=\left\{T \in \Phi_{+}(\mathbb{X}): \operatorname{ind}(T) \leq 0\right\}
$$

and

$$
W_{-}(\mathbb{X}):=\left\{T \in \Phi_{-}(\mathbb{X}): \operatorname{ind}(T) \geq 0\right\}
$$

The set of Weyl operators is defined by

$$
W(\mathbb{X}):=W_{+}(\mathbb{X}) \cap W_{-}(\mathbb{X})=\{T \in \Phi(\mathbb{X}): \operatorname{ind}(T)=0\}
$$

The classes of operators defined above generate the following spectra. Denote by

$$
\sigma_{a}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not bounded below }\}
$$

the approximate point spectrum, and by

$$
\sigma_{s}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not surjective }\}
$$

the surjectivity spectrum of $T \in \mathbf{L}(\mathbb{X})$. The Weyl spectrum is defined by

$$
\sigma_{w}(T):=\{\lambda \in \mathbb{C}: T-\lambda \notin W(\mathbb{X})\}
$$

the Weyl essential approximate point spectrum is defined by

$$
\sigma_{u w}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda \notin W_{+}(\mathbb{X})\right\}
$$

while the Weyl essential surjectivity spectrum is defined by

$$
\sigma_{l w}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda \notin W_{-}(\mathbb{X})\right\}
$$

Obviously, $\sigma_{w}(T)=\sigma_{u w}(T) \cup \sigma_{l w}(T)$ and from basic Fredholm theory we have

$$
\sigma_{u w}(T)=\sigma_{w s}\left(T^{*}\right) \quad \sigma_{w s}(T)=\sigma_{u w}\left(T^{*}\right)
$$

Note that $\sigma_{u w}(T)$ is the intersection of all approximate point spectra $\sigma_{a}(T+K)$ of compact perturbations K of T, while $\sigma_{l w}(T)$ is the intersection of all surjectivity spectra $\sigma_{s}(T+K)$ of compact perturbations K of T, see, for instance, [1, Theorem 3.65].

Recall that the ascent, $a(T)$, of an operator T is the smallest non-negative integer p such that $\operatorname{ker}\left(T^{p}\right)=\operatorname{ker}\left(T^{p+1}\right)$. If such integer does not exist we put $a(T)=\infty$. Analogously, the descent, $d(T)$, of an operator T is the smallest nonnegative integer q such that $T^{q}(\mathbb{X})=T^{q+1}(\mathbb{X})$, and if such integer does not exist we put $d(T)=\infty$. It is well known that if $a(T)$ and $d(T)$ are both finite then $a(T)=d(T)$ [16, Proposition 1.49]. Moreover, $0<a(T-\lambda I)=d(T-\lambda I)<\infty$
precisely when λ is a pole of the resolvent of T , see Dowson [16, Theorem 1.54].
The class of all upper semi-Browder operators is defined by

$$
B_{+}(\mathbb{X}):=\left\{T \in \Phi_{+}(\mathbb{X}): a(T)<\infty\right\},
$$

while the class of all lower semi-Browder operators is defined by

$$
B_{-}(\mathbb{X}):=\left\{T \in \Phi_{+}(\mathbb{X}): d(T)<\infty\right\} .
$$

The class of all Browder operators is defined by

$$
B(\mathbb{X}):=B_{+}(\mathbb{X}) \cap B_{-}(\mathbb{X})=\{T \in \Phi(\mathbb{X}): a(T), d(T)<\infty\}
$$

We have

$$
B(\mathbb{X}) \subseteq W(\mathbb{X}), \quad B_{+}(\mathbb{X}) \subseteq W_{+}(\mathbb{X}), \quad B_{-}(\mathbb{X}) \subseteq W_{-}(\mathbb{X})
$$

see [1, Theorem 3.4]. The Browder spectrum of $T \in \mathbf{L}(\mathbb{X})$ is defined by

$$
\sigma_{b}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \notin B(\mathbb{X})\}
$$

the upper Browder spectrum is defined by

$$
\sigma_{u b}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin B_{+}(\mathbb{X})\right\},
$$

and analogously the lower Browder spectrum is defined by

$$
\sigma_{l b}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin B_{-}(\mathbb{X})\right\}
$$

Clearly, $\sigma_{b}(T)=\sigma_{u b}(T) \cup \sigma_{l b}(T)$ and $\sigma_{w}(T) \subseteq \sigma_{b}(T)$.
The single valued extension property plays an important role in local spectral theory, see the recent monograph of Laursen and Neumann [23] and Aiena [1]. In this article we shall consider the following local version of this property, which has been studied in recent papers, [4, 22] and previously by Finch [18].

Let $\operatorname{Hol}(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [18] we say that $T \in \mathbf{L}(\mathbb{X})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ, the only analytic function $f: U_{\lambda} \longrightarrow \mathcal{H}$ which satisfies the equation $(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathbf{L}(\mathbb{X})$ has SVEP at every point of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$. Moreover, from the identity Theorem for analytic function it easily follows that $T \in \mathbf{L}(\mathbb{X})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [22, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

The basic role of SVEP arises in local spectral theory since all decomposable operators enjoy this property. Recall $T \in \mathbf{L}(\mathbb{X})$ has the decomposition property (δ) if $\mathbb{X}=\mathcal{X}_{T}(\bar{U})+\mathcal{X}_{T}(\bar{V})$ for every open cover $\{U, V\}$ of \mathbb{C}. Decomposable operators may be defined in several ways for instance as the union of the property (β) and the property (δ), see [23, Theorem 2.5.19] for relevant definitions. Note that the property (β) implies that T has SVEP, while the property (δ) implies SVEP
for T^{*}, see [23, Theorem 2.5.19]. Every generalized scalar operator on a Banach space is decomposable, see [23] for relevant definitions and results. In particular, every spectral operators of finite type is decomposable [14, Theorem 3.6]. Also every operator $T \in \mathbf{L}(\mathbb{X})$ with totally disconnected spectrum is decomposable [23, Proposition 1.4.5].

The quasinilpotent part $H_{0}(T-\lambda I)$ and the analytic core $K(T-\lambda I)$ of $T-\lambda I$ are defined by

$$
H_{0}(T-\lambda I):=\left\{x \in \mathbb{X}: \lim _{n \longrightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

and
$K(T-\lambda I)=\left\{x \in \mathbb{X}:\right.$ there exists a sequence $\left\{x_{n}\right\} \subset \mathbb{X}$ and $\delta>0$
for which $\quad x=x_{0},(T-\lambda I) x_{n+1}=x_{n}$ and $\quad\left\|x_{n}\right\| \leq \delta^{n}\|x\|$ for all $\left.\quad n=1,2, \cdots\right\}$.
We note that $H_{0}(T-\lambda I)$ and $K(T-\lambda I)$ are generally non-closed hyper-invariant subspaces of $T-\lambda I$ such that $(T-\lambda I)^{-p}(0) \subseteq H_{0}(T-\lambda I)$ for all $p=0,1, \cdots$ and $(T-\lambda I) K(T-\lambda I)=K(T-\lambda I)$. Recall that if $\lambda \in \operatorname{iso}(\sigma(T))$, then $H_{0}(T-\lambda I)=\chi_{T}(\{\lambda\})$, where $\chi_{T}(\{\lambda\})$ is the global spectral subspace consisting of all $x \in \mathcal{H}$ for which there exists an analytic function $f: \mathbb{C} \backslash\{\lambda\} \longrightarrow \mathbb{X}$ that satisfies $(T-\mu) f(\mu)=x$ for all $\mu \in \mathbb{C} \backslash\{\lambda\}$, see, Duggal [17].

Theorem 1.1. [3, Theorem 1.3] If $T \in \Phi_{ \pm}(\mathbb{X})$ the following statements are equivalent:
(i) T has SVEP at λ_{0};
(ii) $a\left(T-\lambda_{0} I\right)<\infty$;
(iii) $\sigma_{a}(T)$ does not cluster at λ_{0};
(iv) $H_{0}\left(T-\lambda_{0} I\right)$ is finite dimensional.

By duality we have
Theorem 1.2. If $T \in \Phi_{ \pm}(\mathbb{X})$ the following statements are equivalent:
(i) T^{*} has SVEP at λ_{0};
(ii) $d\left(T-\lambda_{0} I\right)<\infty$;
(iii) $\sigma_{s}(T)$ does not cluster at λ_{0}.

Theorem 1.3. $\left[4\right.$, Theorem 1.3] Suppose that $T-\lambda I \in \Phi_{ \pm}(\mathbb{X})$. If T has SVEP at λ then ind $(T-\lambda I) \leq 0$, while if T^{*} has SVEP at λ then ind $(T-\lambda I) \geq 0$.

2 Property (aw) and SVEP

Let write iso K for the set of all isolated points of $K \subseteq \mathbb{C}$. For a bounded operator $T \in \mathbf{L}(\mathbb{X})$ set

$$
\pi_{0}(T):=\sigma(T) \backslash \sigma_{b}(T)=\{\lambda \in \sigma(T): T-\lambda I \in B(\mathbb{X})\}
$$

Note that every $\lambda \in \pi_{0}(T)$ is a pole of the resolvent and hence an isolated point of $\sigma(T)$, see [21, Proposition 50.2]. Moreover, $\pi_{0}(T)=\pi_{0}\left(T^{*}\right)$. Define

$$
E_{0}(T):=\{\lambda \in \operatorname{iso\sigma }(T): 0<\alpha(T-\lambda I)<\infty\} .
$$

Obviously,

$$
\pi_{0}(T) \subseteq E_{0}(T) \quad \text { for every } T \in \mathbf{L}(\mathbb{X})
$$

For a bounded operator $T \in \mathbf{L}(\mathbb{X})$ let us define

$$
E_{0}^{a}(T):=\left\{\lambda \in i s o \sigma_{a}(T): 0<\alpha(T-\lambda I)<\infty\right\}
$$

and

$$
\pi_{0}^{a}(T):=\sigma_{a}(T) \backslash \sigma_{u b}(T)=\left\{\lambda \in \sigma_{a}(T): T-\lambda I \in B_{+}(\mathbb{X})\right\}
$$

Lemma 2.1. [4] For every $T \in \mathbf{L}(\mathbb{X})$ we have
(a) $\pi_{0}(T) \subseteq \pi_{0}^{a}(T) \subseteq E_{0}^{a}(T)$ and
(b) $E_{0}(T) \subseteq E_{0}^{a}(T)$.

Following Harte and W.Y. Lee [19], we shall say that T satisfies Browder's theorem if

$$
\sigma_{w}(T)=\sigma_{b}(T)
$$

while, $T \in \mathbf{L}(\mathbb{X})$ is said to satisfy a-Browder's theorem if

$$
\sigma_{u w}(T)=\sigma_{u b}(T) .
$$

Browder's theorem and a-Browder's theorem may be characterized by localized SVEP in the following way:

Lemma 2.2. [5] If $T \in \mathbf{L}(\mathbb{X})$ the following equivalences hold:
(i) T satisfies Browder's theorem $\Leftrightarrow T$ has SVEP at every $\lambda \notin \sigma_{w}(T)$;
(ii) T satisfies a-Browder's theorem $\Leftrightarrow T$ has SVEP at every $\lambda \notin \sigma_{u w}(T)$.

Moreover, the following statements hold:
(iii) If T has SVEP at every $\lambda \notin \sigma_{l w}(T)$ then a-Browder's theorem holds for T^{*}.
(iv) If T^{*} has SVEP at every $\lambda \notin \sigma_{u w}(T)$ then a-Browder's theorem holds for T.

Obviously,
a-Browder's theorem holds for $T \Rightarrow$ Browder's theorem holds for T and the converse is not true.

Remark 2.3. The opposite implications of (iii) and (iv) in Theorem 2.2 in general do not hold. In [2] it is given an example of unilateral weighted left shift on $\ell^{q}(\mathbb{N})$ which shows that these implications cannot be reversed.

By Lemma 2.2 we also have
T or T^{*} has SVEP $\Rightarrow a$-Browder's theorem holds for both T, T^{*}.
Following Coburn [13], we say that Weyl's theorem holds for $T \in \mathbf{L}(\mathbb{X})$ if

$$
\Delta(T):=\sigma(T) \backslash \sigma_{w}(T)=E_{0}(T) .
$$

An approximate point version of Weyl's theorem is a-Weyl's theorem: according Rakoṽević [30] an operator $T \in \mathbf{L}(\mathbb{X})$ is said to satisfy a-Weyl's theorem if

$$
\Delta_{a}(T):=\sigma_{a}(T) \backslash \sigma_{u w}(T)=E_{0}^{a}(T)
$$

Since $T-\lambda I \in W_{+}(\mathbb{X})$ implies that $(T-\lambda I)(\mathbb{X})$ is closed, we can write

$$
\Delta_{a}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \in W_{+}(\mathbb{X}), 0<\alpha(T-\lambda I)\right\}
$$

It should be noted that the set $\Delta_{a}(T)$ may be empty. This is, for instance, the case of a right shift on $\ell^{2}(\mathbb{N})$, see [3]. Furthermore,
a-Weyl's theorem holds for $T \Rightarrow$ Weyl's theorem holds for T,
while the converse in general does not hold.
Definition 2.4. A bounded operator $T \in \mathbf{L}(\mathbb{X})$ is said to satisfy property (w) if

$$
\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{u w}(T)=E_{0}(T)
$$

Definition 2.5. A bounded operator $T \in \mathbf{L}(\mathbb{X})$ is said to satisfy property (aw) if

$$
\Delta(T)=\sigma(T) \backslash \sigma_{w}(T)=E_{0}^{a}(T)
$$

Following [11], we say that $T \in \mathbf{L}(\mathbb{X})$ satisfies property $(a b)$ if $\Delta(T)=\pi_{0}^{a}(T)$. It is shown [11] that an operator $T \in \mathbf{L}(\mathbb{X})$ satisfies property (aw) satisfying property ($a b$) but the converse is not true in general.

Lemma 2.6. Let $T \in \mathbf{L}(\mathbb{X})$. Then
(i) T satisfies property (ab) if and only if T satisfies Browder's theorem and $\pi_{0}(T)=$ $\pi_{0}^{a}(T)$, see [11, Corollary 2.6].
(ii) T satisfies property (aw) if and only if T satisfies property $(a b)$ and $E_{0}^{a}(T)=$ $\pi_{0}^{a}(T)$, see [11, Theorem 3.6].

Theorem 2.7. Let $T \in \mathbf{L}(\mathbb{X})$. If T satisfies property (aw) then T satisfies Weyl's theorem.

Proof. If T satisfies property (aw) then T satisfies Browder's theorem and $\pi_{0}(T)=$ $E_{0}^{a}(T)$. Hence $\Delta(T)=\pi_{0}(T)=E_{0}^{a}(T)$. As $\pi_{0}(T) \subseteq \pi_{0}^{a}(T) \subseteq E_{0}^{a}(T)$ is always verified. Therefore, $\Delta(T)=E_{0}(T)$.

The converse of of Theorem 2.7 is not true in general as shown by the following example.

Example 2.8. Let $R \in \ell^{2}(\mathbb{N})$ be the unilateral right shift and

$$
U\left(x_{1}, x_{2}, \cdots\right):=\left(0, x_{2}, x_{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

If $T:=R \oplus U$ then $\sigma(T)=\sigma_{w}(T)=\mathbf{D}(0,1)$, where $\mathbf{D}(0,1)$ is the unit disc of C. So $\operatorname{iso\sigma }(T)=E_{0}(T)=\varnothing$. Moreover, $\sigma_{a}(T)=\mathbf{C}(0,1) \cup\{0\}$, where $\mathbf{C}(0,1)$ is the unit circle of $\mathbb{C}, \sigma_{u w}(T)=\mathbf{D}(0,1)$, so T does not satisfy property (aw), since $\Delta(T)=\varnothing \neq E_{0}^{a}(T)=\{0\}$. On the other hand, T satisfies a-Weyl's theorem, since $\Delta_{a}(T)=E_{0}^{a}(T)$ and hence satisfies Weyl's theorem.

Proposition 2.9. Let $T \in \mathbf{L}(\mathbb{X})$. Then property (aw) holds for T if and only if T satisfies Weyl's theorem and $\pi_{0}(T)=E_{0}^{a}(T)$.

Proof. If T satisfies property (aw) then it follows from Theorem 2.7 that T satisfies Weyl's theorem and from Lemma 2.6 that $\pi_{0}(T)=\pi_{0}^{a}(T)=E_{0}^{a}(T)$. For the converse, assume that T satisfies Weyl's theorem and $\pi_{0}(T)=E_{0}^{a}(T)$. Then T satisfies Browder's theorem and $\pi_{0}(T)=E_{0}(T)$. Hence $\Delta(T)=E_{0}^{a}(T)$. That is, T satisfies property (aw).

Define

$$
\begin{equation*}
\Lambda(T):=\left\{\lambda \in \Delta_{a}(T): \operatorname{ind}(T-\lambda I)<0\right\} . \tag{2.1}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\Delta_{a}(T)=\Delta(T) \cup \Lambda(T) \quad \text { and } \quad \Lambda(T) \cap \Delta(T)=\varnothing . \tag{2.2}
\end{equation*}
$$

Proposition 2.10. Suppose that $T \in \mathbf{L}(\mathbb{X})$ is decomposable. Then T satisfies property (aw) if and only if T satisfies Weyl's theorem.

Proof. If T is decomposable then both T and T^{*} have SVEP. This, by Theorem 1.3 entails that $T-\lambda I$ has index zero for every $\lambda \in \Delta_{a}(T)=\Delta(T)$, and hence $\Lambda(T)=\varnothing$. Property (aw) implies Weyl's theorem for every operator $T \in \mathbf{L}(\mathbb{X})$. For the converse, if T satisfies Weyl's theorem then $\Delta(T)=E_{0}(T)$ and since T^{*} has SVEP then $E_{0}(T)=E_{0}^{a}(T)$, hence the result.

As a consequence of Proposition 2.10, we have that for a bounded operator $T \in \mathbf{L}(\mathbb{X})$ having totally disconnected spectrum then property (aw) and Weyl's theorem are equivalent.

A bounded operator $T \in \mathbf{L}(\mathbb{X})$ is said to have property $H(p)$ if for all $\lambda \in \mathbb{C}$ there exists a $p:=p(\lambda)$ such that:

$$
\begin{equation*}
H_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{p} . \tag{2.3}
\end{equation*}
$$

Let $f(T)$ be defined by means of the classical functional calculus. In [27] it has been proved that if $T \in \mathbf{L}(\mathbb{X})$ has property $H(p)$ then $f(T)$ and $f\left(T^{*}\right)$ satisfy Weyl's theorem.

Proposition 2.11. If $T \in \mathbf{L}(\mathbb{X})$ is generalized scalar then property (aw) holds for both T and T^{*}. In particular, property (aw) holds for every spectral operator of finite type.

Proof. Every generalized scalar operator T is decomposable and hence also the dual T^{*} is decomposable, see [23, Theorem 2.5.3]. Moreover, every generalized scalar operator has property $H(p)$ [27, Example 3], so Weyl's theorem holds for both T and T^{*}. By Proposition 2.10 it then follows that both T and T^{*} satisfy property (aw). The second statement is clear: every spectral operators of finite type is generalized scalar.

The following example show that property (aw) and property (w) are independent.

Example 2.12. Let T be the hyponormal operator T given by the direct sum of the 1-dimensional zero operator and the unilateral right shift R on $\ell^{2}(\mathbb{N})$. Then $\sigma(T)=\mathbf{D}(0,1), \mathbf{D}(0,1)$ the closed unit disc in \mathbf{C}. Moreover, 0 is an isolated point of $\sigma_{a}(T)=\mathbf{C}(0,1) \cup\{0\}, \mathbf{C}(0,1)$ the unit circle of \mathbb{C}, and $0 \in E_{0}^{a}(T)$ while $0 \notin \pi_{0}^{a}(T)=\varnothing$, since $a(T)=a(R)=\infty$. Hence, by Theorem 2.4 of [4], T does not satisfy a-Weyl's theorem. Now $\pi_{0}(T)=E_{0}(T)=\varnothing$, since $\sigma(T)$ has no isolated points, $\pi^{a}(T)=E_{0}(T)$. Since every hyponormal operator has SVEP we also know that a-Browder's theorem holds for T, so from Theorem 2.7 of [4] we see that property (w) holds for T. On the other hand, $\sigma_{w}(T)=\mathbf{D}(0,1)$, then $0 \in E_{0}^{a}(T) \neq \Delta(T)=\varnothing$. Therefore, T does not satisfy property (aw). Note that $\Delta(T)=E_{0}(T)=\varnothing$. That is, T satisfies Weyl's theorem.

The next result shows that property (w) and property (aw) are equivalent in presence of SVEP.

Theorem 2.13. Let $T \in \mathbf{L}(\mathbb{X})$. Then the following equivalences holds:
(i) If T^{*} has SVEP, the property (aw) holds for T if and only if the property (w) holds for T.
(ii) If T has SVEP, the property (aw) holds for T^{*} if and only if the property (w) holds for T^{*}.

Proof. (i) The SVEP of T^{*} implies that $\sigma_{a}(T)=\sigma(T)$, see [1, Corollary 2.5], $\sigma_{u w}(T)=\sigma_{w}(T)=\sigma_{b}(T)$, see [8, Theorem 2.6] so $E_{0}^{a}(T)=E_{0}(T)$, and hence $\Delta_{a}(T)=\Delta(T)$. Therefore,the property (aw) holds for T if and only if the property (w) holds for T.
(ii) If T has SVEP then $\sigma\left(T^{*}\right)=\sigma(T)=\sigma_{s}(T)=\sigma_{a}\left(T^{*}\right)$, see [1, Corollary 2.5], $\sigma_{u w}\left(T^{*}\right)=\sigma_{w}(T)=\sigma_{b}(T)$, see $\left[8\right.$, Theorem 2.6] and hence $E_{0}\left(T^{*}\right)=E_{0}^{a}\left(T^{*}\right)$. Therefore, $\Delta\left(T^{*}\right)=\Delta_{a}\left(T^{*}\right)$. Therefore, the property (aw) holds for T^{*} if and only if the property (w) holds for T^{*}.

Example 2.8 shows that a-Weyl's theorem does not imply property (aw). But in presence of SVEP a-Weyl's theorem, Weyl's theorem and property (aw) are equivalent as shown by the following result.

Theorem 2.14. Let $T \in \mathbf{L}(\mathbb{X})$. Then the following equivalences holds:
(i) If T^{*} has SVEP, the property (aw) holds for T if and only if Weyl's theorem holds for T, and this is the case if and only if a-Weyl's theorem holds for T.
(ii) If T has SVEP, the property (aw) holds for T^{*} if and only if Weyl's theorem holds for T^{*}, and this is the case if and only if a-Weyl's theorem holds for T^{*}.

Proof. (i) The SVEP of T^{*} implies that $\sigma_{a}(T)=\sigma(T)$, see [1, Corollary 2.5], $\sigma_{u w}(T)=\sigma_{w}(T)=\sigma_{b}(T)$, see $\left[8\right.$, Theorem 2.6] so $E_{0}^{a}(T)=E_{0}(T)$, and hence $\Delta_{a}(T)=\Delta(T)$. Furthermore, by [1, Corollary 3.53] we also have $\sigma_{u b}(T)=\sigma_{w}(T)$ from which it follows that $E_{0}^{a}(T)=\sigma_{a}(T) \backslash \sigma_{u b}(T)=\pi_{0}^{a}(T)$. Since the SVEP for T^{*} implies a-Browder's theorem for T we then conclude, by part (ii) of Theorem 2.4 of [4], that a-Weyl's theorem hold s for T. Hence the equivalence follows.
(ii) If T has SVEP then $\sigma\left(T^{*}\right)=\sigma(T)=\sigma_{s}(T)=\sigma_{a}\left(T^{*}\right)$, see [1, Corollary 2.5], $\sigma_{u w}\left(T^{*}\right)=\sigma_{w}(T)=\sigma_{b}(T)$, see $\left[8\right.$, Theorem 2.6] and hence $E_{0}\left(T^{*}\right)=E_{0}^{a}\left(T^{*}\right)$. Therefore, $\Delta\left(T^{*}\right)=\Delta_{a}\left(T^{*}\right)$. Moreover, by [1, Corollary 3.53] we also have

$$
\sigma_{w}\left(T^{*}\right)=\sigma_{w}(T)=\sigma_{l b}(T)=\sigma_{u b}\left(T^{*}\right)
$$

from which it easily follows that $\pi_{0}^{a}\left(T^{*}\right)=E_{0}^{a}\left(T^{*}\right)$. The SVEP for T implies that T^{*} satisfies a-Browder's theorem, so by part (ii) of Theorem 2.4 of [4], a-Weyl's theorem for T^{*}. Hence the equivalence follows.

Corollary 2.15. If T is generalized scalar then property (aw) holds for both $f(T)$ and $f\left(T^{*}\right)$ for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Since T has property $H(p)$ then Weyl's theorem holds for $f(T)$ and $f\left(T^{*}\right)$, see [27, Corollary 3.6]. Moreover, T and T^{*} being decomposable, both T and T^{*} have SVEP, hence also $f(T)$ and $f\left(T^{*}\right)=f(T)^{*}$ have SVEP by Theorem 2.40 of [1]. By Theorem 2.14 it then follows that property (aw) holds for both $f(T)$ and $f\left(T^{*}\right)$.

Remark 2.16. Corollary 2.15 applies to a large number of the classes of operators defined in Hilbert spaces. In [27] Oudghiri observed that every sub-scalar operator T (i.e., T is similar to a restriction of a generalized scalar operator to one of its closed invariant subspaces) has property $H(p)$. Consequently, property $H(p)$ is satisfied by p-hyponormal operators and log-hyponormal operators [24, Corollary 2], w-hyponormal operators [25], M-hyponormal operators [23, Proposition 2.4.9], and totally paranormal operators [7]. Also totally *-paranormal operators have property $H(1)$ [20].

An operator $T \in \mathbf{L}(\mathbb{X})$ is said to be polaroid if every isolated point of $\sigma(T)$ is a pole of the resolvent operator $(T-\lambda I)^{-1}$, or equivalently $a(T-\lambda I)=d(T-$ $\lambda I)<\infty$, see [21, Proposition 50.2]. An operator $T \in \mathbf{L}(\mathbb{X})$ is said to be a-polaroid if every isolated point of $\sigma_{a}(T)$ is a pole of the resolvent operator $(T-\lambda I)^{-1}$, or equivalently $a(T-\lambda I)=d(T-\lambda I)<\infty$, see [21, Proposition 50.2]. Clearly,

$$
\begin{equation*}
T \text { a-polaroid } \Rightarrow T \text { polaroid. } \tag{2.4}
\end{equation*}
$$

and the opposite implication is not generally true.

Theorem 2.17. Suppose that T is a-polaroid. Then property (w) holds for T if and only if T satisfies property (aw).

Proof. Note first that if T is a-polaroid then $\pi_{0}(T)=E_{0}^{a}(T)$. In fact, if $\lambda \in E_{0}^{a}(T)$ then λ is isolated in $\operatorname{iso~}_{a}(T)$ and hence $a(T-\lambda I)=d(T-\lambda I)<\infty$. Moreover, $\alpha(T-\lambda I)<\infty$, so by Theorem 3.4 of [1] it follows that $\beta(T-\lambda I)$ is also finite, thus $\lambda \in \pi_{0}(T)$. This shows that $E_{0}^{a}(T) \subseteq \pi_{0}(T)$, and consequently by Lemma 2.1 we have $\pi_{0}(T)=E_{0}^{a}(T)$. Now, if T satisfies property (w) theorem then $\Delta_{a}(T)=$ $E_{0}(T)$, and since Weyl's theorem holds for T we also have by Theorem 2.4 of [4] that $\pi_{0}(T)=E_{0}(T)$. Hence $\Delta(T)=E_{0}^{a}(T)$. Therefore, property (aw) holds for T. Conversely, if T satisfies property $(a w)$ then $\Delta(T)=E_{0}^{a}(T)$. Since by Theorem 2.7 T satisfies Weyl's theorem we also have, by Theorem 2.4 of [4], $E_{0}(T)=$ $\pi_{0}(T)=E_{0}^{a}(T)$. If $\lambda \in \Delta_{a}(T)$, as T satisfies property (aw) then $\lambda \in E_{0}(T)$. Since $\Delta(T) \subseteq \Delta_{a}(T)$ it then follows if $\lambda \in E_{0}(T)=\Delta(T)$ then $\lambda \in \Delta_{a}(T)$. So $\Delta_{a}(T)=E_{0}(T)$. Therefore, T satisfies property (w).

Recall that a bounded operator $T \in \mathbf{L}(\mathbb{X})$ is said to be isoloid (respectively, a isoloid) if every isolated point of $\sigma(T)$ (respectively, every isolated point of $\sigma_{a}(T)$) is an eigenvalue of T. Every a-isoloid operator is isoloid. This is easily seen: if T is a-isoloid and $\lambda \in \operatorname{iso\sigma }(T)$ then $\lambda \in \sigma_{a}(T)$ or $\lambda \notin \sigma_{a}(T)$. In the first case $T-\lambda I$ is bounded below, in particular upper semi-Fredholm. The SVEP of both T and T^{*} at λ then implies that $a(T-\lambda I)=d(T-\lambda I)<\infty$, so λ is a pole. Obviously, also in the second case λ is a pole, since by assumption T is a-isoloid.

Theorem 2.18. Suppose that T is a-polaroid and that T^{*} has SVEP. Then $f(T)$ satisfies property (aw) for all $f \in \operatorname{Hol}(\sigma(T))$.

Proof. If T is a-polaroid then T is a-isoloid (i.e., every isolated point of $\sigma_{a}(T)$ is an eigenvalue of T). The SVEP for T^{*} ensures that the spectral mapping theorem holds for $\sigma_{u z w}(T)$, i.e., if $f \in \operatorname{Hol}(\sigma(T))$ then $f\left(\sigma_{u w}(T)\right)=\sigma_{u w}(f(T))$, [1, Theorem 3.66]. By Theorem 5.4 of [15] then $f(T)$ satisfies a-Weyl's theorem, and since $f\left(T^{*}\right)=f(T)^{*}$ has SVEP from Theorem 2.14 we conclude that property (aw) holds for $f(T)$.

Theorem 2.19. Suppose that $T \in \mathbf{L}(\mathbb{X})$. Then the following statements hold:
(i) If T is polaroid and T has SVEP then property (aw) holds for T^{*}.
(ii) If T is polaroid and T^{*} has SVEP then property (aw) holds for T.

Proof. (i) By Theorem 2.14 it suffices to show that Weyl's theorem holds for T^{*}. The SVEP ensures that Browder's theorem holds for T^{*}. We prove that $\pi_{0}\left(T^{*}\right)=E_{0}\left(T^{*}\right)$. Let $\lambda \in E_{0}\left(T^{*}\right)$ Then $\lambda \in \operatorname{iso\sigma }\left(T^{*}\right)=i \operatorname{so\sigma }(T)$ and the polaroid assumption implies that λ is a pole of the resolvent, or equivalently $a(T-\lambda I)=$ $d(T-\lambda I)<\infty$. If P denotes the spectral projection associated with $\{\lambda\}$ we have $(T-\lambda I)^{p}(\mathbb{X})=\operatorname{ker}(P)$ [1, Theorem 3.74], so $(T-\lambda I)^{p}(\mathbb{X})$ is closed, and hence also $\left(T^{*}-\lambda I\right)^{p}\left(\mathbb{X}^{*}\right)$ is closed. Since $\lambda \in E_{0}\left(T^{*}\right)$ then $\alpha\left(T^{*}-\lambda I^{*}\right)<\infty$ and this implies $\left(T^{*}-\lambda I\right)^{p}\left(\mathbb{X}^{*}\right)<\infty$, from which we conclude that $\left(T^{*}-\lambda I^{*}\right)^{p} \in$ $\Phi_{+}\left(\mathbb{X}^{*}\right)$, hence $T^{*}-\lambda I^{*} \in \Phi_{+}\left(\mathbb{X}^{*}\right)$, and consequently $T-\lambda I \in \Phi_{-}(\mathbb{X})$. Therefore $\beta(T-\lambda I)<\infty$ and since $a(T-\lambda I)=d(T-\lambda I)<\infty$ by Theorem 3.4 of [1]
we then conclude that $\alpha(T-\lambda I)<\infty$. Hence $\lambda \in \pi_{0}(T)=\pi_{0}\left(T^{*}\right)$. This proves that $E_{0}\left(T^{*}\right) \subseteq \pi_{0}\left(T^{*}\right)$, and since by Lemma 2.1 the opposite inclusion is satisfied by every operator we may conclude that $E_{0}\left(T^{*}\right)=\pi_{0}\left(T^{*}\right)$. By Theorem 2.4 of [4] then T^{*} satisfies Weyl's theorem.
(ii) The SVEP for T^{*} implies that Browder's theorem holds for T. Again by Theorem 2.14 it suffices to show that T satisfies Weyl's theorem, and hence by Lemma 2.1 and Theorem 2.4 of [4] we need only to prove that $E_{0}(T)=\pi_{0}(T)$. Let $\lambda \in$ $E_{0}(T)$. Then $\lambda \in \operatorname{iso\sigma }(T)$ and since T is polaroid then $a(T-\lambda I)=d(T-\lambda I)<\infty$. Since $\alpha(T-\lambda I)<\infty$ we then have $\beta(T-\lambda I)<\infty$ and hence $\lambda \in \pi_{0}(T)$. Hence $E_{0}(T) \subseteq \pi_{0}(T)$ and by Lemma 2.14 we then conclude that $E_{0}(T)=\pi_{0}(T)$.

Remark 2.20. Part (i) of Theorem 2.19 shows that the dual T^{*} of a multiplier $T \in M(A)$ of a commutative semi-simple Banach algebra A has property (aw), since every multiplier $T \in M(A)$ of a commutative semi-simple Banach algebra satisfies Weyl's theorem and is polaroid, see [1, Theorem 4.36].

Theorem 2.21. Let $T \in \mathbf{L}(\mathbb{X})$ be such that there exists $\lambda_{0} \in \mathbb{C}$ such that $K(T-$ $\left.\lambda_{0} I\right)=\{0\}$ and $\operatorname{ker}\left(T-\lambda_{0} I\right)=\{0\}$. Then property (aw) holds for $f(T)$ for all $f \in \operatorname{Hol}(\sigma(T))$.

Proof. We know from [9, Lemma 2.4] that $\sigma_{p}(T)=\varnothing$, so T has SVEP. We show that also $\sigma_{p}(f(T))=\varnothing$. Let $\mu \in \sigma(f(T))$ and write $f(\lambda)-\mu=p(\lambda) g(\lambda)$, where g is analytic on an open neighborhood U containing $\sigma(T)$ and without zeros in $\sigma(T), p$ a polynomial of the form

$$
p(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{n}\right)^{m_{n}},
$$

with distinct roots $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ lying in $\sigma(T)$. Then

$$
f(T)-\mu I=\left(T-\lambda_{1} I\right)^{m_{1}}\left(T-\lambda_{2} I\right)^{m_{2}} \cdots\left(T-\lambda_{n} I\right)^{m_{n}} g(T)
$$

Since $g(T)$ is invertible, $\sigma_{p}(T)=\varnothing$ implies that $\operatorname{ker}(f(T)-\mu I)=\{0\}$ for all $\mu \in \mathbb{C}$, so $\sigma_{p}(f(T))=\varnothing$. Since T has SVEP then $f(T)$ has SVEP, see Theorem 2.40 of [1], so that a-Browder's theorem holds for $f(T)$ and hence Browder's theorem holds for $f(T)$. To prove that property (aw) holds for $f(T)$, by Lemma 2.6 it then suffices to prove that

$$
E_{0}^{a}(f(T))=\pi_{0}(f(T))
$$

Obviously, the condition $\sigma_{p}(f(T))=\varnothing$ entails that $E_{0}(f(T))=E_{0}^{a}(f(T))=\varnothing$. On the other hand, the inclusion $\pi_{0}(f(T)) \subseteq E_{0}^{a}(f(T))$ holds for every operator $T \in \mathbf{L}(\mathbb{X})$, so also $\pi_{0}(f(T))$ is empty. By Lemma 2.6 it then follows that $f(T)$ satisfies property (aw).

3 Property (aw) under perturbations

In this section we shall give some conditions for which property (aw) is preserved under commuting finite-rank or quasinilpotent perturbations.

As property (w), property $(a w)$ is not preserved under finite rank perturbations (also commuting finite rank perturbations).

Example 3.1. Let $T:=Q \oplus I$ defined on $\mathbb{X} \oplus \mathbb{X}$, where Q is an injective quasinilpotent operator. It is easily seen that T satisfies a-Weyl's theorem. Define $K:=$ $0 \oplus(-P)$, where P is a finite rank projection. Then $T K=K T$, and since T^{*} has a finite spectrum then T^{*} has SVEP, hence $T^{*}+K^{*}$ has SVEP, by Lemma 2.8 of [6]. Therefore $\sigma(T+K)=\sigma_{a}(T+K)$, by Corollary 2.45 of [1]. On the other hand it is easy to see that $0 \in \sigma(T+K) \cap \sigma_{w}(T+K)$, so $0 \notin \sigma(T+K) \backslash \sigma_{w}(T+K)$, while $0 \in E_{0}(T+K)=E_{0}^{a}(T+K)$, thus $T+K$ does not verify property (aw).
Theorem 3.2. Suppose that $T \in \mathbf{L}(\mathbb{X})$ is polaroid and K is a finite rank operator commuting with T.
(i) If T^{*} has SVEP then $f(T)+K$ satisfies property (aw) for all $f \in \operatorname{Hol}(\sigma(T))$.
(ii) If T has SVEP then $f\left(T^{*}\right)+K^{*}$ satisfies property (aw) for all $f \in \operatorname{Hol}(\sigma(T))$.

Proof. (i) By [1, Corollary 2.45] we have $\sigma_{a}(T)=\sigma(T)$, so T is a-polaroid and hence a-isoloid. By Theorem 2.18 it then follows that $f(T)$ has property (aw) for all $f \in \operatorname{Hol}(\sigma(T))$. Now, by [1, Theorem 2.40] $f\left(T^{*}\right)=f(T)^{*}$ has SVEP, so that, by Theorem $2.14 a$-Weyl's theorem holds for $f(T)$. Since $f(T)$ and K commutes, by Theorem 3.2 of [6] we then obtain that $f(T)+K$ satisfies a-Weyl's theorem. By Lemma 2.8 of [5] $f(T)^{*}+K^{*}=(f(T)+K)^{*}$ has SVEP. This implies that property (aw) and a-Weyl's theorem for $f(T)+K$ are equivalent, again by Theorem 2.14, so the proof is complete.
(ii) The argument is analogous to that of part (i). Just observe that $\sigma_{a}\left(T^{*}\right)=\sigma\left(T^{*}\right)$ by [1, Corollary 2.45], so that T^{*} is a-polaroid, hence a-isoloid. Moreover, by Theorem 2.18 it then follows that $f\left(T^{*}\right)$ has property (aw) for all $f \in \operatorname{Hol}(\sigma(T))$. By Theorem 2.40 of [1] $f(T)$ has SVEP, so that, so, by Theorem $2.14 a$-Weyl's theorem holds for $f\left(T^{*}\right)$. Since $f\left(T^{*}\right)$ and K^{*} commutes, by Theorem 3.2 of [6] we then obtain that $f\left(T^{*}\right)+K^{*}$ satisfies a-Weyl's theorem. Again by Lemma 2.8 of [5] $f(T)+K$ has SVEP, so that (aw) and a-Weyl's theorem for $f\left(T^{*}\right)+K^{*}$ are equivalent, by Theorem 2.14.

The basic role of SVEP arises in local spectral theory since for all decomposable operators both T and T^{*} have SVEP. Every generalized scalar operator on a Banach space is decomposable (see [23] for relevant definitions and results). In particular, every spectral operators of finite type is decomposable.
Corollary 3.3. Suppose that $T \in \mathbf{L}(\mathbb{X})$ is generalized scalar and K is a finite rank operator commuting with T. Then property (aw) holds for both $f(T)+K$ and $f\left(T^{*}\right)+K^{*}$. In particular, this is true for every spectral operator of finite type.
Proof. Both T and T^{*} have SVEP. Moreover, every generalized scalar operator T has property $H(p)$ [27, Example 3], so T is polaroid. The second statement is clear: every spectral operators of finite type is generalized scalar.

The next results deal with quasi-nilpotent perturbations. We first recall two well-known results: if Q a quasi-nilpotent operator commuting with $T \in \mathbf{L}(\mathbb{X})$, then

$$
\begin{equation*}
\sigma_{a}(T)=\sigma_{a}(T+Q) \quad \text { and } \quad \sigma_{u w}(T)=\sigma_{u w}(T+Q) \tag{3.1}
\end{equation*}
$$

Since $\sigma(T+Q)=\sigma(T)$ and $\sigma_{b}(T+Q)=\sigma_{b}(T)$ (for the last equality see [32]), we then have $\pi_{0}(T+Q)=\pi_{0}(T)$.

Lemma 3.4. Let $T \in \mathbf{L}(\mathbb{X})$. If $N \in \mathbf{L}(\mathbb{X})$ is a nilpotent operator commuting with T, then $E_{0}^{a}(T+N)=E_{0}^{a}(T)$.

Proof. Let $\lambda \in E_{0}^{a}(T)$ be arbitrary. There is no loss of generality if we assume that $\lambda=0$. As N is nilpotent we know that $\sigma_{a}(T+N)=\sigma_{a}(T)$, thus $0 \in \operatorname{iso~}_{a}(T+N)$. Let $m \in \mathbb{N}$ be such that $N^{m}=0$. If $x \in \operatorname{ker}(T)$, then $(T+N)^{m}(x)=\sum_{k=0}^{m} C_{k}^{m} T^{k} N^{m-k}(x)=0$. So $\operatorname{ker}(T) \subset \operatorname{ker}(T+N)^{m}$. As $0<\alpha(T)<\infty$, it follows that $0<\alpha\left((T+N)^{m}\right)<\infty$ and this implies that $0<\alpha(T+N)<\infty$. Hence $0 \in E_{0}^{a}(T+N)$. So $E_{0}^{a}(T) \subseteq E_{0}^{a}(T+N)$. By symmetry we have $E_{0}^{a}(T)=E_{0}^{a}(T+N)$.

It is easily seen that property $(a w)$ is transmitted under commuting nilpotent perturbations N.

Theorem 3.5. If $T \in \mathbf{L}(\mathbb{X})$ satisfies property (aw), $N \in \mathbf{L}(\mathbb{X})$ is a nilpotent operator commuting with T then $T+N$ satisfies property (aw).

Proof. If T satisfies property ($a w$) then T satisfies Browder's theorem, so by Lemma 2.6, $E_{0}^{a}(T)=\pi_{0}(T)$. Hence

$$
E_{0}^{a}(T+N)=E_{0}^{a}(T)=\pi_{0}(T+N)=\pi_{0}(T)
$$

Since $\sigma(T+N)=\sigma(T)$ and $\sigma_{w}(T+N)=\sigma_{w}(T)$, we have

$$
\sigma(T+N) \backslash \sigma_{w}(T+N)=\sigma(T) \backslash \sigma_{w}(T)=E_{0}^{a}(T)=E_{0}^{a}(T+N)
$$

That is, $T+N$ satisfies property (aw).
Generally, property (aw) is not transmitted from T to a quasi-nilpotent perturbation $T+Q$. In fact, if $Q \in \ell^{2}(\mathbb{N})$ is defined by

$$
Q\left(x_{1}, x_{2}, \cdots\right)=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Then Q is quasi-nilpotent, $\sigma(Q)=\sigma_{w}(Q)=\{0\}$ and

$$
\{0\}=E_{0}^{a}(Q) \neq \sigma(Q) \backslash \sigma_{w}(Q)
$$

Take $T=0$. Clearly, T satisfies property (aw) but $T+Q=Q$ fails this property. Note that Q is not injective.

Theorem 3.6. Suppose that for $T \in \mathbf{L}(\mathbb{X})$ there exists an injective quasi-nilpotent Q operator commuting with T. Then both T and $T+Q$ satisfy property (aw), a-Weyl's and Weyl's theorem.

Proof. We show first a-Weyl's theorem holds for T. It is evident, by Lemma 3.9 of [9], that $E_{0}^{a}(T)$ is empty. Suppose that $\sigma_{a}(T) \backslash \sigma_{u w}(T)$ is not empty and let $\lambda \in \Delta_{a}(T)$. Since $T-\lambda I \in W_{+}(\mathbb{X})$ then $\alpha(T-\lambda I)<\infty$ and $T-\lambda I$ has closed range. Since $T-\lambda I$ commutes with Q it then follows, by Lemma 3.9 of [9], that $T-\lambda I$ is injective, so $\lambda \notin \sigma_{a}(T)$, a contradiction. Therefore, also $\sigma_{a}(T) \backslash \sigma_{u w}(T)$ is empty. Therefore, a-Weyl's theorem holds for T. To show that property ($a w$) holds for T. Observe that $\Delta(T) \subseteq \Delta_{a}(T)=E_{0}^{a}(T)=\varnothing$. Hence $\Delta(T)=E_{0}^{a}(T)=$
\varnothing. That is, property (aw) holds for T.
Analogously, a-Weyl's theorem also holds for $T+Q$, since the operator $T+Q$ commutes with Q. Weyl's theorem is obvious: property (aw), as well as a-Weyl's theorem, entails Weyl's theorem. Property (aw), as well as a-Weyl's theorem and Weyl's theorem, for $T+Q$ is clear, since also $T+Q$ commutes with Q.

Theorem 3.7. Suppose that iso $_{a}(T)=\varnothing$. If T satisfies property (aw) and K is a finite rank operator commuting with T, then $T+K$ satisfies property (aw).

Proof. Since T satisfies Browder's theorem then $T+K$ satisfies Browder's theorem, see [10, Theorem 3.4]. From Lemma 2.6 of [6], we have $i s o \sigma_{a}(T+K)=\varnothing$. Hence $E_{0}^{a}(T+K)=\pi_{0}(T+K)$. Therefore, it follows from Lemma 2.6 that property (aw) holds for $T+K$.

From [12], we recall that an operator $R \in \mathbf{L}(\mathbb{X})$ is said to be Riesz if $R-\lambda I$ is Fredholm for every non-zero complex number λ, that is, $Y(R)$ is quasi-nilpotent in $\mathcal{C}(\mathbb{X})$ where $\mathcal{C}(\mathbb{X}):=\mathbf{L}(\mathbb{X}) / \mathbf{K}(\mathbb{X})$ is the Calkin algebra and Y is the canonical mapping of $\mathbf{L}(\mathbb{X})$ into $\mathcal{C}(\mathbb{X})$. Note that for such operator, $\pi_{0}(R)=\sigma(R) \backslash\{0\}$, and its restriction to one of its closed subspace is also a Riesz operator, see [12]. The proof of the following result may be found in [32].

Lemma 3.8. Let $T \in \mathbf{L}(\mathbb{X})$ and R be a Riesz operator commuting with T. Then
(i) $T \in B_{+}(\mathbb{X}) \Leftrightarrow T+R \in B_{+}(\mathbb{X})$.
(ii) $T \in B_{-}(\mathbb{X}) \Leftrightarrow T+R \in B_{-}(\mathbb{X})$.
(iii) $T \in B(\mathbb{X}) \Leftrightarrow T+R \in B(\mathbb{X})$.

Lemma 3.9. [28, Lemma 2.2] Let $T \in \mathbf{L}(\mathbb{X})$ and R be a Riesz operator such that $T R=R T$.
(i) If T is Fredholm then so is $T+R$ and $\operatorname{ind}(T+R)=\operatorname{ind}(T)$.
(ii) If T is Weyl then so is $T+R$. In particular $\sigma_{w}(T+R)=\sigma_{w}(T)$.
(iii) If T satisfies Browder's theorem then so does $T+R$.

For a bounded operator T on \mathbb{X}, we use $E_{0 f}^{a}(T)$ to denote the set of isolated points λ of $\sigma_{a}(T)$ such that $\operatorname{ker}(T-\lambda I)$ is finite-dimensional. Evidently,

$$
\pi_{0}^{a}(T) \subseteq E_{0}^{a}(T) \subseteq E_{0 f}^{a}(T)
$$

Lemma 3.10. Let T be a bounded operator on \mathbb{X}. If R is a Riesz operator that commutes with T, then

$$
E_{0}^{a}(T+R) \cap \sigma_{a}(T) \subseteq i s o \sigma_{a}(T)
$$

Proof. Clearly,

$$
E_{0}^{a}(T+R) \cap \sigma_{a}(T) \subseteq E_{0 f}^{a}(T+R) \cap \sigma_{a}(T)
$$

and by Proposition 2.4 of [29] the last set contained in $\operatorname{iso~}_{a}(T)$.

For a bounded operator T on \mathbb{X}, we denote by $E_{0 f}(T)$ the set of isolated points λ of $\sigma(T)$ such that $\operatorname{ker}(T-\lambda I)$ is finite-dimensional. Evidently, $E_{0}(T) \subseteq E_{0 f}(T)$.

Lemma 3.11. Let T be a bounded operator on \mathbb{X}. If R is a Riesz operator that commutes with T, then

$$
E_{0}(T+R) \cap \sigma(T) \subseteq i s o \sigma(T)
$$

Proof. Clearly,

$$
E_{0}(T+R) \cap \sigma(T) \subseteq E_{0 f}(T+R) \cap \sigma(T) .
$$

and by Lemma 2.3 of [28] the last set contained in $\operatorname{iso\sigma }(T)$.
Recall that $T \in \mathbf{L}(\mathbb{X})$ is called finite a-isoloid (resp., finite isoloid) operator if $i s o \sigma_{a}(T) \subseteq \sigma_{p}(T)$ (resp., $\operatorname{iso\sigma }(T) \subseteq \sigma_{p}(T)$). Clearly, finite a-isoloid implies a-isoloid and finite isoloid, but the converse is not true in general.

Lemma 3.12. Suppose that $T \in \mathbf{L}(\mathbb{X})$ be finite-isoloid satisfies property (aw) and R is a Riesz operator commuting with T. Then $\pi_{0}^{a}(T+R) \subseteq E_{0}(T+R)$.

Proof. Let $\lambda \in \pi_{0}^{a}(T+R)$ be arbitrary given. Then $\lambda \in \operatorname{iso\sigma _{a}}(T+R)$ and $T+R-\lambda I \in B_{+}(\mathbb{X})$, so $\alpha(T+R-\lambda I)<\infty$. Since $T+R-\lambda I$ has closed range, the condition $\lambda \in \sigma_{a}(T+R)$ entails that $\alpha(T+R-\lambda I)>0$. Therefore, in order to show that $\lambda \in E_{0}(T+R)$, we need only to prove that λ is an isolated point of $\sigma(T+R)$.

Now, by assumption T satisfies property (aw) so, by Lemma 2.6, $\pi_{0}^{a}(T)=$ $E_{0}(T)=E_{0}^{a}(T)$. Moreover, T satisfies Weyl's theorem and hence, by Theorem 2.7 of [28], $T+R$ satisfies Weyl's theorem. So

$$
\pi_{0}(T+R)=E_{0}(T+R)=\sigma(T+R) \backslash \sigma_{b}(T+R)
$$

Therefore, $T+R-\lambda I$ is Browder, so

$$
0<a(T+R-\lambda I)=d(T+R-\lambda I)<\infty
$$

and hence λ is a pole of the resolvent of $T+R$. Consequently, λ an isolated point of $\sigma(T+R)$, as desired.

Theorem 3.13. Let $T \in \mathbf{L}(\mathbb{X})$ be an isoloid operator satisfying property (aw). If F is an operator that commutes with T and for which there exists a positive integer n such that F^{n} is finite rank, then $T+F$ satisfies property (aw).

Proof. First observe that F is a Riesz operator. Since Weyl's theorem holds for $T+F$, by Theorem 2.4 of [28], then $E_{0}(T+F)=\pi_{0}(T+F)$. As T satisfies property (aw) then it follows from Lemma 3.12 that $\pi_{0}^{a}(T+F) \subseteq E_{0}(T+F)$. Hence

$$
\pi_{0}^{a}(T+F)=E_{0}(T+R)=\Delta(T+F)=\pi_{0}(T+F)=\pi_{0}(T)=E_{0}^{a}(T)=\Delta(T)
$$

To prove property (aw) holds for $T+F$, it suffices to show that $E_{0}(T+F)=$ $E_{0}^{a}(T+F)$. To show this, let $\lambda \in E_{0}^{a}(T+F)$. If $T-\lambda I$ is invertible, then $T+F-\lambda I$ is Weyl, and hence $\lambda \in E_{0}(T+R)$. Suppose that $\lambda \in \sigma(T)$. Then it follows from Lemma 3.11 that $\lambda \in \operatorname{iso\sigma }(T)$. Furthermore, since the operator $\left.(T+F-\lambda I)^{n}\right|_{\operatorname{ker}(T-\lambda I)}=\left.F^{n}\right|_{\operatorname{ker}(T-\lambda I)}$ is both of finite-dimensional range and
kernel, we obtain easily that also $\operatorname{ker}(T-\lambda I)$ is finite-dimensional, and therefore that $\lambda \in E_{0}(T)$, because T is a-isoloid. On the other hand, if T satisfies property (aw), then $E_{0}^{a}(T) \cap \sigma_{w}(T)=\varnothing$. Consequently, $T-\lambda I$ is Weyl and hence so is $T+F-\lambda I$, which implies that $\lambda \in E_{0}(T+F)$. The other inclusion is trivial. Thus, property (aw) holds for $T+F$.

Corollary 3.14. Let $T \in \mathbf{L}(\mathbb{X})$ be an isoloid operator. If property (aw) holds for T, then it also holds for $T+F$ for every finite rank operator F commuting with T.

Theorem 3.15. Let T be a finite-isoloid operator on \mathbb{X} that satisfies property (aw). If R is a Riesz operator that commutes with T, then $T+R$ satisfies property (aw).

Proof. Suppose that T satisfies property (aw). Then From Theorem 2.7, Theorem 2.7 of [28], and Lemma 3.12, we conclude that

$$
\pi_{0}^{a}(T+R)=E_{0}(T+R)=\Delta(T+R)=\pi_{0}(T+R)=\pi_{0}(T)=\Delta(T)=E_{0}^{a}(T)
$$

To prove property (aw) holds for $T+R$, it suffices to show that $E_{0}(T+R)=$ $E_{0}^{a}(T+R)$. Let $\lambda \in E_{0}^{a}(T+R)$. If $T-\lambda I$ is invertible, then $T+R-\lambda I \in W(\mathbb{X})$ and hence $\lambda \in E_{0}(T+R)$. Suppose that $\lambda \in \sigma(T)$. It follows by Lemma 3.11 that λ is an isolated point of $\sigma(T)$, and because T is finite-isoloid, we see that $\lambda \in E_{0}(T)$. On the other hand, property (aw) holds for T implies that $\sigma_{w}(T) \cap E_{0}^{a}(T)=\varnothing$, therefore $T-\lambda I$ is Weyl and hence so is $T+R-\lambda I$. Thus, $\lambda \in E_{0}(T+R)$. The other inclusion is trivial, therefore $T+R$ satisfies property (aw).

Corollary 3.16. Let T be an finite-isoloid operator on \mathbb{X} that satisfies property (aw). If K is a compact operator commuting with T, then property (aw) holds for $T+K$.

Theorem 3.17. Let T be an operator on \mathbb{X} that satisfies property (aw) and such that $\sigma_{p}(T) \cap i s o \sigma_{a}(T) \subseteq E_{0}^{a}(T)$. If Q is a quasi-nilpotent operator that commutes with T, then $T+Q$ satisfies property (aw).

Proof. Since $\sigma(T+Q)=\sigma(T)$ and also, by Lemma 2 of [26], $\sigma_{w}(T+Q)=\sigma_{w}(T)$, it suffices to show that $E_{0}^{a}(T+Q)=E_{0}^{a}(T)$. Let $\lambda \in E_{0}^{a}(T)=\sigma(T) \backslash \sigma_{w}(T)$. If $T-\lambda I$ is invertible, then $T-\lambda I \in W(\mathbb{X})$ and so $T+R-\lambda I \in W(\mathbb{X})$. Hence $\lambda \in E_{0}(T+R) \subseteq E_{0}^{a}(T+Q)$. Conversely, suppose $\lambda \in E_{0}^{a}(T+Q)$. Since Q is a quasi-nilpotent operator that commutes with T, we obtain that the restriction of $T-\lambda I$ to the finite-dimensional subspace $\operatorname{ker}(T+Q-\lambda I)$ is not invertible, and hence $\operatorname{ker}(T-\lambda I)$ is non-trivial. Therefore, $\lambda \in \sigma_{p}(T) \cap i s \sigma_{a}(T) \subseteq E_{0}^{a}(T)$, which completes the proof.

References

[1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004.
[2] P. Aiena, Classes of operators satisfying a-Weyls theorem, Studia Math. 169 (2005), 105-122.
[3] P. Aiena, C. Carpintero, Weyl's theorem, a-Weyl's theorem and single-valued extension property, Extracta Math. 20 (2005) 25-41.
[4] P. Aiena and P. Peña, Variations on Weyls theorem, J. Math. Anal. Appl. 324 (1)(2006), 566-579.
[5] P. Aiena, M.T. Biondi, Property (w) and perturbations, J. Math. Anal. Appl. 336 (2007), 683-692.
[6] P. Aiena, Property (w) and perturbations II, J. Math. Anal. Appl. 342 (2008) 830-837.
[7] P. Aiena, F. Villafãne, Weyls theorem for some classes of operators, Integral Equations Operator Theory 53 (2005), 453-466.
[8] P. Aiena, J. R. Guillen and P. Peña, Property (w) for perturbations of polaroid operators, Linear Alg. Appl. 428 (2008), 1791-1802.
[9] P. Aiena, Maria T. Biondi, F. Villafañe, Property (w) and perturbations III, J. Math. Anal. Appl. 353 (2009), 205-214.
[10] M. Berkani, J. Koliha, Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (1-2)(2003), 359-376.
[11] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mathematica Bohemica, 62 (2) (2010), 145-154.
[12] S.R. Caradus, W.E. Pfaffenberger, Y. Bertram , Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974.
[13] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J 13(1966), 285-288.
[14] I. Colojoarc̃a, C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
[15] D.S. Djordjević, Operators obeying a-Weyls theorem, Publ. Math. Debrecen 55 (3) (1999), 283-298.
[16] H. R. Dowson, Spectral theory of linear operator, Academic press, London, 1978.
[17] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyls theorem, J. Math. Anal. Appl. 340(2008), 366-373.
[18] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58(1975), 61-69.
[19] R. Harte, W.Y. Lee, Another note on Weyls theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.
[20] Y.M. Han, A.-H. Kim, A note on *-paranormal operators, Integral Equations Operator Theory 49 (2004), 435-444.
[21] H. Heuser, Functional analysis, Marcel Dekker, New York, 1982.
[22] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152(1992), 323336.
[23] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford. Clarendon, 2000.
[24] C. Lin, Y. Ruan, Z. Yan, p-hyponormal operators are subscalar, Proc. Amer. Math. Soc. 131 (9) (2003), 2753-2759.
[25] C. Lin, Y. Ruan, Z. Yan, w-hyponormal operators are subscalar, Integral Equations Operator Theory 50 (2004), 165-168.
[26] K.K. Oberai, On the Weyl spectrum II, Illinois J. Math. 21 (1977), 84-90.
[27] M. Oudghiri, Weyls and Browders theorem for operators satisfying the SVEP, Studia Math. 163 (2004), 85-101.
[28] M. Oudghiri, Weyls Theorem and perturbations, Integral Equations Operator Theory, 53 (2005), 535-545.
[29] M. Oudghiri, a-Weyl's theorem and perturbations, Studia Math. 173 (2006), 193-201.
[30] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10(1986), 915-919.
[31] V. Rakočević, On a class of operators, Math. Vesnik 37 (1985), 423-426.
[32] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122(1997), 131-137

[^0]
[^0]: Department of Mathematics\& Statistics
 Faculty of Science P.O.Box(7)
 Mu'tah University
 Al-Karak-Jordan
 email:malik_okasha@yahoo.com

