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Abstract

A bounded linear operator T ∈ L(X) acting on a Banach space satisfies
property (aw), a variant of Weyl’s theorem, if the complement in the spec-
trum σ(T) of the Weyl spectrum σw(T) is the set of all isolated points of the
approximate-point spectrum which are eigenvalues of finite multiplicity. In
this article we consider the preservation of property (aw) under a finite rank
perturbation commuting with T, whenever T is polaroid, or T has analytical
core K(T − λ0 I) = {0} for some λ0 ∈ C. The preservation of property (aw)
is also studied under commuting nilpotent or under injective quasi-nilpotent
perturbations or under Riesz perturbations. The theory is exemplified in the
case of some special classes of operators.

1 Introduction

Throughout this paper, X denotes an infinite-dimensional complex Banach space,
L(X) the algebra of all bounded linear operators on X. For an operator T ∈ L(X)
we shall denote by α(T) the dimension of the kernel ker(T), and by β(T) the
codimension of the range T(X). Let

Φ+(X) := {T ∈ L(X) : α(T) < ∞ and T(X) is closed}

be the class of all upper semi-Fredholm operators, and let

Φ−(X) := {T ∈ L(X) : β(T) < ∞}
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be the class of all lower semi-Fredholm operators. The class of all semi-Fredholm
operators is defined by Φ±(X) := Φ+(X)∪Φ−(X), while the class of all Fredholm
operators is defined by Φ(X)) := Φ+(X) ∩ Φ−(X). If T ∈ Φ±(X), the index of T
is defined by

ind(T) := α(T)− β(T).

Recall that a bounded operator T is said bounded below if it injective and has closed
range. Evidently, if T is bounded below then T ∈ Φ+(X) and ind(T) ≤ 0. Define

W+(X) : = {T ∈ Φ+(X) : ind(T) ≤ 0} ,

and

W−(X) : = {T ∈ Φ−(X) : ind(T) ≥ 0} .

The set of Weyl operators is defined by

W(X) := W+(X) ∩ W−(X) = {T ∈ Φ(X) : ind(T) = 0} .

The classes of operators defined above generate the following spectra. Denote by

σa(T) := {λ ∈ C : T − λI is not bounded below}

the approximate point spectrum, and by

σs(T) := {λ ∈ C : T − λI is not surjective}

the surjectivity spectrum of T ∈ L(X). The Weyl spectrum is defined by

σw(T) := {λ ∈ C : T − λ /∈ W(X)} ,

the Weyl essential approximate point spectrum is defined by

σuw(T) := {λ ∈ C : T − λ /∈ W+(X)} ,

while the Weyl essential surjectivity spectrum is defined by

σlw(T) := {λ ∈ C : T − λ /∈ W−(X)} ,

Obviously, σw(T) = σuw(T) ∪ σlw(T) and from basic Fredholm theory we have

σuw(T) = σws(T
∗) σws(T) = σuw(T

∗).

Note that σuw(T) is the intersection of all approximate point spectra σa(T + K) of
compact perturbations K of T , while σlw(T) is the intersection of all surjectivity
spectra σs(T + K) of compact perturbations K of T , see, for instance, [1, Theorem
3.65].

Recall that the ascent, a(T), of an operator T is the smallest non-negative in-
teger p such that ker(Tp) = ker(Tp+1). If such integer does not exist we put
a(T) = ∞. Analogously, the descent, d(T), of an operator T is the smallest non-
negative integer q such that Tq(X) = Tq+1(X), and if such integer does not exist
we put d(T) = ∞. It is well known that if a(T) and d(T) are both finite then
a(T) = d(T) [16, Proposition 1.49]. Moreover, 0 < a(T − λI) = d(T − λI) < ∞
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precisely when λ is a pole of the resolvent of T , see Dowson [16, Theorem 1.54].
The class of all upper semi-Browder operators is defined by

B+(X) := {T ∈ Φ+(X) : a(T) < ∞} ,

while the class of all lower semi-Browder operators is defined by

B−(X) := {T ∈ Φ+(X) : d(T) < ∞} .

The class of all Browder operators is defined by

B(X) := B+(X) ∩ B−(X) = {T ∈ Φ(X) : a(T), d(T) < ∞} .

We have

B(X) ⊆ W(X), B+(X) ⊆ W+(X), B−(X) ⊆ W−(X),

see [1, Theorem 3.4]. The Browder spectrum of T ∈ L(X) is defined by

σb(T) := {λ ∈ C : T − λI /∈ B(X)} ,

the upper Browder spectrum is defined by

σub(T) := {λ ∈ C : T − λI /∈ B+(X)} ,

and analogously the lower Browder spectrum is defined by

σlb(T) := {λ ∈ C : T − λI /∈ B−(X)} .

Clearly, σb(T) = σub(T) ∪ σlb(T) and σw(T) ⊆ σb(T).
The single valued extension property plays an important role in local spectral

theory, see the recent monograph of Laursen and Neumann [23] and Aiena [1].
In this article we shall consider the following local version of this property, which
has been studied in recent papers, [4, 22] and previously by Finch [18].

Let Hol(σ(T)) be the space of all functions that analytic in an open neighbor-
hoods of σ(T). Following [18] we say that T ∈ L(X) has the single-valued exten-
sion property (SVEP) at point λ ∈ C if for every open neighborhood Uλ of λ, the
only analytic function f : Uλ −→ H which satisfies the equation (T − µ) f (µ) = 0
is the constant function f ≡ 0. It is well-known that T ∈ L(X) has SVEP at every
point of the resolvent ρ(T) := C \ σ(T). Moreover, from the identity Theorem
for analytic function it easily follows that T ∈ L(X) has SVEP at every point of
the boundary ∂σ(T) of the spectrum. In particular, T has SVEP at every isolated
point of σ(T). In [22, Proposition 1.8], Laursen proved that if T is of finite ascent,
then T has SVEP.

The basic role of SVEP arises in local spectral theory since all decomposable
operators enjoy this property. Recall T ∈ L(X) has the decomposition property (δ)
if X = XT(U) + XT(V) for every open cover {U, V} of C. Decomposable opera-
tors may be defined in several ways for instance as the union of the property (β)
and the property (δ), see [23, Theorem 2.5.19] for relevant definitions. Note that
the property (β) implies that T has SVEP, while the property (δ) implies SVEP
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for T∗, see [23, Theorem 2.5.19]. Every generalized scalar operator on a Banach
space is decomposable, see [23] for relevant definitions and results. In particular,
every spectral operators of finite type is decomposable [14, Theorem 3.6]. Also
every operator T ∈ L(X) with totally disconnected spectrum is decomposable
[23, Proposition 1.4.5].

The quasinilpotent part H0(T − λI) and the analytic core K(T − λI) of T − λI
are defined by

H0(T − λI) := {x ∈ X : lim
n−→∞

‖(T − λI)nx‖
1
n = 0}.

and

K(T − λI) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0

for which x = x0, (T − λI)xn+1 = xnand ‖xn‖ ≤ δn‖x‖for all n = 1, 2, · · · }.

We note that H0(T − λI) and K(T − λI) are generally non-closed hyper-invariant
subspaces of T−λI such that (T −λI)−p(0) ⊆ H0(T −λI) for all p = 0, 1, · · · and
(T − λI)K(T − λI) = K(T − λI). Recall that if λ ∈ iso(σ(T)), then
H0(T − λI) = χT({λ}), where χT({λ}) is the global spectral subspace consisting
of all x ∈ H for which there exists an analytic function f : C \ {λ} −→ X that
satisfies (T − µ) f (µ) = x for all µ ∈ C \ {λ}, see, Duggal [17].

Theorem 1.1. [3, Theorem 1.3] If T ∈ Φ±(X) the following statements are equivalent:

(i) T has SVEP at λ0;

(ii) a(T − λ0 I) < ∞;

(iii) σa(T) does not cluster at λ0;

(iv) H0(T − λ0 I) is finite dimensional.

By duality we have

Theorem 1.2. If T ∈ Φ±(X) the following statements are equivalent:

(i) T∗ has SVEP at λ0;

(ii) d(T − λ0 I) < ∞;

(iii) σs(T) does not cluster at λ0.

Theorem 1.3. [4, Theorem 1.3] Suppose that T − λI ∈ Φ±(X). If T has SVEP at λ
then ind(T − λI) ≤ 0, while if T∗ has SVEP at λ then ind(T − λI) ≥ 0.
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2 Property (aw) and SVEP

Let write isoK for the set of all isolated points of K ⊆ C. For a bounded operator
T ∈ L(X) set

π0(T) := σ(T) \ σb(T) = {λ ∈ σ(T) : T − λI ∈ B(X)} .

Note that every λ ∈ π0(T) is a pole of the resolvent and hence an isolated point
of σ(T), see [21, Proposition 50.2]. Moreover, π0(T) = π0(T

∗). Define

E0(T) := {λ ∈ isoσ(T) : 0 < α(T − λI) < ∞} .

Obviously,
π0(T) ⊆ E0(T) for every T ∈ L(X).

For a bounded operator T ∈ L(X) let us define

Ea
0(T) := {λ ∈ isoσa(T) : 0 < α(T − λI) < ∞} ,

and
πa

0(T) := σa(T) \ σub(T) = {λ ∈ σa(T) : T − λI ∈ B+(X)} .

Lemma 2.1. [4] For every T ∈ L(X) we have

(a) π0(T) ⊆ πa
0(T) ⊆ Ea

0(T) and

(b) E0(T) ⊆ Ea
0(T).

Following Harte and W.Y. Lee [19], we shall say that T satisfies Browder’s
theorem if

σw(T) = σb(T),

while, T ∈ L(X) is said to satisfy a-Browder’s theorem if

σuw(T) = σub(T).

Browder’s theorem and a-Browder’s theorem may be characterized by localized
SVEP in the following way:

Lemma 2.2. [5] If T ∈ L(X) the following equivalences hold:

(i) T satisfies Browder’s theorem ⇔ T has SVEP at every λ /∈ σw(T);

(ii) T satisfies a-Browder’s theorem ⇔ T has SVEP at every λ /∈ σuw(T).
Moreover, the following statements hold:

(iii) If T has SVEP at every λ /∈ σlw(T) then a-Browder’s theorem holds for T∗.

(iv) If T∗ has SVEP at every λ /∈ σuw(T) then a-Browder’s theorem holds for T.

Obviously,
a-Browder’s theorem holds for T ⇒ Browder’s theorem holds for T and the con-
verse is not true.
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Remark 2.3. The opposite implications of (iii) and (iv) in Theorem 2.2 in general
do not hold. In [2] it is given an example of unilateral weighted left shift on
ℓq(N) which shows that these implications cannot be reversed.

By Lemma 2.2 we also have
T or T∗ has SVEP ⇒ a-Browder’s theorem holds for both T, T∗.

Following Coburn [13], we say that Weyl’s theorem holds for T ∈ L(X) if

∆(T) := σ(T) \ σw(T) = E0(T).

An approximate point version of Weyl’s theorem is a-Weyl’s theorem: according
Rakoṽević [30] an operator T ∈ L(X) is said to satisfy a-Weyl’s theorem if

∆a(T) := σa(T) \ σuw(T) = Ea
0(T).

Since T − λI ∈ W+(X) implies that (T − λI)(X) is closed, we can write

∆a(T) = {λ ∈ C : T − λI ∈ W+(X), 0 < α(T − λI)} .

It should be noted that the set ∆a(T) may be empty. This is, for instance, the case
of a right shift on ℓ2(N), see [3]. Furthermore,

a-Weyl’s theorem holds for T ⇒ Weyl’s theorem holds for T,

while the converse in general does not hold.

Definition 2.4. A bounded operator T ∈ L(X) is said to satisfy property (w) if

∆a(T) = σa(T) \ σuw(T) = E0(T).

Definition 2.5. A bounded operator T ∈ L(X) is said to satisfy property (aw) if

∆(T) = σ(T) \ σw(T) = Ea
0(T).

Following [11], we say that T ∈ L(X) satisfies property (ab) if ∆(T) = πa
0(T).

It is shown [11] that an operator T ∈ L(X) satisfies property (aw) satisfying
property (ab) but the converse is not true in general.

Lemma 2.6. Let T ∈ L(X). Then

(i) T satisfies property (ab) if and only if T satisfies Browder’s theorem and π0(T) =
πa

0(T), see [11, Corollary 2.6].

(ii) T satisfies property (aw) if and only if T satisfies property (ab) and Ea
0(T) =

πa
0(T), see [11, Theorem 3.6].

Theorem 2.7. Let T ∈ L(X). If T satisfies property (aw) then T satisfies Weyl’s theo-
rem.

Proof. If T satisfies property (aw) then T satisfies Browder’s theorem and π0(T) =
Ea

0(T). Hence ∆(T) = π0(T) = Ea
0(T). As π0(T) ⊆ πa

0(T) ⊆ Ea
0(T) is always ver-

ified. Therefore, ∆(T) = E0(T).
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The converse of of Theorem 2.7 is not true in general as shown by the follow-
ing example.

Example 2.8. Let R ∈ ℓ2(N) be the unilateral right shift and

U(x1, x2, · · · ) := (0, x2, x3, · · · ) for all (xn) ∈ ℓ
2(N).

If T := R ⊕ U then σ(T) = σw(T) = D(0, 1), where D(0, 1) is the unit disc of
C. So isoσ(T) = E0(T) = ∅. Moreover, σa(T) = C(0, 1) ∪ {0} , where C(0, 1) is
the unit circle of C, σuw(T) = D(0, 1), so T does not satisfy property (aw), since
∆(T) = ∅ 6= Ea

0(T) = {0} . On the other hand, T satisfies a-Weyl’s theorem, since
∆a(T) = Ea

0(T) and hence satisfies Weyl’s theorem.

Proposition 2.9. Let T ∈ L(X). Then property (aw) holds for T if and only if T satisfies
Weyl’s theorem and π0(T) = Ea

0(T).

Proof. If T satisfies property (aw) then it follows from Theorem 2.7 that T satisfies
Weyl’s theorem and from Lemma 2.6 that π0(T) = πa

0(T) = Ea
0(T). For the

converse, assume that T satisfies Weyl’s theorem and π0(T) = Ea
0(T). Then T

satisfies Browder’s theorem and π0(T) = E0(T). Hence ∆(T) = Ea
0(T). That is, T

satisfies property (aw).

Define
Λ(T) := {λ ∈ ∆a(T) : ind(T − λI) < 0} . (2.1)

Clearly
∆a(T) = ∆(T) ∪ Λ(T) and Λ(T) ∩ ∆(T) = ∅. (2.2)

Proposition 2.10. Suppose that T ∈ L(X) is decomposable. Then T satisfies property
(aw) if and only if T satisfies Weyl’s theorem.

Proof. If T is decomposable then both T and T∗ have SVEP. This, by Theorem
1.3 entails that T − λI has index zero for every λ ∈ ∆a(T) = ∆(T), and hence
Λ(T) = ∅. Property (aw) implies Weyl’s theorem for every operator T ∈ L(X).
For the converse, if T satisfies Weyl’s theorem then ∆(T) = E0(T) and since T∗

has SVEP then E0(T) = Ea
0(T), hence the result.

As a consequence of Proposition 2.10, we have that for a bounded operator
T ∈ L(X) having totally disconnected spectrum then property (aw) and Weyl’s
theorem are equivalent.

A bounded operator T ∈ L(X) is said to have property H(p) if for all λ ∈ C

there exists a p := p(λ) such that:

H0(T − λI) = ker(T − λI)p. (2.3)

Let f (T) be defined by means of the classical functional calculus. In [27] it has
been proved that if T ∈ L(X) has property H(p) then f (T) and f (T∗) satisfy
Weyl’s theorem.
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Proposition 2.11. If T ∈ L(X) is generalized scalar then property (aw) holds for both
T and T∗. In particular, property (aw) holds for every spectral operator of finite type.

Proof. Every generalized scalar operator T is decomposable and hence also the
dual T∗ is decomposable, see [23, Theorem 2.5.3]. Moreover, every generalized
scalar operator has property H(p) [27, Example 3], so Weyl’s theorem holds for
both T and T∗. By Proposition 2.10 it then follows that both T and T∗ satisfy
property (aw). The second statement is clear: every spectral operators of finite
type is generalized scalar.

The following example show that property (aw) and property (w) are inde-
pendent.

Example 2.12. Let T be the hyponormal operator T given by the direct sum of
the 1-dimensional zero operator and the unilateral right shift R on ℓ2(N). Then
σ(T) = D(0, 1), D(0, 1) the closed unit disc in C. Moreover, 0 is an isolated
point of σa(T) = C(0, 1) ∪ {0}, C(0, 1) the unit circle of C, and 0 ∈ Ea

0(T) while
0 /∈ πa

0(T) = ∅, since a(T) = a(R) = ∞. Hence, by Theorem 2.4 of [4], T
does not satisfy a-Weyl’s theorem. Now π0(T) = E0(T) = ∅, since σ(T) has
no isolated points, πa(T) = E0(T). Since every hyponormal operator has SVEP
we also know that a-Browder’s theorem holds for T, so from Theorem 2.7 of [4]
we see that property (w) holds for T. On the other hand, σw(T) = D(0, 1), then
0 ∈ Ea

0(T) 6= ∆(T) = ∅. Therefore, T does not satisfy property (aw). Note that
∆(T) = E0(T) = ∅. That is, T satisfies Weyl’s theorem.

The next result shows that property (w) and property (aw) are equivalent in
presence of SVEP.

Theorem 2.13. Let T ∈ L(X). Then the following equivalences holds:

(i) If T∗ has SVEP, the property (aw) holds for T if and only if the property (w) holds
for T.

(ii) If T has SVEP, the property (aw) holds for T∗ if and only if the property (w) holds
for T∗.

Proof. (i) The SVEP of T∗ implies that σa(T) = σ(T), see [1, Corollary 2.5],
σuw(T) = σw(T) = σb(T), see [8, Theorem 2.6] so Ea

0(T) = E0(T), and hence
∆a(T) = ∆(T). Therefore,the property (aw) holds for T if and only if the prop-
erty (w) holds for T.
(ii) If T has SVEP then σ(T∗) = σ(T) = σs(T) = σa(T∗), see [1, Corollary 2.5],
σuw(T∗) = σw(T) = σb(T), see [8, Theorem 2.6] and hence E0(T

∗) = Ea
0(T

∗).
Therefore, ∆(T∗) = ∆a(T∗). Therefore, the property (aw) holds for T∗ if and only
if the property (w) holds for T∗.

Example 2.8 shows that a-Weyl’s theorem does not imply property (aw). But
in presence of SVEP a-Weyl’s theorem, Weyl’s theorem and property (aw) are
equivalent as shown by the following result.
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Theorem 2.14. Let T ∈ L(X). Then the following equivalences holds:

(i) If T∗ has SVEP, the property (aw) holds for T if and only if Weyl’s theorem holds
for T , and this is the case if and only if a-Weyl’s theorem holds for T.

(ii) If T has SVEP, the property (aw) holds for T∗ if and only if Weyl’s theorem holds
for T∗, and this is the case if and only if a-Weyl’s theorem holds for T∗.

Proof. (i) The SVEP of T∗ implies that σa(T) = σ(T), see [1, Corollary 2.5],
σuw(T) = σw(T) = σb(T), see [8, Theorem 2.6] so Ea

0(T) = E0(T), and hence
∆a(T) = ∆(T). Furthermore, by [1, Corollary 3.53] we also have σub(T) = σw(T)
from which it follows that Ea

0(T) = σa(T) \ σub(T) = πa
0(T). Since the SVEP for

T∗ implies a-Browder’s theorem for T we then conclude, by part (ii) of Theorem
2.4 of [4], that a-Weyl’s theorem hold s for T. Hence the equivalence follows.
(ii) If T has SVEP then σ(T∗) = σ(T) = σs(T) = σa(T∗), see [1, Corollary 2.5],
σuw(T∗) = σw(T) = σb(T), see [8, Theorem 2.6] and hence E0(T

∗) = Ea
0(T

∗).
Therefore, ∆(T∗) = ∆a(T

∗). Moreover, by [1, Corollary 3.53] we also have

σw(T
∗) = σw(T) = σlb(T) = σub(T

∗),

from which it easily follows that πa
0(T

∗) = Ea
0(T

∗). The SVEP for T implies that
T∗ satisfies a-Browder’s theorem, so by part (ii) of Theorem 2.4 of [4], a-Weyl’s
theorem for T∗. Hence the equivalence follows.

Corollary 2.15. If T is generalized scalar then property (aw) holds for both f (T) and
f (T∗) for every f ∈ Hol(σ(T)).

Proof. Since T has property H(p) then Weyl’s theorem holds for f (T) and f (T∗),
see [27, Corollary 3.6]. Moreover, T and T∗ being decomposable, both T and T∗

have SVEP, hence also f (T) and f (T∗) = f (T)∗ have SVEP by Theorem 2.40 of
[1]. By Theorem 2.14 it then follows that property (aw) holds for both f (T) and
f (T∗).

Remark 2.16. Corollary 2.15 applies to a large number of the classes of operators
defined in Hilbert spaces. In [27] Oudghiri observed that every sub-scalar opera-
tor T (i.e., T is similar to a restriction of a generalized scalar operator to one of its
closed invariant subspaces) has property H(p). Consequently, property H(p) is
satisfied by p-hyponormal operators and log-hyponormal operators [24, Corol-
lary 2], w-hyponormal operators [25], M-hyponormal operators [23, Proposition
2.4.9], and totally paranormal operators [7]. Also totally ∗-paranormal operators
have property H(1) [20].

An operator T ∈ L(X) is said to be polaroid if every isolated point of σ(T) is
a pole of the resolvent operator (T − λI)−1, or equivalently a(T − λI) = d(T −
λI) < ∞, see [21, Proposition 50.2]. An operator T ∈ L(X) is said to be a-polaroid
if every isolated point of σa(T) is a pole of the resolvent operator (T − λI)−1, or
equivalently a(T − λI) = d(T − λI) < ∞, see [21, Proposition 50.2]. Clearly,

T a-polaroid ⇒ T polaroid. (2.4)

and the opposite implication is not generally true.
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Theorem 2.17. Suppose that T is a-polaroid. Then property (w) holds for T if and only
if T satisfies property (aw).

Proof. Note first that if T is a-polaroid then π0(T) = Ea
0(T). In fact, if λ ∈ Ea

0(T)
then λ is isolated in isoσa(T) and hence a(T − λI) = d(T − λI) < ∞. Moreover,
α(T − λI) < ∞, so by Theorem 3.4 of [1] it follows that β(T − λI) is also finite,
thus λ ∈ π0(T). This shows that Ea

0(T) ⊆ π0(T), and consequently by Lemma 2.1
we have π0(T) = Ea

0(T). Now, if T satisfies property (w) theorem then ∆a(T) =
E0(T), and since Weyl’s theorem holds for T we also have by Theorem 2.4 of [4]
that π0(T) = E0(T). Hence ∆(T) = Ea

0(T). Therefore, property (aw) holds for
T. Conversely, if T satisfies property (aw) then ∆(T) = Ea

0(T). Since by Theorem
2.7 T satisfies Weyl’s theorem we also have, by Theorem 2.4 of [4], E0(T) =
π0(T) = Ea

0(T). If λ ∈ ∆a(T), as T satisfies property (aw) then λ ∈ E0(T).
Since ∆(T) ⊆ ∆a(T) it then follows if λ ∈ E0(T) = ∆(T) then λ ∈ ∆a(T). So
∆a(T) = E0(T). Therefore, T satisfies property (w).

Recall that a bounded operator T ∈ L(X) is said to be isoloid (respectively, a-
isoloid) if every isolated point of σ(T) (respectively, every isolated point of σa(T))
is an eigenvalue of T. Every a-isoloid operator is isoloid. This is easily seen: if T
is a-isoloid and λ ∈ isoσ(T) then λ ∈ σa(T) or λ /∈ σa(T). In the first case T − λI
is bounded below, in particular upper semi-Fredholm. The SVEP of both T and
T∗ at λ then implies that a(T − λI) = d(T − λI) < ∞, so λ is a pole. Obviously,
also in the second case λ is a pole, since by assumption T is a-isoloid.

Theorem 2.18. Suppose that T is a-polaroid and that T∗ has SVEP. Then f (T) satisfies
property (aw) for all f ∈ Hol(σ(T)).

Proof. If T is a-polaroid then T is a-isoloid (i.e., every isolated point of σa(T) is an
eigenvalue of T ). The SVEP for T∗ ensures that the spectral mapping theorem
holds for σuw(T), i.e., if f ∈ Hol(σ(T)) then f (σuw(T)) = σuw( f (T)), [1, Theorem
3.66]. By Theorem 5.4 of [15] then f (T) satisfies a-Weyl’s theorem, and since
f (T∗) = f (T)∗ has SVEP from Theorem 2.14 we conclude that property (aw)
holds for f (T).

Theorem 2.19. Suppose that T ∈ L(X). Then the following statements hold:

(i) If T is polaroid and T has SVEP then property (aw) holds for T∗.

(ii) If T is polaroid and T∗ has SVEP then property (aw) holds for T.

Proof. (i) By Theorem 2.14 it suffices to show that Weyl’s theorem holds for
T∗. The SVEP ensures that Browder’s theorem holds for T∗. We prove that
π0(T

∗) = E0(T
∗). Let λ ∈ E0(T

∗) Then λ ∈ isoσ(T∗) = isoσ(T) and the polaroid
assumption implies that λ is a pole of the resolvent, or equivalently a(T − λI) =
d(T − λI) < ∞. If P denotes the spectral projection associated with {λ} we have
(T − λI)p(X) = ker(P) [1, Theorem 3.74], so (T − λI)p(X) is closed, and hence
also (T∗ − λI)p(X∗) is closed. Since λ ∈ E0(T

∗) then α(T∗ − λI∗) < ∞ and
this implies (T∗ − λI)p(X∗) < ∞, from which we conclude that (T∗ − λI∗)p ∈
Φ+(X∗), hence T∗ − λI∗ ∈ Φ+(X∗), and consequently T − λI ∈ Φ−(X). There-
fore β(T − λI) < ∞ and since a(T − λI) = d(T − λI) < ∞ by Theorem 3.4 of [1]
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we then conclude that α(T − λI) < ∞. Hence λ ∈ π0(T) = π0(T
∗). This proves

that E0(T
∗) ⊆ π0(T

∗), and since by Lemma 2.1 the opposite inclusion is satisfied
by every operator we may conclude that E0(T

∗) = π0(T
∗). By Theorem 2.4 of [4]

then T∗ satisfies Weyl’s theorem.
(ii) The SVEP for T∗ implies that Browder’s theorem holds for T. Again by Theo-
rem 2.14 it suffices to show that T satisfies Weyl’s theorem, and hence by Lemma
2.1 and Theorem 2.4 of [4] we need only to prove that E0(T) = π0(T). Let λ ∈
E0(T). Then λ ∈ isoσ(T) and since T is polaroid then a(T −λI) = d(T −λI) < ∞.
Since α(T − λI) < ∞ we then have β(T − λI) < ∞ and hence λ ∈ π0(T). Hence
E0(T) ⊆ π0(T) and by Lemma 2.14 we then conclude that E0(T) = π0(T).

Remark 2.20. Part (i) of Theorem 2.19 shows that the dual T∗ of a multiplier
T ∈ M(A) of a commutative semi-simple Banach algebra A has property (aw),
since every multiplier T ∈ M(A) of a commutative semi-simple Banach algebra
satisfies Weyl’s theorem and is polaroid, see [1, Theorem 4.36].

Theorem 2.21. Let T ∈ L(X) be such that there exists λ0 ∈ C such that K(T −
λ0 I) = {0} and ker(T − λ0 I) = {0}. Then property (aw) holds for f (T) for all
f ∈ Hol(σ(T)).

Proof. We know from [9, Lemma 2.4] that σp(T) = ∅, so T has SVEP. We show
that also σp( f (T)) = ∅. Let µ ∈ σ( f (T)) and write f (λ) − µ = p(λ)g(λ), where
g is analytic on an open neighborhood U containing σ(T) and without zeros in
σ(T), p a polynomial of the form

p(λ) = (λ − λ1)
m1(λ − λ2)

m2 · · · (λ − λn)
mn ,

with distinct roots λ1, λ2, · · · , λn lying in σ(T). Then

f (T)− µI = (T − λ1 I)m1(T − λ2 I)m2 · · · (T − λn I)mn g(T)

Since g(T) is invertible, σp(T) = ∅ implies that ker( f (T) − µI) = {0} for all
µ ∈ C, so σp( f (T)) = ∅. Since T has SVEP then f (T) has SVEP, see Theorem 2.40
of [1], so that a-Browder’s theorem holds for f (T) and hence Browder’s theorem
holds for f (T). To prove that property (aw) holds for f (T), by Lemma 2.6 it then
suffices to prove that

Ea
0( f (T)) = π0( f (T)).

Obviously, the condition σp( f (T)) = ∅ entails that E0( f (T)) = Ea
0( f (T)) = ∅.

On the other hand, the inclusion π0( f (T)) ⊆ Ea
0( f (T)) holds for every operator

T ∈ L(X), so also π0( f (T)) is empty. By Lemma 2.6 it then follows that f (T)
satisfies property (aw).

3 Property (aw) under perturbations

In this section we shall give some conditions for which property (aw) is preserved
under commuting finite-rank or quasinilpotent perturbations.

As property (w), property (aw) is not preserved under finite rank perturba-
tions (also commuting finite rank perturbations).
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Example 3.1. Let T := Q ⊕ I defined on X ⊕ X, where Q is an injective quasi-
nilpotent operator. It is easily seen that T satisfies a-Weyl’s theorem. Define K :=
0 ⊕ (−P), where P is a finite rank projection. Then TK = KT, and since T∗ has a
finite spectrum then T∗ has SVEP, hence T∗ + K∗ has SVEP, by Lemma 2.8 of [6].
Therefore σ(T + K) = σa(T + K), by Corollary 2.45 of [1]. On the other hand it
is easy to see that 0 ∈ σ(T + K) ∩ σw(T + K), so 0 /∈ σ(T + K) \ σw(T + K), while
0 ∈ E0(T + K) = Ea

0(T + K), thus T + K does not verify property (aw).

Theorem 3.2. Suppose that T ∈ L(X) is polaroid and K is a finite rank operator com-
muting with T.

(i) If T∗ has SVEP then f (T) + K satisfies property (aw) for all f ∈ Hol(σ(T)).

(ii) If T has SVEP then f (T∗) + K∗ satisfies property (aw) for all f ∈ Hol(σ(T)).

Proof. (i) By [1, Corollary 2.45] we have σa(T) = σ(T), so T is a-polaroid and
hence a-isoloid. By Theorem 2.18 it then follows that f (T) has property (aw) for
all f ∈ Hol(σ(T)). Now, by [1, Theorem 2.40] f (T∗) = f (T)∗ has SVEP, so that,
by Theorem 2.14 a-Weyl’s theorem holds for f (T). Since f (T) and K commutes,
by Theorem 3.2 of [6] we then obtain that f (T)+K satisfies a-Weyl’s theorem. By
Lemma 2.8 of [5] f (T)∗ + K∗ = ( f (T) + K)∗ has SVEP. This implies that property
(aw) and a-Weyl’s theorem for f (T) + K are equivalent, again by Theorem 2.14,
so the proof is complete.
(ii) The argument is analogous to that of part (i). Just observe that σa(T

∗) = σ(T∗)
by [1, Corollary 2.45], so that T∗ is a-polaroid, hence a-isoloid. Moreover, by
Theorem 2.18 it then follows that f (T∗) has property (aw) for all f ∈ Hol(σ(T)).
By Theorem 2.40 of [1] f (T) has SVEP, so that, so, by Theorem 2.14 a-Weyl’s
theorem holds for f (T∗). Since f (T∗) and K∗ commutes, by Theorem 3.2 of [6]
we then obtain that f (T∗) + K∗ satisfies a-Weyl’s theorem. Again by Lemma 2.8
of [5] f (T) + K has SVEP, so that (aw) and a-Weyl’s theorem for f (T∗) + K∗ are
equivalent, by Theorem 2.14.

The basic role of SVEP arises in local spectral theory since for all decompos-
able operators both T and T∗ have SVEP. Every generalized scalar operator on a
Banach space is decomposable (see [23] for relevant definitions and results). In
particular, every spectral operators of finite type is decomposable.

Corollary 3.3. Suppose that T ∈ L(X) is generalized scalar and K is a finite rank opera-
tor commuting with T. Then property (aw) holds for both f (T) + K and
f (T∗) + K∗. In particular, this is true for every spectral operator of finite type.

Proof. Both T and T∗ have SVEP. Moreover, every generalized scalar operator T
has property H(p) [27, Example 3], so T is polaroid. The second statement is
clear: every spectral operators of finite type is generalized scalar.

The next results deal with quasi-nilpotent perturbations. We first recall two
well-known results: if Q a quasi-nilpotent operator commuting with T ∈ L(X),
then

σa(T) = σa(T + Q) and σuw(T) = σuw(T + Q). (3.1)

Since σ(T + Q) = σ(T) and σb(T + Q) = σb(T) (for the last equality see [32]), we
then have π0(T + Q) = π0(T).
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Lemma 3.4. Let T ∈ L(X). If N ∈ L(X) is a nilpotent operator commuting with T,
then Ea

0(T + N) = Ea
0(T).

Proof. Let λ ∈ Ea
0(T) be arbitrary. There is no loss of generality if we assume that

λ = 0. As N is nilpotent we know that σa(T + N) = σa(T), thus
0 ∈ isoσa(T + N). Let m ∈ N be such that Nm = 0. If x ∈ ker(T), then
(T + N)m(x) = ∑

m
k=0 Cm

k TkNm−k(x) = 0. So ker(T) ⊂ ker(T + N)m. As
0 < α(T) < ∞, it follows that 0 < α((T + N)m) < ∞ and this implies that
0 < α(T + N) < ∞. Hence 0 ∈ Ea

0(T + N). So Ea
0(T) ⊆ Ea

0(T + N). By symmetry
we have Ea

0(T) = Ea
0(T + N).

It is easily seen that property (aw) is transmitted under commuting nilpotent
perturbations N.

Theorem 3.5. If T ∈ L(X) satisfies property (aw),N ∈ L(X) is a nilpotent operator
commuting with T then T + N satisfies property (aw).

Proof. If T satisfies property (aw) then T satisfies Browder’s theorem, so by Lemma
2.6, Ea

0(T) = π0(T). Hence

Ea
0(T + N) = Ea

0(T) = π0(T + N) = π0(T).

Since σ(T + N) = σ(T) and σw(T + N) = σw(T), we have

σ(T + N) \ σw(T + N) = σ(T) \ σw(T) = Ea
0(T) = Ea

0(T + N).

That is, T + N satisfies property (aw).

Generally, property (aw) is not transmitted from T to a quasi-nilpotent per-
turbation T + Q. In fact, if Q ∈ ℓ2(N) is defined by

Q(x1, x2, · · · ) =
(x2

2
,

x3

3
, · · ·

)

for all (xn) ∈ ℓ
2(N).

Then Q is quasi-nilpotent, σ(Q) = σw(Q) = {0} and

{0} = Ea
0(Q) 6= σ(Q) \ σw(Q)

Take T = 0. Clearly, T satisfies property (aw) but T + Q = Q fails this property.
Note that Q is not injective.

Theorem 3.6. Suppose that for T ∈ L(X) there exists an injective quasi-nilpotent Q
operator commuting with T. Then both T and T + Q satisfy property (aw), a-Weyl’s
and Weyl’s theorem.

Proof. We show first a-Weyl’s theorem holds for T. It is evident, by Lemma 3.9
of [9], that Ea

0(T) is empty. Suppose that σa(T) \ σuw(T) is not empty and let
λ ∈ ∆a(T). Since T − λI ∈ W+(X) then α(T − λI) < ∞ and T − λI has closed
range. Since T − λI commutes with Q it then follows, by Lemma 3.9 of [9], that
T − λI is injective, so λ /∈ σa(T), a contradiction. Therefore, also σa(T) \ σuw(T)
is empty. Therefore, a-Weyl’s theorem holds for T. To show that property (aw)
holds for T. Observe that ∆(T) ⊆ ∆a(T) = Ea

0(T) = ∅. Hence ∆(T) = Ea
0(T) =
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∅. That is, property (aw) holds for T.
Analogously, a-Weyl’s theorem also holds for T + Q , since the operator T + Q
commutes with Q. Weyl’s theorem is obvious: property (aw), as well as a-Weyl’s
theorem, entails Weyl’s theorem. Property (aw), as well as a-Weyl’s theorem and
Weyl’s theorem, for T + Q is clear, since also T + Q commutes with Q.

Theorem 3.7. Suppose that isoσa(T) = ∅. If T satisfies property (aw) and K is a finite
rank operator commuting with T , then T + K satisfies property (aw).

Proof. Since T satisfies Browder’s theorem then T + K satisfies Browder’s theo-
rem, see [10, Theorem 3.4]. From Lemma 2.6 of [6], we have isoσa(T + K) = ∅.
Hence Ea

0(T + K) = π0(T + K). Therefore, it follows from Lemma 2.6 that prop-
erty (aw) holds for T + K.

From [12], we recall that an operator R ∈ L(X) is said to be Riesz if R − λI is
Fredholm for every non-zero complex number λ, that is, Υ(R) is quasi-nilpotent
in C(X) where C(X) := L(X)/K(X) is the Calkin algebra and Υ is the canonical
mapping of L(X) into C(X). Note that for such operator,π0(R) = σ(R) \ {0}, and
its restriction to one of its closed subspace is also a Riesz operator, see [12]. The
proof of the following result may be found in [32].

Lemma 3.8. Let T ∈ L(X) and R be a Riesz operator commuting with T. Then

(i) T ∈ B+(X) ⇔ T + R ∈ B+(X).

(ii) T ∈ B−(X) ⇔ T + R ∈ B−(X).

(iii) T ∈ B(X) ⇔ T + R ∈ B(X).

Lemma 3.9. [28, Lemma 2.2] Let T ∈ L(X) and R be a Riesz operator such that
TR = RT.

(i) If T is Fredholm then so is T + R and ind(T + R) = ind(T).

(ii) If T is Weyl then so is T + R. In particular σw(T + R) = σw(T).

(iii) If T satisfies Browder’s theorem then so does T + R.

For a bounded operator T on X, we use Ea
0 f (T) to denote the set of isolated

points λ of σa(T) such that ker(T − λI) is finite-dimensional. Evidently,

πa
0(T) ⊆ Ea

0(T) ⊆ Ea
0 f (T).

Lemma 3.10. Let T be a bounded operator on X. If R is a Riesz operator that commutes
with T, then

Ea
0(T + R) ∩ σa(T) ⊆ isoσa(T).

Proof. Clearly,
Ea

0(T + R) ∩ σa(T) ⊆ Ea
0 f (T + R) ∩ σa(T).

and by Proposition 2.4 of [29] the last set contained in isoσa(T).
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For a bounded operator T on X, we denote by E0 f (T) the set of isolated points
λ of σ(T) such that ker(T − λI) is finite-dimensional. Evidently,E0(T) ⊆ E0 f (T).

Lemma 3.11. Let T be a bounded operator on X. If R is a Riesz operator that commutes
with T, then

E0(T + R) ∩ σ(T) ⊆ isoσ(T).

Proof. Clearly,
E0(T + R) ∩ σ(T) ⊆ E0 f (T + R) ∩ σ(T).

and by Lemma 2.3 of [28] the last set contained in isoσ(T).

Recall that T ∈ L(X) is called finite a-isoloid (resp., finite isoloid) operator
if isoσa(T) ⊆ σp(T) (resp., isoσ(T) ⊆ σp(T)). Clearly, finite a-isoloid implies
a-isoloid and finite isoloid, but the converse is not true in general.

Lemma 3.12. Suppose that T ∈ L(X) be finite-isoloid satisfies property (aw) and R is
a Riesz operator commuting with T. Then πa

0(T + R) ⊆ E0(T + R).

Proof. Let λ ∈ πa
0(T + R) be arbitrary given. Then λ ∈ isoσa(T + R) and

T + R − λI ∈ B+(X), so α(T + R − λI) < ∞. Since T + R − λI has closed range,
the condition λ ∈ σa(T + R) entails that α(T + R − λI) > 0. Therefore, in order
to show that λ ∈ E0(T + R), we need only to prove that λ is an isolated point of
σ(T + R).

Now, by assumption T satisfies property (aw) so, by Lemma 2.6, πa
0(T) =

E0(T) = Ea
0(T). Moreover, T satisfies Weyl’s theorem and hence, by Theorem 2.7

of [28], T + R satisfies Weyl’s theorem. So

π0(T + R) = E0(T + R) = σ(T + R) \ σb(T + R).

Therefore, T + R − λI is Browder, so

0 < a(T + R − λI) = d(T + R − λI) < ∞

and hence λ is a pole of the resolvent of T + R. Consequently, λ an isolated point
of σ(T + R), as desired.

Theorem 3.13. Let T ∈ L(X) be an isoloid operator satisfying property (aw). If F is an
operator that commutes with T and for which there exists a positive integer n such that
Fn is finite rank, then T + F satisfies property (aw).

Proof. First observe that F is a Riesz operator. Since Weyl’s theorem holds for
T + F, by Theorem 2.4 of [28], then E0(T + F) = π0(T + F). As T satisfies prop-
erty (aw) then it follows from Lemma 3.12 that πa

0(T + F) ⊆ E0(T + F). Hence

πa
0(T + F) = E0(T + R) = ∆(T + F) = π0(T + F) = π0(T) = Ea

0(T) = ∆(T).

To prove property (aw) holds for T + F, it suffices to show that E0(T + F) =
Ea

0(T + F). To show this, let λ ∈ Ea
0(T + F). If T − λI is invertible, then

T + F − λI is Weyl, and hence λ ∈ E0(T + R). Suppose that λ ∈ σ(T). Then
it follows from Lemma 3.11 that λ ∈ isoσ(T). Furthermore, since the opera-
tor (T + F − λI)n|ker(T−λI) = Fn|ker(T−λI) is both of finite-dimensional range and
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kernel, we obtain easily that also ker(T − λI) is finite-dimensional, and therefore
that λ ∈ E0(T), because T is a-isoloid. On the other hand, if T satisfies prop-
erty (aw), then Ea

0(T) ∩ σw(T) = ∅. Consequently, T − λI is Weyl and hence so
is T + F − λI, which implies that λ ∈ E0(T + F). The other inclusion is trivial.
Thus, property (aw) holds for T + F.

Corollary 3.14. Let T ∈ L(X) be an isoloid operator. If property (aw) holds for T, then
it also holds for T + F for every finite rank operator F commuting with T.

Theorem 3.15. Let T be a finite-isoloid operator on X that satisfies property (aw). If R
is a Riesz operator that commutes with T, then T + R satisfies property (aw).

Proof. Suppose that T satisfies property (aw). Then From Theorem 2.7, Theorem
2.7 of [28], and Lemma 3.12, we conclude that

πa
0(T + R) = E0(T + R) = ∆(T + R) = π0(T + R) = π0(T) = ∆(T) = Ea

0(T).

To prove property (aw) holds for T + R, it suffices to show that E0(T + R) =
Ea

0(T + R). Let λ ∈ Ea
0(T + R). If T − λI is invertible, then T + R − λI ∈ W(X)

and hence λ ∈ E0(T + R). Suppose that λ ∈ σ(T). It follows by Lemma 3.11
that λ is an isolated point of σ(T), and because T is finite-isoloid, we see that
λ ∈ E0(T). On the other hand, property (aw) holds for T implies that
σw(T) ∩ Ea

0(T) = ∅, therefore T − λI is Weyl and hence so is T + R − λI. Thus,
λ ∈ E0(T + R). The other inclusion is trivial, therefore T + R satisfies property
(aw).

Corollary 3.16. Let T be an finite-isoloid operator on X that satisfies property (aw). If
K is a compact operator commuting with T, then property (aw) holds for T + K.

Theorem 3.17. Let T be an operator on X that satisfies property (aw) and such that
σp(T) ∩ isoσa(T) ⊆ Ea

0(T). If Q is a quasi-nilpotent operator that commutes with T,
then T + Q satisfies property (aw).

Proof. Since σ(T + Q) = σ(T) and also, by Lemma 2 of [26], σw(T + Q) = σw(T),
it suffices to show that Ea

0(T + Q) = Ea
0(T). Let λ ∈ Ea

0(T) = σ(T) \ σw(T). If
T − λI is invertible, then T − λI ∈ W(X) and so T + R − λI ∈ W(X). Hence
λ ∈ E0(T + R) ⊆ Ea

0(T + Q). Conversely, suppose λ ∈ Ea
0(T + Q). Since Q is a

quasi-nilpotent operator that commutes with T, we obtain that the restriction of
T − λI to the finite-dimensional subspace ker(T + Q − λI) is not invertible, and
hence ker(T − λI) is non-trivial. Therefore, λ ∈ σp(T)∩ isoσa(T) ⊆ Ea

0(T), which
completes the proof.
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